SlideShare une entreprise Scribd logo
1  sur  25
Bench Stable Ethylene Polymerisation Pre-Catalysts:
A Step Change using Titanium Fluorides
Luka A. Wright
Highly Active Non-Metallocene Pyridine-Based
Pincer Pre-Catalysts – State of the Art
Cossee-Arlmann Mechanism
Co-ordination/Insertion Mechanism
Why Ti(IV) Fluoride Complexes?
• Underexplored as ethylene
polymerisation pre-catalysts
• Ti-F bond has a bond
enthalpy of 570 kJmol-1
• Ti-Cl bond has a bond
enthalpy of 494 kJmol-1
• Is Ti-F bond more stable
than Ti-Cl to hydrolysis?
• Can we handle pre-catalysts
on the bench?
• Al-F bond has a bond
enthalpy of 663 kJmol-1
• Al-Cl bond has a bond
enthalpy of 511 kJmol-1
• Thermodynamic driving force
to abstract F- (-94 kJmol-1)
is higher than abstraction of
Cl- (-17 kJmol-1).
• Is activation with MAO more
facile from Ti-F?
J. A. Kerr, CRC Handbook of Chemistry and Physics 1999-2000: A Ready-Reference Book of Chemical and
Physical Data, D. R. Lide (ed), CRC Press, Boca Raton, Florida, USA 81st Edn., 2000
Existing use of Ti(IV) Fluoride Complex as
Ethylene Polymerisation Pre-catalyst
• Only one other example of non-metallocene Ti-F complex as ethylene
polymerisation pre-catalyst
• 60 mL toluene
• [MAO:Ti] 500:1
• 1 bar ethylene
• Low activity: 6 g(PE) mmol-1 h-1 bar-1
G. B. Nikiforov, H. W. Roesky and P. G. Jones, J. Fluor. Chem., 2008, 129, 376
Ligand Design and Synthesis
• Cheap readily available starting materials
• Common intermediates – effective pipeline
• Can selectively add/remove steric bulk/ electron density
• Fast, reproducible chemistry
• High yielding
Ligand Synthesis – an example
• 2 pot, 3 step procedure to non-trivial ligand systems
• Suzuki reaction to form C-C bond
• Imine Condensation to form C=N bond from ketone
• Can generate large quantities of the ketone in 2 days
• Easy to diversify at various stages – change phenol
– change aniline – change pyridine core
Pro-Ligand Library
a) L. A. Wright, E. G. Hope, G. A. Solan, W. B. Cross and K. Singh, Dalton Trans., 2015, 44, 6040 (b) L. A. Wright, E. G. Hope, G. A. Solan, W. B. Cross and K. Singh,
Dalton Trans., 2015, 44, 7230 (c) O. Adeyi, W. B. Cross, G. Forrest, L. Godfrey, E. G. Hope, A. McLeod, A. Singh, K. Singh, G. A. Solan, Y. Wang and L. A. Wright, Datlton
Trans., 2013, 42, 7710 (d) W. B. Cross, E. G. Hope, G. Forrest, K. Singh and G. A. Solan, Polyhedron, 2013, 59, 124 (e) W. Alkarekshi, A. P Armitage, O. Boyron, C. J.
Davies, M. Govere, A. Gregory, K. Singh and G. A. Solan, Organometallics, 2013, 32, 249
Preparation of Precatalysts
Synthesis of [(THF)2TiF4]: M. Jura, W. Levason, E. Petts, G. Reid, M. Webster and W. Zhang, Dalton Trans., 2010,
39, 10264
i) CH2Cl2, 3 h, RT
- 2THF, - HF
ii) Precipitation
Library of Ti(IV) Fluoride Complexes
L. A. Wright, G. A. Solan, E. G. Hope and K. Singh, Manuscript in Preparation
Characterisation and Stability -Ti(IV) Fluoride
Complexes
1H and 19F NMR spectra recorded at 300 K for 1a in CDCl3.
(400 MHz, 375 MHz)
N.B. No effort to exclude moisture
L. A. Wright, G. A. Solan, E. G. Hope and K. Singh, Manuscript in Preparation
Characterisation and Stability – Ti(IV)
Fluoride Complexes
Entry Complex Axial F (δ ppm) Equatorial F (δ
ppm)
2JFF (Hz)
1 1a +131 +202 28
2 2a +125 +199 n/da
3 3a +132 +201 32
4 4a +130 +193 29
5 5a +134 +205 32
6 6a +100 +141 n/da
Comparison of 19F NMR data for Ti-F complexes:
a poorly resolved signals therefore coupling constants were not determined.
Complex 6a displays different chemical shift from other complexes – attributed to
subtle changes in the ligand design – crystallography reveals no unique structural
motif
L. A. Wright, G. A. Solan, E. G. Hope and K. Singh, Manuscript in Preparation
Molecular Structure of 3a
3a
3a
Bond Lengths (Å)
Ti(1)-F(1) (ax-F) 1.835(3)
Ti(1)-F(2) (eq-F) 1.793(3)
Ti(1)-F(3) (ax-F) 1.832(3)
Bond Angles (o)
trans-F-Ti(1)-F 167.34(15)
L. A. Wright, G. A. Solan, E. G. Hope and K. Singh, Manuscript in Preparation
Characterisation and Stability – Ti(IV)
Fluoride Complexes
• Titanium(IV) fluoride complexes amenable to
synthesis without rigorous exclusion of moisture
• Titanium(IV) fluoride complexes amenable to full
characterisation (incl. crystal growth) with no
exclusion of moisture
• 19F NMR allows a powerful probe of pre-catalyst
structure
L. A. Wright, G. A. Solan, E. G. Hope and K. Singh, Manuscript in Preparation
Titanium(IV) Chloride Complexes
i) CH2Cl2, RT, 1.5 - 3 h
ii) Evaporation
L. A. Wright, G. A. Solan, E. G. Hope and K. Singh, Manuscript in Preparation
Polymerisation Testing
Conditions
• 0.01 mmol titanium
complex
• 1 bar ethylene
• 300:1 [MAO:Ti]
• 30 min
• 40 mL dry toluene
• Schlenk techniques
Investigating
1. Investigate difference in
Ti-X (X = F, Cl) towards
ethylene polymerisation
2. Investigate ligand effects
on the titanium towards
polymerisation of ethylene
L. A. Wright, G. A. Solan, E. G. Hope and K. Singh, Manuscript in Preparation
Polymerisation Testing
Entry Complex Temperature
(oC)
Mass PE
(g)
Activity
(g mmol-h-bar-)
1 [(THF)2TiF4]a RT 0 0
2 1aa RT 0.209 42
3 2aa RT 0.432 86
4 3aa RT 1.699 340
5 3aa 50 1.182 236
6 4aa RT 0.774 155
7 5aa RT 0.449 90
8 6aa RT 0.014 2.8
9 TiCl4
a RT 0.01 2
10 1ba RT 1.791 358
11 2ba RT 2.950 590
12 3ba RT 4.950 990
13 4ba RT 2.228 446
14 n/aa RT 0.00 0
15 3ab RT 0.00 0
a 1 mmol “Ti”, 300:1 [Al:Ti], 30 min, 1 bar ethylene. b No MAO, 1 mmol “Ti”, 30 min, 1 bar ethylene. Reactions quenched with 2M HCl.
L. A. Wright, G. A. Solan, E. G. Hope and K. Singh, Manuscript in Preparation
Polymerisation Testing – ‘Fluoride Effect ’
L. A. Wright, G. A. Solan, E. G. Hope and K. Singh, Manuscript in Preparation
Polymerisation Testing – ‘Fluoride Effect ’
L. A. Wright, G. A. Solan, E. G. Hope and K. Singh, Manuscript in Preparation
Polymerisation Testing – ‘Fluoride Effect ’
L. A. Wright, G. A. Solan, E. G. Hope and K. Singh, Manuscript in Preparation
/MAO
SEC/GPC traces and detector modes. DRI, LS and DP
/MAO
Conclusions
• The most active Ti(IV) non-metallocene fluoride pre-catalyst known
• It is possible to modulate the activity of pre-catalysts by altering the
steric bulk of the ligand framework
• Modulate molecular weight of PE by increasing the steric bulk the
of supporting pincer ligand manifold
• Titanium chloride pre-catalysts give higher activities to ethylene
polymerisation for given ligand framework – exceptionally high
activities
L. A. Wright, G. A. Solan, E. G. Hope and K. Singh, Manuscript in Preparation
Conclusions – ‘The Fluoride Effect’
• Fluoride-containing systems always give higher molecular weight
polyethylene – UHMWPE
• Effect of fluoride is to ‘smear’ molecular weight distribution of PE
• Would imply multiple modes of activation
Future Work
• Make ligand systems more sterically bulky
• Investigate amine-containing ligands on Ti(IV) fluoride complexes
as ethylene polymerisation pre-catalysts
• Make dianionic ligand systems to generate bisfluoride species
• What is(are) the active catalyst(s)?
• Probe the origin of ‘Fluoride Effect’
Acknowledgments
Joy and George Fraser (Funding)
University of Leicester (Funding)
Dr. G. Solan
Prof. E. Hope
Mr. K. Singh (X-ray)
Mr. M. Lee (Mass spec)
Dr. G. Griffith (NMR)
Dr. T. Boller (ExxonMobil, GPC analysis)
Thank You for Listening
• Any Questions?

Contenu connexe

Tendances

Group meeting presentation 07 18-12
Group meeting presentation 07 18-12Group meeting presentation 07 18-12
Group meeting presentation 07 18-12
lucas467
 

Tendances (9)

Organometallic Reactions and Catalysis
Organometallic Reactions and CatalysisOrganometallic Reactions and Catalysis
Organometallic Reactions and Catalysis
 
Thermodynamic and Kinetic aspects of metal complexes.
Thermodynamic and Kinetic aspects of metal complexes.Thermodynamic and Kinetic aspects of metal complexes.
Thermodynamic and Kinetic aspects of metal complexes.
 
Oxidative addition
Oxidative additionOxidative addition
Oxidative addition
 
H52YCcP_JMB_2003.PDF
H52YCcP_JMB_2003.PDFH52YCcP_JMB_2003.PDF
H52YCcP_JMB_2003.PDF
 
REDOX REACTION
REDOX REACTIONREDOX REACTION
REDOX REACTION
 
F.Sc. Part 2. Chemistry -inorganic Chemistry portion Board Papers Questions &...
F.Sc. Part 2. Chemistry -inorganic Chemistry portion Board Papers Questions &...F.Sc. Part 2. Chemistry -inorganic Chemistry portion Board Papers Questions &...
F.Sc. Part 2. Chemistry -inorganic Chemistry portion Board Papers Questions &...
 
REDOX REACTION : inner & outer sphere Complimentary & non-complimentary reaction
REDOX REACTION : inner & outer sphere Complimentary & non-complimentary reactionREDOX REACTION : inner & outer sphere Complimentary & non-complimentary reaction
REDOX REACTION : inner & outer sphere Complimentary & non-complimentary reaction
 
Group meeting presentation 07 18-12
Group meeting presentation 07 18-12Group meeting presentation 07 18-12
Group meeting presentation 07 18-12
 
N195P_Biochem_2002
N195P_Biochem_2002N195P_Biochem_2002
N195P_Biochem_2002
 

Similaire à Luka Wright Fluorine Meeting 2015

FinalPresentation
FinalPresentationFinalPresentation
FinalPresentation
Eric Newman
 
Understanding of thermal stability of lithium ion batteries
Understanding of thermal stability of lithium ion batteriesUnderstanding of thermal stability of lithium ion batteries
Understanding of thermal stability of lithium ion batteries
Khue Luu
 
Paul Grieco Chemistry
Paul Grieco ChemistryPaul Grieco Chemistry
Paul Grieco Chemistry
andy diep
 
LGRAUX_Research summary
LGRAUX_Research summaryLGRAUX_Research summary
LGRAUX_Research summary
Lionel Graux
 
Hybrid Polymer Electrolytes for Use in Secondary Lithium Ion Batteries-V2-LB
Hybrid Polymer Electrolytes for Use in Secondary Lithium Ion Batteries-V2-LBHybrid Polymer Electrolytes for Use in Secondary Lithium Ion Batteries-V2-LB
Hybrid Polymer Electrolytes for Use in Secondary Lithium Ion Batteries-V2-LB
Anisha Joenathan
 
Catalytic Antibodies_JACS 1987 Powell et. al.
Catalytic Antibodies_JACS 1987 Powell et. al.Catalytic Antibodies_JACS 1987 Powell et. al.
Catalytic Antibodies_JACS 1987 Powell et. al.
Michael Powell
 
CONTROLS OF TOXIC ELEMENTS IN ABIOTIC REDUCTIVE DISSOLUTION OF URANIUM MILL R...
CONTROLS OF TOXIC ELEMENTS IN ABIOTIC REDUCTIVE DISSOLUTION OF URANIUM MILL R...CONTROLS OF TOXIC ELEMENTS IN ABIOTIC REDUCTIVE DISSOLUTION OF URANIUM MILL R...
CONTROLS OF TOXIC ELEMENTS IN ABIOTIC REDUCTIVE DISSOLUTION OF URANIUM MILL R...
Mario Alberto Gomez
 
Research paper (3)
Research paper (3)Research paper (3)
Research paper (3)
Asif Mirza
 
Edinburgh | May-16 | Ions that can Hop, Skip and Jump: Lithium Conduction ...
  Edinburgh | May-16 | Ions that can Hop, Skip and Jump:  Lithium Conduction ...  Edinburgh | May-16 | Ions that can Hop, Skip and Jump:  Lithium Conduction ...
Edinburgh | May-16 | Ions that can Hop, Skip and Jump: Lithium Conduction ...
Smart Villages
 

Similaire à Luka Wright Fluorine Meeting 2015 (20)

UIUC REU Poster
UIUC REU PosterUIUC REU Poster
UIUC REU Poster
 
FinalPresentation
FinalPresentationFinalPresentation
FinalPresentation
 
2019 tp-cpp-poster sces
2019 tp-cpp-poster sces2019 tp-cpp-poster sces
2019 tp-cpp-poster sces
 
Daltons DYME Presentation - Beyond Al: Group 13 Salphen catalysts for efficie...
Daltons DYME Presentation - Beyond Al: Group 13 Salphen catalysts for efficie...Daltons DYME Presentation - Beyond Al: Group 13 Salphen catalysts for efficie...
Daltons DYME Presentation - Beyond Al: Group 13 Salphen catalysts for efficie...
 
Understanding of thermal stability of lithium ion batteries
Understanding of thermal stability of lithium ion batteriesUnderstanding of thermal stability of lithium ion batteries
Understanding of thermal stability of lithium ion batteries
 
GOMD_final
GOMD_finalGOMD_final
GOMD_final
 
Paul Grieco Chemistry
Paul Grieco ChemistryPaul Grieco Chemistry
Paul Grieco Chemistry
 
Effects of Heavy Metals on Spirulina
Effects of Heavy Metals on SpirulinaEffects of Heavy Metals on Spirulina
Effects of Heavy Metals on Spirulina
 
LGRAUX_Research summary
LGRAUX_Research summaryLGRAUX_Research summary
LGRAUX_Research summary
 
文献紹介20180525
文献紹介20180525文献紹介20180525
文献紹介20180525
 
Hybrid Polymer Electrolytes for Use in Secondary Lithium Ion Batteries-V2-LB
Hybrid Polymer Electrolytes for Use in Secondary Lithium Ion Batteries-V2-LBHybrid Polymer Electrolytes for Use in Secondary Lithium Ion Batteries-V2-LB
Hybrid Polymer Electrolytes for Use in Secondary Lithium Ion Batteries-V2-LB
 
Catalytic Antibodies_JACS 1987 Powell et. al.
Catalytic Antibodies_JACS 1987 Powell et. al.Catalytic Antibodies_JACS 1987 Powell et. al.
Catalytic Antibodies_JACS 1987 Powell et. al.
 
CONTROLS OF TOXIC ELEMENTS IN ABIOTIC REDUCTIVE DISSOLUTION OF URANIUM MILL R...
CONTROLS OF TOXIC ELEMENTS IN ABIOTIC REDUCTIVE DISSOLUTION OF URANIUM MILL R...CONTROLS OF TOXIC ELEMENTS IN ABIOTIC REDUCTIVE DISSOLUTION OF URANIUM MILL R...
CONTROLS OF TOXIC ELEMENTS IN ABIOTIC REDUCTIVE DISSOLUTION OF URANIUM MILL R...
 
Research paper (3)
Research paper (3)Research paper (3)
Research paper (3)
 
Carbon–Sulfur Bond Formation of Challenging Substrates at Low Temperature by ...
Carbon–Sulfur Bond Formation of Challenging Substrates at Low Temperature by ...Carbon–Sulfur Bond Formation of Challenging Substrates at Low Temperature by ...
Carbon–Sulfur Bond Formation of Challenging Substrates at Low Temperature by ...
 
Edinburgh | May-16 | Ions that can Hop, Skip and Jump: Lithium Conduction ...
  Edinburgh | May-16 | Ions that can Hop, Skip and Jump:  Lithium Conduction ...  Edinburgh | May-16 | Ions that can Hop, Skip and Jump:  Lithium Conduction ...
Edinburgh | May-16 | Ions that can Hop, Skip and Jump: Lithium Conduction ...
 
defence MS
defence MSdefence MS
defence MS
 
Lalit Kumar
Lalit KumarLalit Kumar
Lalit Kumar
 
PresentationS
PresentationSPresentationS
PresentationS
 
Publication
PublicationPublication
Publication
 

Luka Wright Fluorine Meeting 2015

  • 1. Bench Stable Ethylene Polymerisation Pre-Catalysts: A Step Change using Titanium Fluorides Luka A. Wright
  • 2. Highly Active Non-Metallocene Pyridine-Based Pincer Pre-Catalysts – State of the Art
  • 4. Why Ti(IV) Fluoride Complexes? • Underexplored as ethylene polymerisation pre-catalysts • Ti-F bond has a bond enthalpy of 570 kJmol-1 • Ti-Cl bond has a bond enthalpy of 494 kJmol-1 • Is Ti-F bond more stable than Ti-Cl to hydrolysis? • Can we handle pre-catalysts on the bench? • Al-F bond has a bond enthalpy of 663 kJmol-1 • Al-Cl bond has a bond enthalpy of 511 kJmol-1 • Thermodynamic driving force to abstract F- (-94 kJmol-1) is higher than abstraction of Cl- (-17 kJmol-1). • Is activation with MAO more facile from Ti-F? J. A. Kerr, CRC Handbook of Chemistry and Physics 1999-2000: A Ready-Reference Book of Chemical and Physical Data, D. R. Lide (ed), CRC Press, Boca Raton, Florida, USA 81st Edn., 2000
  • 5. Existing use of Ti(IV) Fluoride Complex as Ethylene Polymerisation Pre-catalyst • Only one other example of non-metallocene Ti-F complex as ethylene polymerisation pre-catalyst • 60 mL toluene • [MAO:Ti] 500:1 • 1 bar ethylene • Low activity: 6 g(PE) mmol-1 h-1 bar-1 G. B. Nikiforov, H. W. Roesky and P. G. Jones, J. Fluor. Chem., 2008, 129, 376
  • 6. Ligand Design and Synthesis • Cheap readily available starting materials • Common intermediates – effective pipeline • Can selectively add/remove steric bulk/ electron density • Fast, reproducible chemistry • High yielding
  • 7. Ligand Synthesis – an example • 2 pot, 3 step procedure to non-trivial ligand systems • Suzuki reaction to form C-C bond • Imine Condensation to form C=N bond from ketone • Can generate large quantities of the ketone in 2 days • Easy to diversify at various stages – change phenol – change aniline – change pyridine core
  • 8. Pro-Ligand Library a) L. A. Wright, E. G. Hope, G. A. Solan, W. B. Cross and K. Singh, Dalton Trans., 2015, 44, 6040 (b) L. A. Wright, E. G. Hope, G. A. Solan, W. B. Cross and K. Singh, Dalton Trans., 2015, 44, 7230 (c) O. Adeyi, W. B. Cross, G. Forrest, L. Godfrey, E. G. Hope, A. McLeod, A. Singh, K. Singh, G. A. Solan, Y. Wang and L. A. Wright, Datlton Trans., 2013, 42, 7710 (d) W. B. Cross, E. G. Hope, G. Forrest, K. Singh and G. A. Solan, Polyhedron, 2013, 59, 124 (e) W. Alkarekshi, A. P Armitage, O. Boyron, C. J. Davies, M. Govere, A. Gregory, K. Singh and G. A. Solan, Organometallics, 2013, 32, 249
  • 9. Preparation of Precatalysts Synthesis of [(THF)2TiF4]: M. Jura, W. Levason, E. Petts, G. Reid, M. Webster and W. Zhang, Dalton Trans., 2010, 39, 10264 i) CH2Cl2, 3 h, RT - 2THF, - HF ii) Precipitation
  • 10. Library of Ti(IV) Fluoride Complexes L. A. Wright, G. A. Solan, E. G. Hope and K. Singh, Manuscript in Preparation
  • 11. Characterisation and Stability -Ti(IV) Fluoride Complexes 1H and 19F NMR spectra recorded at 300 K for 1a in CDCl3. (400 MHz, 375 MHz) N.B. No effort to exclude moisture L. A. Wright, G. A. Solan, E. G. Hope and K. Singh, Manuscript in Preparation
  • 12. Characterisation and Stability – Ti(IV) Fluoride Complexes Entry Complex Axial F (δ ppm) Equatorial F (δ ppm) 2JFF (Hz) 1 1a +131 +202 28 2 2a +125 +199 n/da 3 3a +132 +201 32 4 4a +130 +193 29 5 5a +134 +205 32 6 6a +100 +141 n/da Comparison of 19F NMR data for Ti-F complexes: a poorly resolved signals therefore coupling constants were not determined. Complex 6a displays different chemical shift from other complexes – attributed to subtle changes in the ligand design – crystallography reveals no unique structural motif L. A. Wright, G. A. Solan, E. G. Hope and K. Singh, Manuscript in Preparation
  • 13. Molecular Structure of 3a 3a 3a Bond Lengths (Å) Ti(1)-F(1) (ax-F) 1.835(3) Ti(1)-F(2) (eq-F) 1.793(3) Ti(1)-F(3) (ax-F) 1.832(3) Bond Angles (o) trans-F-Ti(1)-F 167.34(15) L. A. Wright, G. A. Solan, E. G. Hope and K. Singh, Manuscript in Preparation
  • 14. Characterisation and Stability – Ti(IV) Fluoride Complexes • Titanium(IV) fluoride complexes amenable to synthesis without rigorous exclusion of moisture • Titanium(IV) fluoride complexes amenable to full characterisation (incl. crystal growth) with no exclusion of moisture • 19F NMR allows a powerful probe of pre-catalyst structure L. A. Wright, G. A. Solan, E. G. Hope and K. Singh, Manuscript in Preparation
  • 15. Titanium(IV) Chloride Complexes i) CH2Cl2, RT, 1.5 - 3 h ii) Evaporation L. A. Wright, G. A. Solan, E. G. Hope and K. Singh, Manuscript in Preparation
  • 16. Polymerisation Testing Conditions • 0.01 mmol titanium complex • 1 bar ethylene • 300:1 [MAO:Ti] • 30 min • 40 mL dry toluene • Schlenk techniques Investigating 1. Investigate difference in Ti-X (X = F, Cl) towards ethylene polymerisation 2. Investigate ligand effects on the titanium towards polymerisation of ethylene L. A. Wright, G. A. Solan, E. G. Hope and K. Singh, Manuscript in Preparation
  • 17. Polymerisation Testing Entry Complex Temperature (oC) Mass PE (g) Activity (g mmol-h-bar-) 1 [(THF)2TiF4]a RT 0 0 2 1aa RT 0.209 42 3 2aa RT 0.432 86 4 3aa RT 1.699 340 5 3aa 50 1.182 236 6 4aa RT 0.774 155 7 5aa RT 0.449 90 8 6aa RT 0.014 2.8 9 TiCl4 a RT 0.01 2 10 1ba RT 1.791 358 11 2ba RT 2.950 590 12 3ba RT 4.950 990 13 4ba RT 2.228 446 14 n/aa RT 0.00 0 15 3ab RT 0.00 0 a 1 mmol “Ti”, 300:1 [Al:Ti], 30 min, 1 bar ethylene. b No MAO, 1 mmol “Ti”, 30 min, 1 bar ethylene. Reactions quenched with 2M HCl. L. A. Wright, G. A. Solan, E. G. Hope and K. Singh, Manuscript in Preparation
  • 18. Polymerisation Testing – ‘Fluoride Effect ’ L. A. Wright, G. A. Solan, E. G. Hope and K. Singh, Manuscript in Preparation
  • 19. Polymerisation Testing – ‘Fluoride Effect ’ L. A. Wright, G. A. Solan, E. G. Hope and K. Singh, Manuscript in Preparation
  • 20. Polymerisation Testing – ‘Fluoride Effect ’ L. A. Wright, G. A. Solan, E. G. Hope and K. Singh, Manuscript in Preparation /MAO SEC/GPC traces and detector modes. DRI, LS and DP /MAO
  • 21. Conclusions • The most active Ti(IV) non-metallocene fluoride pre-catalyst known • It is possible to modulate the activity of pre-catalysts by altering the steric bulk of the ligand framework • Modulate molecular weight of PE by increasing the steric bulk the of supporting pincer ligand manifold • Titanium chloride pre-catalysts give higher activities to ethylene polymerisation for given ligand framework – exceptionally high activities L. A. Wright, G. A. Solan, E. G. Hope and K. Singh, Manuscript in Preparation
  • 22. Conclusions – ‘The Fluoride Effect’ • Fluoride-containing systems always give higher molecular weight polyethylene – UHMWPE • Effect of fluoride is to ‘smear’ molecular weight distribution of PE • Would imply multiple modes of activation
  • 23. Future Work • Make ligand systems more sterically bulky • Investigate amine-containing ligands on Ti(IV) fluoride complexes as ethylene polymerisation pre-catalysts • Make dianionic ligand systems to generate bisfluoride species • What is(are) the active catalyst(s)? • Probe the origin of ‘Fluoride Effect’
  • 24. Acknowledgments Joy and George Fraser (Funding) University of Leicester (Funding) Dr. G. Solan Prof. E. Hope Mr. K. Singh (X-ray) Mr. M. Lee (Mass spec) Dr. G. Griffith (NMR) Dr. T. Boller (ExxonMobil, GPC analysis)
  • 25. Thank You for Listening • Any Questions?