SlideShare une entreprise Scribd logo
1  sur  16
Télécharger pour lire hors ligne
Ti plasmid
Dr. Manikandan Kathirvel M.Sc., Ph.D., (NET)
Assistant Professor,
Department of Life Sciences,
Kristu Jayanti College (Autonomous),
(Reaccredited with "A" Grade by NAAC)
Affiliated to Bengaluru North University,
K. Narayanapura, Kothanur (PO)
Bengaluru 560077
Nature’s genetic engineer
1. Agrobacterium is considered as the nature’s genetic engineer.
2. Agrobacterium tumefaciens is a rod shaped, gram negative bacteria found in
the soil that causes tumorous growth termed as crown gall disease in dicot
plants.
3. The involvement of bacteria in this disease was established by Smith and
Townsend (1907).
4. Agrobacterium contains a transfer DNA (T-DNA) located in its tumor-inducing
(Ti) plasmid that is transferred into the nucleus of an infected plant cell.
5. The T-DNA gets incorporated into the plant genome and is subsequently
transcribed. The T-DNA integrated into the plant genome carries not only
oncogenic genes but also opine synthesizing genes.
Agrobacterium “Species” And Host Range
The genus Agrobacterium has been divided into a number of species on the
basis of symptoms of disease and host range.
A. radiobacter is an “avirulent” species,
A. tumefaciens causes crown gall disease,
A. rubi causes cane gall disease,
A. rhizogenes causes hairy root disease and
A. vitis causes galls on grape and a few other plant species
Molecular basis of Agrobacterium-mediated transformation
Ti-plasmid
The virulent strains of A. tumefaciens harbor large plasmids (140–235 kbp) known as
tumor-inducing (Ti) plasmid involving elements like
A. T-DNA – Left border and Right border, Auxin and cytokinin and opine synthesizing
genes
B. vir region- Genes in the virulence region are grouped into the operons vir ABCDEFG,
which code for the enzymes responsible for mediating conjugative transfer of T-DNA to
plant cells.
C. origin of replication,
D. region enabling conjugative transfer and
E. o-cat region (required for catabolism of opines).
•The plasmid has 196 genes that code for 195 proteins.
• The plasmid is 206,479 nucleotides long, the GC content is 56% and 81% of the material is
coding genes.
•There are no pseudogenes.
•The Ti plasmid is lost when Agrobacterium is grown above 28 °C.
•The modification of this plasmid is very important in the creation of
transgenic plants.
A.) T- DNA (Transfer DNA)
1. It is a small, specific segment of the plasmid, about 24kb in size
and found integrated in the plant nuclear DNA at random site.
This DNA segment is flanked by right and left borders.
2. This region has the genes for the biosynthesis of auxin (aux),
cytokinin (cyt) and opine (ocs), and is flanked by left and right
borders. It is clearly established that the right border is more
critical for T -DNA transfer.
3. The T-DNA contains two groups of genes, which possess the
ability to express in plants as follows-
i. Oncogenes for synthesis of auxins and cytokinins
(phytohormones). The overproduction of phytohormones leads
to proliferation of callus or tumour formation in plants.
ii. Opine synthesizing genes for the synthesis of opines. Thus
opines act as source of nutrient for bacterial growth, e.g.
Octopine, Nopaline.
The functions of T-DNA genes are listed:
B) Virulence genes (vir genes)
1. Virulence genes aid in the transfer of T-DNA into the host plant cell.
2. Ti plasmid contains 35 vir genes arranged in 8 operons.
3. At least nine vir-gene operons have been identified. These include vir A, vir G, vir B1, vir
C1, vir D1, D2, vir D4 and vir E1, E2.
4. Transfer the T-DNA to plant cell
5. Acetosyringone (AS) (a flavonoid) released by wounded plant cells activates vir genes.
6. virA,B,C,D,E,F,G (7 complementation groups, but some have multiple ORFs), span about
30 kb of Ti plasmid.
Function of vir genes
virA - transports acetosyringone (AS) into bacterium, activates virG post-translationally (by
phosphorylation)
virG - promotes transcription of other vir genes
virD2- endonuclease/integrase that cuts T-DNA at the borders but only on one strand.
virE2 - can form channels in membranes
virE1 - chaperone for virE2
virD2 & virE2 also have NLSs, gets T-DNA to the nucleus of plant cell
virB - operon of 11 proteins, gets T-DNA through bacterial membranes
C) Opines:
Derivatives of amino acids synthesized by T-DNA.
This region codes for proteins involved in the uptake and metabolisms of opines.
Ti plasmids can be classified according to the opines produced :
1. Nopaline plasmids - carry gene for synthesizing nopaline in the plant and for
utilization (catabolism) inthe bacteria.
2. Octopine plasmids - carry genes to synthesize octopine in the plant and catabolism in
the bacteria.
3. Agropine plasmids - carry genes for agropine synthesis and catabolism.
Opine genes can be used as marker genes-
For screening of transformants or
recombinants
DNA transfer into the plant genome
Ti plasmid
Ti Plasmid
Ti plasmid based vectors:
1. Disarmed Ti-plasmid derivatives as plant vectors
2. Binary Vectors
3. C0-integrate vectors
1. Disarmed Ti vector
1. Ti plasmid is a natural vector for genetically engineering plant cells due to its ability to
transfer T-DNA from the bacterium to the plant genome.
2. But wild-type Ti plasmids are not suitable as vectors due to the presence of oncogenes
in T-DNA that cause tumor growth in the recipient plant cells.
3. For efficient plant regeneration, vectors with disarmed T-DNA are used by making it
non-oncogenic by deleting all of its oncogenes.
4. The foreign DNA is inserted between the RB and LB and then integrated into the plant
genome without causing tumors.
Construction: Structure of the Ti-plasmid pGV3850 with disarmed
T-DNA
1. Zambryski et al. (1983) substituted pBR322 sequences in the T-DNA of pTiC58, without
disturbing the left and right border regions and the nos gene.
2. The resulting construct was called pGV3850. No tumour cell formation takes place
when modified T-DNA is transferred from Agrobacterium carrying pGV3850 plasmid.
3. The evidence of transfer is done by screening the cells for nopaline production.
Drawbacks
Several drawbacks are associated with
disarmed Ti- vector systems are:
• Necessity to carry out enzymatic assays on
all potential transformants.
• Not convenient as experimental gene
vectors due to large size.
• Difficulty in in vitro manipulation and
• Absence of unique restriction sites in the
T-DNA.
2. Binary vector
• Binary vector was developed by Hoekma et al (1983) and Bevan in (1984).
• It utilizes the trans- acting functions of the vir genes of the Ti-plasmid and can act on any T-
DNA sequence present in the same cell.
• Binary vector contains transfer apparatus-helper plasmid (contains the vir genes) and the
disarmed T-DNA containing the transgene on separate plasmids.
Binary vector system
Binary vector consists of a pair of plasmids:
1) A disarmed Ti plasmid: This plasmid has T-DNA containing LB and RB with gene of interest +
ori for both E. coli and Agrobacterium. Also called as mini-Ti or micro Ti plasmid eg: Bin 19.
2) Helper Ti plasmid has virulence region that mediates transfer of T-DNA in micro Ti plasmid to
the plant.
Plasmid with disarmed
T-DNA but without
vir gene
Plasmid with vir region but
without G0I
A binary vector system
Plasmid with disarmed T-
DNA but without vir gene
Plasmid with vir region but
without G0I
Binary vector Cloning Strategy:
1. Move T-DNA onto a separate, small
plasmid.
2. Remove aux and cyt genes.
3. Insert selectable marker (kanamycin
resistance) gene in T-DNA.
4. Vir genes are retained on a separate
plasmid.
5. Put foreign gene between T-DNA
borders.
6. Co-transform Agrobacterium with both
plasmids.
7. Infect plant with the transformed
bacteria.
Examples of Binary vector system
pBIN19- one of the first binary vectors developed in 1980s and was widely used.
pGreen- A newly developed vector with advanced features than pBIN19.
3. Co- integrate vectors
Transfer is achieved using a ‘triparental mating’ in which three bacterial strains are mixed
together:
(i) An E. coli strain carrying a helper plasmid able to mobilize the intermediate vector in
trans;
(ii) The E. coli strain carrying the recombinant intermediate vector;
(iii) A. tumefaciens carrying the Ti plasmid
1. In first E.coli strain: The DNA to be introduced into the plant transformation vector is
sub cloned in a conventional Escherichia coli plasmid vector for easy manipulation,
producing a so-called intermediate vector. These vectors are incapable of replication
in A. tumefaciens and also lack conjugation functions.
2. --- An another E. coli strain carrying a helper plasmid able to mobilize the
intermediate vector .
3. Conjugation between the two E. coli strains transfers the helper plasmid to the
carrier of the intermediate vector, which in turn is mobilized and transferred to the
recipient Agrobacterium.
4. Homologous recombination between the T-DNA sequences of the Ti plasmid and
intermediate vector forms a large co- integrate plasmid resulting in the transfer of
recombinant T-DNA to the plant genome.
Construction of a Co-integrate vector (foreign gene cloned into an appropriate plasmid is
integrated with a disarmed Ti-plasmid through homologous recombination).
1. At first; an intermediate vector is made using E. coli plasmid + origin of replication +
pBR322 sequences + some markers + gene of interest.
2. -Second vector is a disarmed pTi vector = Left and right borders+ some markers +
pBR322 sequences + vir region.
3. -Both intermediate vector and disarmed pTi has some sequences in common (pBR322
sequences).
4. -Therefore by homologous recombination, co-integration of two plasmids will take
place within Agrobacterium.
5. Now we have a co-integrate vector that has both T-DNA with our gene of interest with
in the T-DNA borders and vir region. This complete vector is used for transformation in
plant cells. eg: pGV2260.
in
Agrobac
terium
tumefac
iens

Contenu connexe

Tendances

plant viruses- Geminivirus ppt
 plant viruses- Geminivirus ppt plant viruses- Geminivirus ppt
plant viruses- Geminivirus ppt
thirupathiSathya
 
Agrobacterium-mediated Gene Transfer
Agrobacterium-mediated Gene TransferAgrobacterium-mediated Gene Transfer
Agrobacterium-mediated Gene Transfer
A Biodiction : A Unit of Dr. Divya Sharma
 

Tendances (20)

plant viruses- Geminivirus ppt
 plant viruses- Geminivirus ppt plant viruses- Geminivirus ppt
plant viruses- Geminivirus ppt
 
Agrobacterium tumefaciens
Agrobacterium tumefaciensAgrobacterium tumefaciens
Agrobacterium tumefaciens
 
Feature of ti plasmid
Feature of ti plasmidFeature of ti plasmid
Feature of ti plasmid
 
Vectors bacteriophages
Vectors bacteriophagesVectors bacteriophages
Vectors bacteriophages
 
Agrobacterium tumefaciens
Agrobacterium tumefaciensAgrobacterium tumefaciens
Agrobacterium tumefaciens
 
Genetic transformation
Genetic transformationGenetic transformation
Genetic transformation
 
Agrobacterium-mediated Gene Transfer
Agrobacterium-mediated Gene TransferAgrobacterium-mediated Gene Transfer
Agrobacterium-mediated Gene Transfer
 
Agrobacterium mediated gene transfer
Agrobacterium mediated gene transferAgrobacterium mediated gene transfer
Agrobacterium mediated gene transfer
 
Artificial chromosomes
Artificial chromosomesArtificial chromosomes
Artificial chromosomes
 
Agrobacterium mediated gene transfer in plants.
Agrobacterium mediated gene transfer in plants.Agrobacterium mediated gene transfer in plants.
Agrobacterium mediated gene transfer in plants.
 
Bacteriophage vectors
Bacteriophage vectorsBacteriophage vectors
Bacteriophage vectors
 
Ti plasmid as a vector,
Ti plasmid as a vector, Ti plasmid as a vector,
Ti plasmid as a vector,
 
ti plasmid
ti plasmidti plasmid
ti plasmid
 
Gene Transormation techniques
Gene Transormation techniquesGene Transormation techniques
Gene Transormation techniques
 
TRANSPOSON TAGGING
TRANSPOSON TAGGINGTRANSPOSON TAGGING
TRANSPOSON TAGGING
 
Ligase enzyme
Ligase enzyme Ligase enzyme
Ligase enzyme
 
blue white selection
blue white selectionblue white selection
blue white selection
 
Dna modifying enzymes
Dna modifying enzymesDna modifying enzymes
Dna modifying enzymes
 
Plasmid
Plasmid Plasmid
Plasmid
 
Gene transfer in plants
Gene transfer in plantsGene transfer in plants
Gene transfer in plants
 

Similaire à Ti plasmid ss

Similaire à Ti plasmid ss (20)

Biological method of transformation
Biological method of transformation Biological method of transformation
Biological method of transformation
 
Agrobact transfer.pptx
Agrobact transfer.pptxAgrobact transfer.pptx
Agrobact transfer.pptx
 
Agrobacterium mediated gene transfer in plants
Agrobacterium mediated gene transfer in plantsAgrobacterium mediated gene transfer in plants
Agrobacterium mediated gene transfer in plants
 
Ti plasmid
Ti plasmidTi plasmid
Ti plasmid
 
Plant Genetic Engineering & Agrobacterium mediated gene transfer.pptx
Plant Genetic Engineering & Agrobacterium mediated gene transfer.pptxPlant Genetic Engineering & Agrobacterium mediated gene transfer.pptx
Plant Genetic Engineering & Agrobacterium mediated gene transfer.pptx
 
agrobacterim vector
 agrobacterim vector agrobacterim vector
agrobacterim vector
 
Ti Plasmid & Agrobacterium Mediated gene transfer
Ti Plasmid & Agrobacterium Mediated gene transfer Ti Plasmid & Agrobacterium Mediated gene transfer
Ti Plasmid & Agrobacterium Mediated gene transfer
 
Agrobacterium mediated gene transfer
Agrobacterium mediated gene  transfer Agrobacterium mediated gene  transfer
Agrobacterium mediated gene transfer
 
AGROBATERIUM MEDIATED GENE TRANSFER
AGROBATERIUM MEDIATED GENE TRANSFERAGROBATERIUM MEDIATED GENE TRANSFER
AGROBATERIUM MEDIATED GENE TRANSFER
 
Agrobacterium CM
Agrobacterium CMAgrobacterium CM
Agrobacterium CM
 
Ti plasmid and ca mv
Ti plasmid and ca mvTi plasmid and ca mv
Ti plasmid and ca mv
 
ti plasmid derived vector.pptx
ti plasmid derived vector.pptxti plasmid derived vector.pptx
ti plasmid derived vector.pptx
 
Agarobacterium tumefaciens based ti plasmid vectors
Agarobacterium tumefaciens based  ti plasmid vectorsAgarobacterium tumefaciens based  ti plasmid vectors
Agarobacterium tumefaciens based ti plasmid vectors
 
ROLE OF Agrobacterium in plant pathology
ROLE OF Agrobacterium in plant pathology ROLE OF Agrobacterium in plant pathology
ROLE OF Agrobacterium in plant pathology
 
Agrobacterium mediated gene transfer - LIKE NEVER BEFORE!!
Agrobacterium mediated gene transfer - LIKE NEVER BEFORE!!Agrobacterium mediated gene transfer - LIKE NEVER BEFORE!!
Agrobacterium mediated gene transfer - LIKE NEVER BEFORE!!
 
Agrobacterium tumefaciens as a tool for genetic engineering in plants
Agrobacterium tumefaciens as a tool for genetic engineering in plantsAgrobacterium tumefaciens as a tool for genetic engineering in plants
Agrobacterium tumefaciens as a tool for genetic engineering in plants
 
Agrobactrium mediated transformation
Agrobactrium mediated transformationAgrobactrium mediated transformation
Agrobactrium mediated transformation
 
Agrobacterium - mediated Gene Transfer old.pptx
Agrobacterium - mediated Gene Transfer old.pptxAgrobacterium - mediated Gene Transfer old.pptx
Agrobacterium - mediated Gene Transfer old.pptx
 
Gene transfer in plants 2- biological vector
Gene transfer in plants 2- biological vector Gene transfer in plants 2- biological vector
Gene transfer in plants 2- biological vector
 
Ti plasmid
Ti plasmidTi plasmid
Ti plasmid
 

Plus de Kristu Jayanti College

Plus de Kristu Jayanti College (20)

RNAi silencing- miRNA and siRNA and its applications.pdf
RNAi silencing- miRNA and siRNA and its applications.pdfRNAi silencing- miRNA and siRNA and its applications.pdf
RNAi silencing- miRNA and siRNA and its applications.pdf
 
Lecture notes_Tryptophan operon and its regulation.pdf
Lecture notes_Tryptophan operon and its regulation.pdfLecture notes_Tryptophan operon and its regulation.pdf
Lecture notes_Tryptophan operon and its regulation.pdf
 
Lecture Arabinose operon- regulatio.pdf
Lecture  Arabinose operon- regulatio.pdfLecture  Arabinose operon- regulatio.pdf
Lecture Arabinose operon- regulatio.pdf
 
Lecture Inhibitors of Transcription notes.pdf
Lecture Inhibitors of Transcription notes.pdfLecture Inhibitors of Transcription notes.pdf
Lecture Inhibitors of Transcription notes.pdf
 
Lecture notes GENE REGULATION IN EUKARYOTES.pdf
Lecture notes GENE REGULATION IN EUKARYOTES.pdfLecture notes GENE REGULATION IN EUKARYOTES.pdf
Lecture notes GENE REGULATION IN EUKARYOTES.pdf
 
Cosmids vector
Cosmids vectorCosmids vector
Cosmids vector
 
Lecture BAC YAC.pptx
Lecture BAC YAC.pptxLecture BAC YAC.pptx
Lecture BAC YAC.pptx
 
pET Bacterial Recombinant Protein Vector
pET Bacterial Recombinant Protein VectorpET Bacterial Recombinant Protein Vector
pET Bacterial Recombinant Protein Vector
 
Genome organisation of Mitochondria.pptx
Genome organisation of Mitochondria.pptxGenome organisation of Mitochondria.pptx
Genome organisation of Mitochondria.pptx
 
Lecture: Structure and Function of Mitochondria.pptx
Lecture: Structure and Function of Mitochondria.pptxLecture: Structure and Function of Mitochondria.pptx
Lecture: Structure and Function of Mitochondria.pptx
 
Lecture_Chromatin remodelling_slideshare.pdf
Lecture_Chromatin remodelling_slideshare.pdfLecture_Chromatin remodelling_slideshare.pdf
Lecture_Chromatin remodelling_slideshare.pdf
 
Lecture DNA repair - Part-1_slideshare.pdf
Lecture DNA repair - Part-1_slideshare.pdfLecture DNA repair - Part-1_slideshare.pdf
Lecture DNA repair - Part-1_slideshare.pdf
 
Lecture Merodiploids -lac genes_slideshare.pdf
Lecture Merodiploids -lac genes_slideshare.pdfLecture Merodiploids -lac genes_slideshare.pdf
Lecture Merodiploids -lac genes_slideshare.pdf
 
Lecture- Structure and functions of Golgi apparatus1.pdf
Lecture- Structure and functions of Golgi apparatus1.pdfLecture- Structure and functions of Golgi apparatus1.pdf
Lecture- Structure and functions of Golgi apparatus1.pdf
 
STRUCTURAL ORGANISATION OF CILIA AND FLAGELLA- IN PROKARYOTES AND EUKARYOTES ...
STRUCTURAL ORGANISATION OF CILIA AND FLAGELLA- IN PROKARYOTES AND EUKARYOTES ...STRUCTURAL ORGANISATION OF CILIA AND FLAGELLA- IN PROKARYOTES AND EUKARYOTES ...
STRUCTURAL ORGANISATION OF CILIA AND FLAGELLA- IN PROKARYOTES AND EUKARYOTES ...
 
Strategies for cloning PCR products: TA cloning, Topo cloning.pdf
 Strategies for cloning PCR products: TA cloning, Topo cloning.pdf Strategies for cloning PCR products: TA cloning, Topo cloning.pdf
Strategies for cloning PCR products: TA cloning, Topo cloning.pdf
 
Lecture 3 Post Ts Modification-lecture notes.pdf
Lecture 3 Post Ts Modification-lecture notes.pdfLecture 3 Post Ts Modification-lecture notes.pdf
Lecture 3 Post Ts Modification-lecture notes.pdf
 
RFLP.pdf
RFLP.pdfRFLP.pdf
RFLP.pdf
 
transcription.pdf
transcription.pdftranscription.pdf
transcription.pdf
 
Mapping and quantifying transcripts.pdf
Mapping and quantifying transcripts.pdfMapping and quantifying transcripts.pdf
Mapping and quantifying transcripts.pdf
 

Dernier

Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
PirithiRaju
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
Sérgio Sacani
 
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxSCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
RizalinePalanog2
 
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
ssuser79fe74
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Sérgio Sacani
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Lokesh Kothari
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
PirithiRaju
 

Dernier (20)

COST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxCOST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
 
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
 
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICESAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdf
 
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxSCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
 
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
 
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdf
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptx
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
 

Ti plasmid ss

  • 1. Ti plasmid Dr. Manikandan Kathirvel M.Sc., Ph.D., (NET) Assistant Professor, Department of Life Sciences, Kristu Jayanti College (Autonomous), (Reaccredited with "A" Grade by NAAC) Affiliated to Bengaluru North University, K. Narayanapura, Kothanur (PO) Bengaluru 560077
  • 2. Nature’s genetic engineer 1. Agrobacterium is considered as the nature’s genetic engineer. 2. Agrobacterium tumefaciens is a rod shaped, gram negative bacteria found in the soil that causes tumorous growth termed as crown gall disease in dicot plants. 3. The involvement of bacteria in this disease was established by Smith and Townsend (1907). 4. Agrobacterium contains a transfer DNA (T-DNA) located in its tumor-inducing (Ti) plasmid that is transferred into the nucleus of an infected plant cell. 5. The T-DNA gets incorporated into the plant genome and is subsequently transcribed. The T-DNA integrated into the plant genome carries not only oncogenic genes but also opine synthesizing genes. Agrobacterium “Species” And Host Range The genus Agrobacterium has been divided into a number of species on the basis of symptoms of disease and host range. A. radiobacter is an “avirulent” species, A. tumefaciens causes crown gall disease, A. rubi causes cane gall disease, A. rhizogenes causes hairy root disease and A. vitis causes galls on grape and a few other plant species
  • 3. Molecular basis of Agrobacterium-mediated transformation Ti-plasmid The virulent strains of A. tumefaciens harbor large plasmids (140–235 kbp) known as tumor-inducing (Ti) plasmid involving elements like A. T-DNA – Left border and Right border, Auxin and cytokinin and opine synthesizing genes B. vir region- Genes in the virulence region are grouped into the operons vir ABCDEFG, which code for the enzymes responsible for mediating conjugative transfer of T-DNA to plant cells. C. origin of replication, D. region enabling conjugative transfer and E. o-cat region (required for catabolism of opines). •The plasmid has 196 genes that code for 195 proteins. • The plasmid is 206,479 nucleotides long, the GC content is 56% and 81% of the material is coding genes. •There are no pseudogenes.
  • 4. •The Ti plasmid is lost when Agrobacterium is grown above 28 °C. •The modification of this plasmid is very important in the creation of transgenic plants. A.) T- DNA (Transfer DNA) 1. It is a small, specific segment of the plasmid, about 24kb in size and found integrated in the plant nuclear DNA at random site. This DNA segment is flanked by right and left borders. 2. This region has the genes for the biosynthesis of auxin (aux), cytokinin (cyt) and opine (ocs), and is flanked by left and right borders. It is clearly established that the right border is more critical for T -DNA transfer. 3. The T-DNA contains two groups of genes, which possess the ability to express in plants as follows- i. Oncogenes for synthesis of auxins and cytokinins (phytohormones). The overproduction of phytohormones leads to proliferation of callus or tumour formation in plants. ii. Opine synthesizing genes for the synthesis of opines. Thus opines act as source of nutrient for bacterial growth, e.g. Octopine, Nopaline.
  • 5. The functions of T-DNA genes are listed:
  • 6. B) Virulence genes (vir genes) 1. Virulence genes aid in the transfer of T-DNA into the host plant cell. 2. Ti plasmid contains 35 vir genes arranged in 8 operons. 3. At least nine vir-gene operons have been identified. These include vir A, vir G, vir B1, vir C1, vir D1, D2, vir D4 and vir E1, E2. 4. Transfer the T-DNA to plant cell 5. Acetosyringone (AS) (a flavonoid) released by wounded plant cells activates vir genes. 6. virA,B,C,D,E,F,G (7 complementation groups, but some have multiple ORFs), span about 30 kb of Ti plasmid. Function of vir genes virA - transports acetosyringone (AS) into bacterium, activates virG post-translationally (by phosphorylation) virG - promotes transcription of other vir genes virD2- endonuclease/integrase that cuts T-DNA at the borders but only on one strand. virE2 - can form channels in membranes virE1 - chaperone for virE2 virD2 & virE2 also have NLSs, gets T-DNA to the nucleus of plant cell virB - operon of 11 proteins, gets T-DNA through bacterial membranes
  • 7. C) Opines: Derivatives of amino acids synthesized by T-DNA. This region codes for proteins involved in the uptake and metabolisms of opines. Ti plasmids can be classified according to the opines produced : 1. Nopaline plasmids - carry gene for synthesizing nopaline in the plant and for utilization (catabolism) inthe bacteria. 2. Octopine plasmids - carry genes to synthesize octopine in the plant and catabolism in the bacteria. 3. Agropine plasmids - carry genes for agropine synthesis and catabolism. Opine genes can be used as marker genes- For screening of transformants or recombinants
  • 8.
  • 9. DNA transfer into the plant genome Ti plasmid Ti Plasmid
  • 10. Ti plasmid based vectors: 1. Disarmed Ti-plasmid derivatives as plant vectors 2. Binary Vectors 3. C0-integrate vectors 1. Disarmed Ti vector 1. Ti plasmid is a natural vector for genetically engineering plant cells due to its ability to transfer T-DNA from the bacterium to the plant genome. 2. But wild-type Ti plasmids are not suitable as vectors due to the presence of oncogenes in T-DNA that cause tumor growth in the recipient plant cells. 3. For efficient plant regeneration, vectors with disarmed T-DNA are used by making it non-oncogenic by deleting all of its oncogenes. 4. The foreign DNA is inserted between the RB and LB and then integrated into the plant genome without causing tumors.
  • 11. Construction: Structure of the Ti-plasmid pGV3850 with disarmed T-DNA 1. Zambryski et al. (1983) substituted pBR322 sequences in the T-DNA of pTiC58, without disturbing the left and right border regions and the nos gene. 2. The resulting construct was called pGV3850. No tumour cell formation takes place when modified T-DNA is transferred from Agrobacterium carrying pGV3850 plasmid. 3. The evidence of transfer is done by screening the cells for nopaline production. Drawbacks Several drawbacks are associated with disarmed Ti- vector systems are: • Necessity to carry out enzymatic assays on all potential transformants. • Not convenient as experimental gene vectors due to large size. • Difficulty in in vitro manipulation and • Absence of unique restriction sites in the T-DNA.
  • 12. 2. Binary vector • Binary vector was developed by Hoekma et al (1983) and Bevan in (1984). • It utilizes the trans- acting functions of the vir genes of the Ti-plasmid and can act on any T- DNA sequence present in the same cell. • Binary vector contains transfer apparatus-helper plasmid (contains the vir genes) and the disarmed T-DNA containing the transgene on separate plasmids. Binary vector system Binary vector consists of a pair of plasmids: 1) A disarmed Ti plasmid: This plasmid has T-DNA containing LB and RB with gene of interest + ori for both E. coli and Agrobacterium. Also called as mini-Ti or micro Ti plasmid eg: Bin 19. 2) Helper Ti plasmid has virulence region that mediates transfer of T-DNA in micro Ti plasmid to the plant. Plasmid with disarmed T-DNA but without vir gene Plasmid with vir region but without G0I
  • 13. A binary vector system Plasmid with disarmed T- DNA but without vir gene Plasmid with vir region but without G0I
  • 14. Binary vector Cloning Strategy: 1. Move T-DNA onto a separate, small plasmid. 2. Remove aux and cyt genes. 3. Insert selectable marker (kanamycin resistance) gene in T-DNA. 4. Vir genes are retained on a separate plasmid. 5. Put foreign gene between T-DNA borders. 6. Co-transform Agrobacterium with both plasmids. 7. Infect plant with the transformed bacteria. Examples of Binary vector system pBIN19- one of the first binary vectors developed in 1980s and was widely used. pGreen- A newly developed vector with advanced features than pBIN19.
  • 15. 3. Co- integrate vectors Transfer is achieved using a ‘triparental mating’ in which three bacterial strains are mixed together: (i) An E. coli strain carrying a helper plasmid able to mobilize the intermediate vector in trans; (ii) The E. coli strain carrying the recombinant intermediate vector; (iii) A. tumefaciens carrying the Ti plasmid 1. In first E.coli strain: The DNA to be introduced into the plant transformation vector is sub cloned in a conventional Escherichia coli plasmid vector for easy manipulation, producing a so-called intermediate vector. These vectors are incapable of replication in A. tumefaciens and also lack conjugation functions. 2. --- An another E. coli strain carrying a helper plasmid able to mobilize the intermediate vector . 3. Conjugation between the two E. coli strains transfers the helper plasmid to the carrier of the intermediate vector, which in turn is mobilized and transferred to the recipient Agrobacterium. 4. Homologous recombination between the T-DNA sequences of the Ti plasmid and intermediate vector forms a large co- integrate plasmid resulting in the transfer of recombinant T-DNA to the plant genome.
  • 16. Construction of a Co-integrate vector (foreign gene cloned into an appropriate plasmid is integrated with a disarmed Ti-plasmid through homologous recombination). 1. At first; an intermediate vector is made using E. coli plasmid + origin of replication + pBR322 sequences + some markers + gene of interest. 2. -Second vector is a disarmed pTi vector = Left and right borders+ some markers + pBR322 sequences + vir region. 3. -Both intermediate vector and disarmed pTi has some sequences in common (pBR322 sequences). 4. -Therefore by homologous recombination, co-integration of two plasmids will take place within Agrobacterium. 5. Now we have a co-integrate vector that has both T-DNA with our gene of interest with in the T-DNA borders and vir region. This complete vector is used for transformation in plant cells. eg: pGV2260. in Agrobac terium tumefac iens