Publicité
solucionario del examen de álgebra
solucionario del examen de álgebra
solucionario del examen de álgebra
solucionario del examen de álgebra
Publicité
solucionario del examen de álgebra
solucionario del examen de álgebra
solucionario del examen de álgebra
Prochain SlideShare
Polinomios 4toPolinomios 4to
Chargement dans ... 3
1 sur 7
Publicité

Contenu connexe

Publicité
Publicité

solucionario del examen de álgebra

  1. S O L U C I Ó N 1 BIMONTHLY EXAM OF ALGEBRA Problema 1 Factorizar: 6x2 − 7xy + 2y2 + 12x − 7y + 6 La suma de los coeficientes de unos de sus factores primos es: Solución Aplicando aspa doble 6x2 −7xy +2y2 +12x −7y +6 3x +2y 3 2x −1y 2 Agrupando términos tenemos (3x − 2y + 3).(2x − y + 2) ΣCoe f icientes = 2 − 1 + 2 = 3 Problema 2 Si el polinomio: T(x) = x2 + (2m − 1)x + (m + 1)(m − 2) Es factorizable mediante un aspa simple (en los enteros), además: m Z m 13, indique un factor primo:
  2. 1 BIMONTHLY EXAM OF ALGEBRA Solución x2 +(2m − 1)x +(m + 1)(m − 2) x (m + 1) x (m − 2) (x + m + 1).(x + m − 2) x + m + 1 Problema 3 Un teatro tiene hasta el momento 143 butacas habilitadas y cada 20 de marzo de cada año, se adquiere un número de butacas igual al número de factores primos de: p(x,y) = 12x2 + 2xy2 − 2y4 + 9x − 3y2 . ¿ Cuántas butacas en total tendrá el teatro en su aniversario que será el 19 de marzo del 2025? Solución Aplicando aspa doble 12x2 +2xy2 −2y4 +9x −3y2 +0 4x +2y2 3 3x −1y2 0 Agrupando términos tenemos: (4x + 2y2 + 3).(3x − y2) #FP = 2 #Butacas = 143 + 6(2) = 155 Problema 4 Tomas es un matemático brillante de la Facultad de Ciencias Matemáticas de la UNMSM y él se percata que h(x) es un factor primo de: p(x) = 6x5 − 20x4 + 63x3 − 118x2 + 165x − 44. en [x], el cual genera números primos para los primeros 11 enteros no negativos. Halle la suma del mayor número primo con el menor número primo generado por h(x). 2
  3. PROFESOR MARCO ALPACA ESPECIALIDAD DE MATEMÁTICA Solución Utilizando el teorema de las raíces racionales. Por lo tanto a (±1, ±2, ±4, ±11, ±22, ±44) y b (±1, ±2, ±3, ±6) Al formar todos los posibles números racionales a/b con estas elecciones de a y b, y probando todos estos posibles valores por la división sintética, se halla que x=1/3 es una raíz. 3x − 1 = 0 6 -20 63 -118 165 -44 x = 1/3 2 -6 19 -33 44 ÷3 6 -18 57 -99 132 0 2 -6 19 -33 44 Ahora aplicando aspa doble especial tenemos: (3x − 1) 2x4 −6x3 +19x2 −33x +44 2x2 0x 11 = 11x2 1x2 −3x 4 = 8x2 0x2 19x2 Agrupando términos tenemos: p(x) = (3x − 1).(2x2 + 11).(x2 − 3x + 4) h(x) = 2x2 + 11 h(0) = 11 h(10) = 211 Σ = 11 + 211 = 222 Problema 5 Al factorizar el polinomio p(x) = (x − 1)4 + 5(x − 1)2 + 9 en Z [x],determine el resto de dividir la suma de los factores primos de p(x) por x+2. Solución Ahora aplicando aspa doble especial tenemos: 3
  4. 1 BIMONTHLY EXAM OF ALGEBRA (x − 1)4 +0(x − 1)3 +5(x − 1)2 +0(x − 1) +9 1(x − 1)2 1(x − 1) 3 = 3(x − 1)2 1(x − 1)2 −1(x − 1) 3 = 3(x − 1)2 −(x − 1)2 6(x − 1)x2 Agrupando términos tenemos: [(x − 1)2 + (x − 1) + 3].[(x − 1)2 − (x − 1) + 3] Σ Factores primos= 2(x − 1)2 + 6 Piden resolver 2(x − 1)2 + 6 x + 2 Utilizando el teorema del resto tenemos: R = 2(−2 − 1)2 + 6 = 24 Problema 6 Factorice los polinomios: P (x, y) = 6x2 + 19xy + 15y2 − 11x − 17y + 4 F (x, y) = x2 + 2xy + y2 + 3x + 3y − 4 y señale como respuesta el factor primo no común de mayor suma de coefi- cientes. Solución Aplicando aspa doble tenemos: 6x2 +19xy +15y2 −11x −17y +4 3x +5y −4 2x 3y −1 Agrupando tenemos: (3x + 5y − 4).(2x + 3y − 1) De igual forma tenemos: x2 +2xy +y2 +3x +3y −4 x y +4 x y −1 Agrupando tenemos: (x + y + 4).(x + y − 1) (x + y + 4) 4
  5. PROFESOR MARCO ALPACA ESPECIALIDAD DE MATEMÁTICA Problema 7 Indique el factor primo de mayor suma de coeficientes del polinomio: p(x) = x4 − 2x3 − 13x2 + 14x − 24 Solución Aplicando aspa doble especial tenemos: x4 −2x3 −13x2 +14x +24 1(x)2 1x −6 = −6x2 1(x)2 −3x −4 = −4x2 −3x2 −10x2 Agrupando términos y aplicando un aspa simple tenemos: (x2 + x − 6).(x2 − 3x − 4) (x2 +x −6) (x2 −3x −4) x 3 x −4 x −2 x +1 Agrupando términos tenemos: (x + 3)(x − 2)(x − 4)(x + 1) ΣCoe f(x+3) = 1 + 3 = 4 Problema 8 En el polinomio: P(a, b) = a3 b + a2 b − a3 − a2 , calcule la suma entre el número de factores algebraicos y el número de factores primos. Solución Agrupando términos tenemos: P(a, b) = a3b + a2b − a3 − a2 P(a, b) = ba2(a + 1) − a2(a + 1) P(a, b) = (a + 1(ba2 − a2) P(a, b) = a2(a + 1)(b − 1) 5
  6. 1 BIMONTHLY EXAM OF ALGEBRA #FA = 3(2)(2) − 1 = 11 #FP = 3 Σ = 11 + 3 = 24 Problema 9 ¿ Cuál de los polinomios no es factor primo de P(x), donde P(x) = 2x4 + x3 − 9x2 − 4x + 4? Solución Aplicando aspa doble especial tenemos: 2x4 +x3 −9x2 −4x +4 2x2 1x −1 = −x2 1x2 0x −4 = −8x2 0x2 −9x2 Agrupando términos tenemos y aplicando un aspa simple tenemos: (2x2 +x −1) (x2 −4) 2x −1 x 2 1x 1 x −2 Agrupando términos tenemos: (2x − 1)(x + 1)(x + 2)(x − 2) No es un factor primo: 2x + 1 Problema 10 Tomas es un matemático brillante de la Facultad de Ciencias Matemáticas de la UNMSM y él se percata que h(x) es un factor primo de: p(x) = 6x5 − 20x4 + 63x3 − 118x2 + 165x − 44. en [x], el cual genera números primos para los primeros 11 enteros no negativos. Halle la suma del mayor número primo con el menor número primo generado por h(x). 6
  7. PROFESOR MARCO ALPACA ESPECIALIDAD DE MATEMÁTICA Solución Utilizando el teorema de las raíces racionales. Por lo tanto a (±1, ±2, ±4, ±11, ±22, ±44) y b (±1, ±2, ±3, ±6) Al formar todos los posibles números racionales a/b con estas elecciones de a y b, y probando todos estos posibles valores por la división sintética, se halla que x=1/3 es una raíz. 3x − 1 = 0 6 -20 63 -118 165 -44 x = 1/3 2 -6 19 -33 44 ÷3 6 -18 57 -99 132 0 2 -6 19 -33 44 Ahora aplicando aspa doble especial tenemos: (3x − 1) 2x4 −6x3 +19x2 −33x +44 2x2 0x 11 = 11x2 1x2 −3x 4 = 8x2 0x2 19x2 Agrupando términos tenemos: p(x) = (3x − 1).(2x2 + 11).(x2 − 3x + 4) h(x) = 2x2 + 11 h(0) = 11 h(10) = 211 la distancia es 211 − 11 = 200 7
Publicité