SlideShare une entreprise Scribd logo
1  sur  82
Télécharger pour lire hors ligne
Las proteínas
1
Concepto de proteínas
• La palabra proteína viene del griego protos que significa "lo más
antiguo, lo primero”.
• Las proteínas son biopolímeros (macromoléculas orgánicas) de
elevado peso molecular; compuestos químicos muy complejos que
se encuentran en todas las células vivas.
• Hay ciertos elementos químicos que todas ellas poseen, pero los
diversos tipos de proteínas los contienen en diferentes cantidades.
• Están constituidas básicamente por carbono (C), hidrógeno (H),
oxígeno (O) y nitrógeno (N); aunque pueden contener también
azufre (S) y fósforo (P) y, en menor proporción, hierro (Fe), cobre
(Cu), magnesio (Mg), yodo (Y).
2
• Las proteínas son las moléculas orgánicas más abundantes en las células;
constituyen alrededor del 50% de su peso seco o más en algunos casos.
• Una bacteria puede tener cerca de 1000 proteínas diferentes, pero en una
célula humana puede haber 10.000 clases de proteínas distintas.
• Químicamente, las proteínas están formadas por la unión de muchas
moléculas relativamente sencillas y no hidrolizables, denominadas
Aminoácidos (Aa).
• Los aminoácidos se unen entre sí originando péptidos. Según su tamaño
molecular, pueden ser oligopéptidos, formados por no más de 10 Aa y
polipéptidos, constituidos por más de 10 Aa.
• Cuando el número de Aa supera los 50 y el polipéptido tiene una
estructura tridimensional específica, entonces se habla propiamente de
proteínas.
3
PROTEÍNAS
Holoproteínas
Proteínas filamentosas
Proteínas globulares
Heteroproteínas
Cromo proteínas
Glucoproteínas
Lipoproteínas
Nucleoproteínas
Fosfoproteínas
Clasificación de las proteínas
4
Los aminoácidos son compuestos orgánicos de bajo peso molecular.
Están compuestos siempre de C, H, O y N y además pueden
presentar otros elementos.
Se caracterizan por poseer un grupo carboxilo (—COOH) y un grupo
amino (—NH2) que se unen al mismo carbono (carbono α).
5
Las otras dos valencias del carbono se
saturan con un átomo de H y con un
grupo variable denominado radical R.
Este radical es el que determina las
propiedades químicas y biológicas de
cada aminoácido. Según éste se
distinguen 20 tipos de aminoácidos.
Aminoácidos: Unidades estructurales de las Proteínas
6
Clasificación de aminoácidos
1. Aminoácidos alifáticos. Son los aminoácidos en los que el radical R
es una cadena hidrocarbonada abierta, que puede tener, además,
grupos —COOH y —NH2. Los aminoácidos alifáticos se clasifican en
neutros, ácidos y básicos.
1. Neutros. Si el radical R no posee grupos carboxilo ni amino.
2. Ácidos. Si el radical R presenta grupos carboxilo, pero no
amino.
3. Básicos. Si el radical R tiene grupos amino, pero no grupos
carboxilo
2. Aminoácidos aromáticos. Son aquellos cuyo radical R es una cadena
cerrada, generalmente relacionada con el benceno.
3. Aminoácidos heterocíclicos. Aquellos cuyo radical R es una cadena
cerrada, generalmente compleja y con algunos átomos distintos del
carbono y del hidrógeno.
7
Clasificación de aminoácidos
8
1. Aminoácidos con R no polar, hidrófobo
2. Aminoácidos con R polar sin carga, hidrófilos y por tanto más
solubles que los anteriores.
3. Aminoácidos ácidos. Presentan carboxilos en el radical R, que
normalmente está ionizado.
4. Aminoácidos básicos. Presentan un radical R que se carga
positivamente a pH neutro.
Existe otra clasificación basada en función de la carga del radical R
(es la que viene en el libro de texto):
De los 20 aminoácidos proteicos (hay otros 150 que no forman parte
de las proteínas), hay 8 que son esenciales para la especie humana y
que deben ser incorporados en la dieta. Sólo los vegetales y las
bacterias pueden sintetizarlos, aunque todos los seres vivos los
necesitan para fabricar sus proteínas.
9
Clasificación de aminoácidos
10
11
12
• Son aquellos que los
organismos heterótrofos deben
tomar de su dieta ya que no
pueden sintetizarlos en su
cuerpo (los autótrofos pueden
sintetizarlos todos)
• Las rutas metabólicas para su
obtención suelen ser largas y
energéticamente costosas, por
lo que los vertebrados las han
ido perdiendo a lo largo de la
evolución (resulta menos
costoso obtenerlos en los
alimentos).
• EN ADULTOS: 8
– Fenilalanina
– Isoleucina
– Leucina
– Lisina
– Metionina
– Treonina
– Triptófano
– Valina
• EN NIÑOS los anteriores y:
– Arginina
– Histidina
Aminoácidos Esenciales
14
En un aminoácido, un carbono central (ɑ) se une a:
• Un grupo amino –NH2
• Un grupo carboxilo –COOH
• Un hidrógeno
• Un cadena lateral R que difiere en los 20 aminoácidos existentes.
C
H2
N COOH
H
CH3
Monómero
AMINOÁCIDO
Estructura de los aminoácidos
1. Los aminoácidos son compuestos
sólidos.
2. compuestos cristalinos
3. Presentan un elevado punto de
fusión.
4. Son solubles en agua.
5. Tienen actividad óptica
15
6. Presentan un comportamiento químico anfótero. Esto se debe a que a
pH=7 presentan una ionización dipolar, llamada zwitterion, que
permanece en equilibrio con la forma no iónica. Este estado varía con
el pH. A pH alcalino, el grupo carboxilo está ionizado (-COO-) y el
grupo amino no. A pH ácido, el grupo amino está ionizado (NH3+) y el
grupo carboxilo no.
Propiedades de los aminoácidos
Todos los aminoácidos, salvo la glicocola o glicina, presentan el carbono α
asimétrico, ya que está enlazado a cuatro radicales diferentes: un grupo
amino, un grupo carboxilo. un radical R y un hidrógeno.
Debido a esta característica, los aminoácidos presentan actividad óptica,
es decir, son capaces de desviar el plano de luz polarizada que atraviesa
una disolución de aminoácidos.
Si un aminoácido desvía el plano de luz polarizada hacia la derecha, se
denomina dextrógiro (+), y si lo hace hacia la izquierda, levógiro (—).
16
Actividad óptica de los aminoácidos
Debido a la presencia del carbono asimétrico, los aminoácidos pueden
presentar dos configuraciones espaciales.
Un aminoácido tendrá una configuración D si al disponerlo en el espacio, de
forma que el grupo carboxilo quede arriba, el grupo —NH2 queda situado a la
derecha, mientras que, si se encuentra a la izquierda, poseerá una
configuración L.
17
Estereoisomería de los aminoácidos
La disposición L o D es
independiente de la actividad
óptica. Por ello, un
L-aminoácido podrá ser
levógiro o dextrógiro, e igual
ocurrirá con la configuración
D.
En la naturaleza, la forma L es la más
abundante, y todas las proteínas están
formadas por aminoácidos L
En disolución acuosa, los aminoácidos
muestran un comportamiento anfótero, es
decir, pueden ionizarse, dependiendo del
pH, como un ácido (los grupos -COOH
liberan protones, quedando como -COO-
),
como una base (los grupos -NH2
captan
protones, quedando como -NH3+
) o como
un ácido y una base a la vez.
En el último caso los aminoácidos se
ionizan doblemente, apareciendo una forma
dipolar iónica llamada zwitterion.
18
Comportamiento químico: propiedades ácido-básicas
La forma dipolar, en un medio
ácido, capta protones y se comporta
como una base y en un medio
básico libera protones y se
comporta como un ácido.
El pH en el cual el aminoácido
tiende a adoptar una forma dipolar
neutra, con tantas cargas positivas
como negativas, se denomina
punto isoeléctrico.
El carácter anfótero de los
aminoácidos permite la regulación
del pH, ya que se comporta como
un ácido o como una base según le
convenga al organismo.
19
20
El punto isoeléctrico es el valor de pH al
que el aminoácido presenta una carga neta
igual al cero
Unión de los aminoácidos.
✔Los enlaces químicos entre aminoácidos se denominan enlaces
peptídicos y a las cadenas formadas, péptidos.
✔Si el número de aminoácidos que forma un péptido es dos, se
denomina dipéptido, si es tres, tripéptido. etc.
✔Si es inferior a 50 (10 según que textos) se habla de oligopéptido, y si
es superior a 50 se denomina polipéptido.
✔Sólo cuando un polipéptido se halla constituido por más de cincuenta
moléculas de aminoácidos o si el valor de su peso molecular excede de
5 000 se habla de proteína.
21
22
Los aminoácidos se unen entre sí mediante uniones peptídicas para
formar cadenas lineales no ramificadas.
C
H
R
C =
O
OH
N
H
H
C
H
R
C =
O
OH
N
H
H
C N
=
O
H
C
H
R
N
H
H
C
H
R
C =
O
OH
+ H2
O
Unión Peptídica
Unión Peptídica entre Aminoácidos
CONDENSACIÓN
23
1. En un enlace peptídico, los átomos del grupo carboxilo y del grupo
amino se sitúan en un mismo plano, con distancias y ángulos fijos.
2. Los grupos de aminoácidos unidos por este enlace se denominan
residuos para resaltar la pérdida de una molécula de agua en cada
enlace.
3. El amino libre de un extremo y el carboxilo libre del otro extremo de la
cadena reciben el nombre de N-terminal y C-terminal respectivamente.
Por convenio, los aminoácidos se numeran desde el N-terminal.
Enlace peptídico
24
4. El enlace peptídico tiene un comportamiento similar al de un enlace
doble, es decir, presenta una cierta rigidez que inmoviliza en un plano
los átomos que lo forman.
5. Además es un enlace más corto que otros enlaces C-N. Esto le impide
girar libremente, los únicos enlaces que pueden girar son los Cα-C y los
Cα-N que no corresponden al enlace peptídico.
Enlace peptídico
25
26
27
Péptidos y oligopéptidos de interés biológico
Existen algunos péptidos cortos con función
biológica.
Entre ellos podemos citar:
•El tripéptido glutatión (que actúa como transportador
de hidrógeno en algunas reacciones metabólicas).
•Los nanopéptidos oxitocina y vasopresina (con
actividad hormonal), la insulina y el glucagón que
regulan la concentración de glucosa en sangre.
•Los decapéptidos tirocidina, gramicidina y
valinomicina (antibióticos).
28
Estructura de una
Proteína?
La organización de una proteína viene definida por cuatro niveles
estructurales ( o cuatro niveles de organización) denominados:
1. ESTRUCTURA PRIMARIA
2. ESTRUCTURA SECUNDARIA
3. ESTRUCTURA TERCIARIA
4. ESTRUCTURA CUATERNARIA
Cada una de estas estructuras informa de la disposición de la anterior en
el espacio.
Estructura de las proteínas
29
La estructura primaria es la secuencia de aminoácidos de la proteína.
Nos indica qué aminoácidos componen la cadena polipeptídica y el orden
en que dichos aminoácidos se encuentran.
La secuencia de una proteína se escribe enumerando los aminoácidos
desde el extremo N-terminal hasta el C-terminal.
30
Estructura primaria
La función de una proteína depende de su secuencia de aminoácidos y
de la forma que ésta adopte. El cambio de un solo aa de la secuencia de
la proteína puede tener efectos muy importantes, como el cambio de un
solo aa en la hemoglobina humana que provoca la anemia falciforme.
31
Estructura primaria
32
Serina Glicina Tirosina Alanina Leucina
Estructura primaria
33
Estructura primaria
La estructura secundaria es la disposición de la secuencia de
aminoácidos o estructura primaria en el espacio.
Los aminoácidos, a medida que van siendo enlazados durante la
síntesis de las proteínas, y gracias a la capacidad de giro de sus
enlaces, adquieren una disposición espacial estable, la estructura
secundaria.
Son conocidos tres tipos de estructura secundaria: la α-hélice, la hélice
de colágeno y la conformación β o lámina plegada β. La estructura
secundaria de la cadena polipeptídica depende de los aminoácidos que
la forman.
34
Estructura secundaria
35
• Las interacciones no covalentes entre los restos laterales de los
aminoácidos dan origen a la estructura secundaria.
• Esta conformación viene dada por puentes de hidrógeno
intercatenarios.
• La estructura secundaria puede ser:
– Conformación ɑ (Hélice)
– Conformación β (Hoja plegada)
• Si bien las conformaciones anteriores son las más usuales, existen
otras menos frecuentes.
• Existen sectores de los polipéptidos cuya estructura no está bien
definida: los enroscamientos aleatorios o “ad-random”.
Conformación β
Conformación ɑ
Estructura secundaria
36
• Estructura en forma de bastón.
• Los restos laterales de los
aminoácidos se ubican de forma
perpendicular al eje de la hélice.
• Los enlaces puente de hidrógeno se
establecen entre el hidrógeno unido al
nitrógeno y el oxígeno del primitivp
carboxilo.
α-hélice
▪ La estructura secundaria en α-hélice se forma al enrollarse
helicoidalmente sobre sí misma la estructura primaria.
▪ Esto se debe a la formación espontánea de enlaces de hidrógeno entre
el —CO— de un aminoácido y el —NH— del cuarto aminoácido que le
sigue.
▪ En la α-hélice, los oxígenos de todos los grupos —CO— quedan
orientados en el mismo sentido, y los hidrógenos de todos los grupos
—NH— quedan orientados justo en el sentido contrario.
▪ La α-hélice presenta 3,6 aminoácidos por vuelta y la rotación es hacia
la derecha.
37
α-hélice
• El colágeno posee una disposición
en hélice especial, mas alargada
que la α-hélice, debido a la
abundancia de prolina e
hidroxiprolina.
• Estos aa poseen una estructura
que dificulta la formación de
enlaces de hidrógeno, por lo que
se forma una hélice más
extendida, con sólo tres
aminoácidos por vuelta.
38
Hélice de colágeno
• Su estabilidad viene dada por la asociación de tres
hélices empaquetadas, para formar la triple hélice o
superhélice que es la responsable de la gran fuerza de
tensión del colágeno.
• Las tres hélices se unen mediante enlaces covalentes y
enlaces débiles de tipo puente de hidrógeno. Las
maromas y cables se construyen de forma semejante a
esta triple hélice.
39
Hélice de colágeno
• Hay algunas alteraciones
del colágeno que provocan
síndromes como el de el
hombre de goma o el
síndrome de Marfán que
padecía Paganini y que
explicaba sus dedos largos
e hiperextensibles
40
Hélice de colágeno
41
• Son estructuras flexibles que no se pueden estirar.
• Los restos laterales se ubican hacia arriba y hacia abajo del plano de las
hojas.
Conformación-β
•Los aminoácidos forman una cadena en forma de zigzag.
•No existen enlaces de hidrógeno entre los aminoácidos próximos de la
cadena polipeptídica. Si que existen enlaces de hidrógeno intercatenarios, en
los que participan todos los enlaces peptídicos, dando una gran estabilidad a
la estructura.
•Las dos cadenas se pueden unir de dos formas distintas; paralela y
antiparalela. Esta última es un poco mas compacta y aparece con mayor
frecuencia en las proteínas.
•Si la cadena con conformación β se repliega sobre si misma, se pueden
establecer puentes de hidrógeno entre segmentos, antes distantes, que
ahora han quedado próximos. Esto da lugar a una lámina en zigzag muy
estable denominada β-lámina plegada. Esta estructura también se puede
formar entre dos o mas cadenas polipeptídicas diferentes.
42
Conformación-β
43
ANTIPARALELA
PARALELA
Conformación-β
•Muchas proteínas globulares presentan segmentos con conformación β
alternados con segmentos de estructura en α-hélice.
•En general, las proteínas que se quedan en la estructura secundaria, dan
lugar a proteínas filamentosas alargadas.
•Son insolubles en agua y soluciones salinas y realizan funciones
esqueléticas.
•Las más conocidas son la α-queratina del pelo, plumas, uñas, cuernos, etc, la
fibroína del hilo de seda y de las telarañas, y la elastina del tejido conjuntivo,
que forma una red deformable por la tensión.
44
Conformación-β
45
46
Características de la Hoja plegada (beta-lamina):
•Los grupos C=O y N-H de los enlaces peptídicos de cadenas
adyacentes (o de segmentos adyacentes de una misma cadena)
están en el mismo plano apuntando uno hacia el otro, de tal forma
que se hace posible el enlace de hidrogeno entre ellos.
•Los puentes de hidrogeno son mas o menos perpendiculares al eje
principal de la estructura en hoja plegada.
•Todos los grupos R en cada una de las cadenas alternan, primero
arriba del eje de la lamina, después abajo del mismo, y así
sucesivamente.
Conformación-β
47
Secuencias de la cadena polipeptídica con
estructura α o β a menudo están conectadas
entre sí por medio de los llamados giros β.
Son secuencias cortas, con una conformación
característica que impone un brusco giro de
180o
a la cadena principal de un polipéptido.
Giros β
AA como Asn, Gly y Pro (que se acomodan mal
en estructuras de tipo α o β) aparecen con
frecuencia en este tipo de estructura.
La conformación de los giros b está estabilizada
generalmente por medio de un puente de
hidrógeno entre los residuos 1 y 4 del giro β
Sirven para que la proteína adopte estructuras
más compactas
48
• La conformación terciaria de una
proteína globular es la conformación
tridimensional del polipéptido plegado.
• Las interacciones que intervienen en el
plegamiento de la estructura
secundaria son:
• Interacciones hidrofóbicas entre
restos laterales no polares.
• Uniones de Van der Waals.
• Puentes de Hidrógeno.
• Interacciones salinas.
• Puentes Disulfuro.
• Las funciones de las proteínas
dependen del plegamiento particular
que adopten.
• Esta estructura está altamente
influenciada por la estructura primaria.
Estructura terciaria
•Es disposición espacial de la estructura secundaria de un polipéptido al
plegarse sobre sí misma originando una conformación globular.
•La conformación globular en las proteínas facilita su solubilidad en agua y en
disoluciones salinas. Esto les permite realizar funciones de transporte,
enzimáticas, hormonales, etc
•Las conformaciones globulares se mantienen estables por la existencia de
enlaces entre los radicales R de los aminoácidos.
49
Estructura terciaria
Lámina β
Hélice α
50
Residuos
hidrofóbicos
Residuos
polares
Aceptores
Donadores
Enlaces de hidrógeno en estructura terciaria
Enlaces salinos o iónicos en estructura terciaria
Enlaces covalentes en estructura terciaria: disulfuro
S
S
Enlaces covalentes en estructura terciaria: amida
55
Interacciones que
intervienen en el
plegamiento de la
estructura terciaria
• En los tramos rectos, la cadena polipeptídica posee estructura
secundaria de tipo α-hélice o β-lámina
• En los codos o giros presenta secuencias sin estructura precisa.
• Existen combinaciones estables, compactas y de aspecto globular de
α-hélice y conformación-β que aparecen repetidamente en proteínas
distintas.
• Reciben el nombre de dominios estructurales y cada dominio se pliega
y se desnaturaliza casi independientemente de los demás.
• Evolutivamente, se considera que los dominios estructurales han servido
como unidades modulares para constituir diferentes tipos de proteínas
globulares.
• Los distintos dominios suelen estar unidos por zonas estrechas o
«cuellos», lo que posibilita un cierto movimiento rotacional. Así, al
separarse dos dominios, permiten la introducción de la molécula de
sustrato y, al acercarse, la fijan para actuar sobre ella. 56
57
- Enlaza a un pequeño ligando
- “Atravesar” la membrana plasmática
- Contiene el sitio catalítico (enzimas)
- Enlazar al DNA (en factores de transcripción)
- Provee una superficie para enlazarse
específicamente a otra proteína.
Funciones de los Dominios:
A menudo un dominio realiza una función especifica y separada para la
proteína:
1. La estructura cuaternaria es la unión mediante
enlaces débiles (no covalentes) de varias cadenas
polipeptídicas con estructura terciana, idénticas o
no, para formar un complejo proteico.
2. Cada una de estas cadenas polipeptídicas recibe
el nombre de protómero (subunidad o monómero)
3. Según el número de protómeros que se asocian.
las proteínas que tienen estructura cuaternaria se
denominan:
• Dímeros, como la hexoquinasa.
• tetrámero como la hemoglobina.
• Pentámeros, como la ARN-polimerasa.
• Polímeros, cuando en su composición
intervienen gran número de protómeros.
(cápsida del virus de la poliomielitis, que
consta de 60 subunidades proteicas, los
filamentos de actina y miosina de las células
musculares, etc).
58
Estructura cuaternaria
59
• Las interacciones que estabilizan esta
estructura son en general uniones débiles:
• Interacciones hidrofóbicas.
• Puentes de hidrógeno.
• Interacciones salinas.
• Fuerza de Van der Waals.
• En algunas ocasiones puede haber
enlaces fuertes tipo puentes disulfuro,
en el caso de las inmunoglobulinas.
Estructura cuaternaria
60
• Reduce la cantidad de información genética necesaria.
• El ensamblaje y la disgregación se controlan fácilmente, ya que las
subunidades se asocian por enlaces débiles.
• Los mecanismos de corrección pueden excluir durante el ensamblaje las
subunidades defectuosas, con lo que disminuyen los errores en la
síntesis de la estructura.
Se pueden distinguir dentro de las estructuras cuaternarias dos tipos:
• Homotípicas: Las cadenas polipeptídicas son idénticas o casi idénticas.
• Heterotípicas: Las subunidades poseen estructuras muy diferentes.
61
El uso de subunidades menores para construir grandes estructuras
presenta varias ventajas:
62
En resumen, la estructura de una proteína.
Primaria Secundaria Terciaria Cuaternaria
Secuencia Conformación Asociación
Hélice
Hoja Plegada
Globular
Fibrosa
Subunidades iguales
Subunidades distintas
Combinación
ilimitada de
aminoácidos.
Unión
Peptídica
Puente de
Hidrógeno
Puente de Hidrógeno,
Interacciones hidrofóbicas,
salinas, electrostáticas.
Fuerzas diversas no
covalentes.
PROPIEDADES DE LAS PROTEINAS
Las propiedades de las proteínas dependen sobre todo de los radicales R
libres y de que éstos sobresalgan de la molécula y, por tanto, tengan la
posibilidad de reaccionar con otras moléculas.
El conjunto de aminoácidos de una proteína cuyos radicales poseen la
capacidad de unirse a otras moléculas y de reaccionar con éstas se
denomina centro activo de la proteína.
63
64
❑ Las proteínas globulares poseen un elevado tamaño molecular, por lo
que al disolverse, dan lugar a disoluciones coloidales.
❑ La solubilidad de estas moléculas se debe a los radicales R que, al
ionizarse, establecen puentes de hidrógeno con las moléculas de agua.
Así, la proteína queda recubierta de una capa de moléculas de agua
que impide que se pueda unir a otras proteínas, lo que provocaría su
precipitación.
65
Solubilidad
❑ La solubilidad depende del pH,
temperatura, concentración
iónica... A pesar de ser solubles, la
mayoría de las membranas
biológicas son impermeables al
paso de proteínas.
Capa de moléculas de agua
Consiste en la pérdida de todas las estructuras de orden superior
(secundaria, terciaria y cuaternaria) quedando la proteína reducida
a un polímero con estructura primaria.
Consecuencias inmediatas son:
- Disminución drástica de la solubilidad de la
proteína, acompañada frecuentemente de
precipitación
- Pérdida de todas sus funciones biológicas
- Alteración de sus propiedades hidrodinámicas
Desnaturalización y renaturalización
Agentes
desnaturalizantes
I. Físicos
1. Calor. La mayor parte de las proteínas experimentan
desnaturalizaciones cuando se calientan entre 50 y 60 ºC; otras se
desnaturalizan también cuando se enfrían por debajo de los 10 a 15 ºC.
2. Radiaciones
II. Químicos: todos los agentes que rompen interacciones
o enlaces presentes en la estructura nativa de la proteína:
1. Detergentes
2. Urea y guanidina a altas concentraciones
3. Altas concentraciones de sal y extremos de pH
4. Reactivos de grupos -SH
2-mercaptoetanol
Ditiotreitol (DTT)
Dodecilsulfato sódico (SDS, laurilsulfato)
Urea
Guanidina
Agentes
desnaturalizantes
69
La especificidad es doble:
• de especie
• de función.
Especificidad de especie:
En su secuencia de aminoácidos, las proteínas presentan dos tipos de
sectores:
• Sectores estables
• Sectores variables: Algunos aminoácidos pueden ser sustituidos por
otros distintos sin que se altere la funcionalidad de la molécula.
Ello ha dado lugar, durante la evolución, a una gran variabilidad de proteínas,
lo que permite que cada especie tenga sus proteínas específicas y que,
incluso, aparezcan diferencias entre individuos de la misma especie (rechazo
en trasplantes de tejidos).
Las diferencias entre proteínas homologas, es decir, con la misma función,
son grandes entre especies alejadas evolutivamente y escasas entre especies
emparentadas.
70
Especificidad
Especificidad de función.
La especificidad también se refiere a la función.
•Cada proteína realiza una determinada función exclusivamente, por ejemplo,
catalizar cierta reacción química sobre cierto substrato y no sobre otro.
•La especificidad se debe a que su actuación se realiza mediante interacciones
selectivas con otras moléculas, para lo que necesitan una determinada
secuencia de aa y una conformación concreta.
•Un cambio en la secuencia o conformación puede impedir la unión y por lo tanto
dificultar la función.
71
Las proteínas, al estar constituidas por aminoácidos, tienen un
comportamiento anfótero. Tienden a neutralizar las variaciones de pH
del medio, ya que pueden comportarse como un ácido o una base y,
por tanto, liberar o retirar protones (H+) del medio
72
Capacidad amortiguadora
CLASIFICACIÓN DE PROTEÍNAS
Se clasifican en:
• Holoproteínas: Formadas solamente por aminoácidos.
• Heteroproteínas: Formadas por una fracción proteínica y por
un grupo no proteínico, que se denomina "grupo prostético.
Se clasifican según la naturaleza del grupo prostético.
73
PROTEÍNAS
Holoproteínas
Proteínas filamentosas
Proteínas globulares
Heteroproteínas
Cromoproteínas
Glucoproteínas
Lipoproteínas
Nucleoproteínas
Fosfoproteínas
Globulares:
1. Prolaminas: Zeína (maíza),gliadina (trigo), hordeína (cebada)
2. Gluteninas: Glutenina (trigo), orizanina (arroz).
3. Albúminas: Seroalbúmina (sangre), ovoalbúmina (huevo),
lactoalbúmina (leche)
4. Hormonas: Insulina, hormona del crecimiento, prolactina,
tirotropina
5. Enzimas: Hidrolasas, Oxidasas, Ligasas, Liasas, Transferasas .
74
HOLOPROTEÍNAS
Más complejas que las fibrosas.
Forman estructuras compactas, casi
esféricas, solubles en agua o
disolventes polares. Son
responsables de la actividad celular
Fibrosas:
1. Colágenos: en tejidos conjuntivos, cartilaginosos
2. Queratinas: En formaciones epidérmicas: pelos, uñas, plumas,
cuernos.
3. Elastinas: En tendones y vasos sanguíneos
4. Fibroínas: En hilos de seda, (arañas, insectos)
75
HOLOPROTEÍNAS
Más simples que las globulares.
Forman estructuras alargadas,
ordenadas en una sola dimensión,
formando haces paralelos. Son
responsables de funciones
estructurales y protectoras
1. Glucoproteínas: ribonucleasa mucoproteínas, anticuerpos, hormona
luteinizante
2. Lipoproteínas: De alta, baja y muy baja densidad, que transportan
lípidos en la sangre.
3. Nucleoproteínas: Nucleosomas de la cromatina, ribosomas,
histonas y protaminas de eucariotas.
4. Cromoproteínas: Pueden ser de dos tipos:
a) Porfirínicas. Hemoglobina, mioglobina que transportan
oxígeno, citocromos, que transportan electrones
b) No profirínicas como la hemocianina (pigmento respiratorio
de crustáceos y moluscos, de color azul y que contiene
cobre)
5. Fosfoproteínas: Tienen PO4
H3
en el grupo prostético. La caseína de
la leche.
76
HETEROPROTEÍNAS
77
1. Estructural
2. Enzimática
3. Hormonal
4. Defensiva
5. Transporte
6. Reserva
7. Función
homeostática
8. Anticongelante
9. Actividad contráctil
FUNCIONES Y EJEMPLOS DE PROTEÍNAS:
Es una de las funciones más características:
1. Algunas glucoproteínas forman parte de las membranas celulares.
Intervienen en el transporte selectivo de iones (bomba de Na-K)
2. Otras proteínas forman el citoesqueleto de las células, las fibras del
huso, de los cilios y flagelos.
3. Otras, como las histonas forman parte de los cromosomas
eucariotas.
4. El colágeno, que mantiene unidos los tejidos animales y forma los
tendones y la matriz de los huesos y cartílagos.
5. La elastina, en el tejido conjuntivo elástico (ligamentos paredes de
vasos sanguíneos).
6. La queratina, que se sintetiza en la epidermis y forma parte de pelos,
uñas, escamas de reptiles, plumas, etc.
7. La fibroína, que forma la seda y las telas de arañas. Es una
disolución viscosa que solidifica rápidamente al contacto con el aire.
78
Estructural
• Es la función más importante.
• Las enzimas son las proteínas más numerosas y especializadas y
actúan como biocatalizadores de las reacciones que constituyen
el metabolismo celular.
• Se diferencian de los catalizadores no biológicos porque las
enzimas son específicas de la reacción que catalizan y de los
sustratos que intervienen en ellas.
79
Insulina y glucagón
Hormona del crecimiento segregada por la hipófisis
Calcitonina
Enzimática
Hormonal
Inmunoglobulina, trombina y fibrinógeno
Defensiva
• Además de las proteínas transportadoras de las membranas, existen
otras extracelulares que transportan sustancias a lugares diferentes
del organismo.
• Hemoglobina, la hemocianina y la mioglobina del músculo
estriado.
• Los citocromos transportan electrones en la cadena respiratoria
(mitocondrias) y en la fase luminosa de la fotosíntesis
(cloroplastos).
• La seroalbúmina transporta ácidos grasos, fármacos y productos
tóxicos por la sangre.
• Las lipoproteínas transportan el colesterol y los triacilglicéridos
por la sangre.
80
Transporte
81
En general, las proteínas no se utilizan para la obtención de
energía. No obstante, algunas como la ovoalbúmina de la clara
de huevo, la caseína de la leche o la gliadina de la semilla de
trigo, son utilizadas por el embrión en desarrollo como
nutrientes.
Las proteínas intracelulares y del medio interno intervienen en el
mantenimiento del equilibrio osmótico en coordinación con los
tampones.
Reserva
Función homeostática
Presentes en el citoplasma de ciertos peces antárticos.
El movimiento y la locomoción en los organismos unicelulares y pluricelulares
dependen de las proteínas contráctiles:
• la dineína, en cilios y flagelos,
• la actina y miosina, responsables de la contracción muscular.
82
Anticongelante
Función contráctil

Contenu connexe

Tendances (20)

Aminoácidos y Proteínas
Aminoácidos y ProteínasAminoácidos y Proteínas
Aminoácidos y Proteínas
 
Proteinas.ppt
Proteinas.pptProteinas.ppt
Proteinas.ppt
 
Bioquimica de las proteinas y aminoacido (bioq. i)
Bioquimica de las proteinas y aminoacido (bioq. i)Bioquimica de las proteinas y aminoacido (bioq. i)
Bioquimica de las proteinas y aminoacido (bioq. i)
 
Proteínas
ProteínasProteínas
Proteínas
 
Biomoleculas
BiomoleculasBiomoleculas
Biomoleculas
 
Enzimas
EnzimasEnzimas
Enzimas
 
Enzimas
EnzimasEnzimas
Enzimas
 
química de los carbohidratos
química de los carbohidratosquímica de los carbohidratos
química de los carbohidratos
 
Presentacion carbohidratos
Presentacion carbohidratosPresentacion carbohidratos
Presentacion carbohidratos
 
MoléCulas OrgáNicas
MoléCulas OrgáNicasMoléCulas OrgáNicas
MoléCulas OrgáNicas
 
Tema 4. PROTEÍNAS
Tema 4. PROTEÍNASTema 4. PROTEÍNAS
Tema 4. PROTEÍNAS
 
aminoacidos
aminoacidosaminoacidos
aminoacidos
 
Ácidos Nucléicos
Ácidos NucléicosÁcidos Nucléicos
Ácidos Nucléicos
 
proteinas y aminoacidos
proteinas y aminoacidosproteinas y aminoacidos
proteinas y aminoacidos
 
Biomoleculas
BiomoleculasBiomoleculas
Biomoleculas
 
Las proteínas
Las proteínasLas proteínas
Las proteínas
 
Presentación proteínas
Presentación proteínas Presentación proteínas
Presentación proteínas
 
Ud.5. proteinas
Ud.5. proteinasUd.5. proteinas
Ud.5. proteinas
 
Tema 4 proteinas
Tema 4 proteinasTema 4 proteinas
Tema 4 proteinas
 
Proteinas y Aminoacidos
Proteinas y AminoacidosProteinas y Aminoacidos
Proteinas y Aminoacidos
 

Similaire à introducción a las proteínas.pdf

Similaire à introducción a las proteínas.pdf (20)

Biomoleculas ii
Biomoleculas iiBiomoleculas ii
Biomoleculas ii
 
Proteinas
ProteinasProteinas
Proteinas
 
Proteinas
ProteinasProteinas
Proteinas
 
Tema 2 biomoléculas orgánicas protidos
Tema 2 biomoléculas orgánicas protidosTema 2 biomoléculas orgánicas protidos
Tema 2 biomoléculas orgánicas protidos
 
Proteínas
ProteínasProteínas
Proteínas
 
T 05 Proteínas 17 18
T 05 Proteínas 17 18T 05 Proteínas 17 18
T 05 Proteínas 17 18
 
Bioquimica de las proteinas y aminoacido (bioq. i)
Bioquimica de las proteinas y aminoacido (bioq. i)Bioquimica de las proteinas y aminoacido (bioq. i)
Bioquimica de las proteinas y aminoacido (bioq. i)
 
Proteínas
ProteínasProteínas
Proteínas
 
Presentación1
Presentación1Presentación1
Presentación1
 
Metabolismo de aminoacidos proteinas
Metabolismo de aminoacidos proteinasMetabolismo de aminoacidos proteinas
Metabolismo de aminoacidos proteinas
 
Cap6 aminoácidos
Cap6 aminoácidosCap6 aminoácidos
Cap6 aminoácidos
 
TEMA-4-PROTEINAS.pdf
TEMA-4-PROTEINAS.pdfTEMA-4-PROTEINAS.pdf
TEMA-4-PROTEINAS.pdf
 
Aminoácidos proteínas
Aminoácidos proteínasAminoácidos proteínas
Aminoácidos proteínas
 
Tema 3 Prótidos
Tema 3 PrótidosTema 3 Prótidos
Tema 3 Prótidos
 
Proteínas nivel 2
Proteínas  nivel 2Proteínas  nivel 2
Proteínas nivel 2
 
Bioquimica Preinforme laboratorio primero
Bioquimica Preinforme laboratorio primeroBioquimica Preinforme laboratorio primero
Bioquimica Preinforme laboratorio primero
 
T5 - Aminoácidos y proteínas
T5 - Aminoácidos y proteínasT5 - Aminoácidos y proteínas
T5 - Aminoácidos y proteínas
 
Carbohidratos
CarbohidratosCarbohidratos
Carbohidratos
 
Proteínas.
Proteínas.Proteínas.
Proteínas.
 
Proteínas
ProteínasProteínas
Proteínas
 

Dernier

Qué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativaQué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativaDecaunlz
 
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdfGUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdfPaolaRopero2
 
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfSELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfAngélica Soledad Vega Ramírez
 
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxSEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxYadi Campos
 
AFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA II
AFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA IIAFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA II
AFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA IIIsauraImbrondone
 
MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMarjorie Burga
 
Estrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónEstrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónLourdes Feria
 
Cuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdfCuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdfNancyLoaa
 
Criterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficiosCriterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficiosJonathanCovena1
 
La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...JonathanCovena1
 
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.Alejandrino Halire Ccahuana
 
Registro Auxiliar - Primaria 2024 (1).pptx
Registro Auxiliar - Primaria  2024 (1).pptxRegistro Auxiliar - Primaria  2024 (1).pptx
Registro Auxiliar - Primaria 2024 (1).pptxFelicitasAsuncionDia
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Carlos Muñoz
 
CALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADCALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADauxsoporte
 
plan de capacitacion docente AIP 2024 clllll.pdf
plan de capacitacion docente  AIP 2024          clllll.pdfplan de capacitacion docente  AIP 2024          clllll.pdf
plan de capacitacion docente AIP 2024 clllll.pdfenelcielosiempre
 
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...JAVIER SOLIS NOYOLA
 
Valoración Crítica de EEEM Feco2023 FFUCV
Valoración Crítica de EEEM Feco2023 FFUCVValoración Crítica de EEEM Feco2023 FFUCV
Valoración Crítica de EEEM Feco2023 FFUCVGiustinoAdesso1
 
PIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonablesPIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonablesYanirisBarcelDelaHoz
 

Dernier (20)

Medición del Movimiento Online 2024.pptx
Medición del Movimiento Online 2024.pptxMedición del Movimiento Online 2024.pptx
Medición del Movimiento Online 2024.pptx
 
Qué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativaQué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativa
 
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdfGUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
 
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfSELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
 
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxSEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
 
AFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA II
AFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA IIAFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA II
AFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA II
 
MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grande
 
Estrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónEstrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcción
 
Cuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdfCuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdf
 
Criterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficiosCriterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficios
 
La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...
 
Unidad 3 | Metodología de la Investigación
Unidad 3 | Metodología de la InvestigaciónUnidad 3 | Metodología de la Investigación
Unidad 3 | Metodología de la Investigación
 
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
 
Registro Auxiliar - Primaria 2024 (1).pptx
Registro Auxiliar - Primaria  2024 (1).pptxRegistro Auxiliar - Primaria  2024 (1).pptx
Registro Auxiliar - Primaria 2024 (1).pptx
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
 
CALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADCALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDAD
 
plan de capacitacion docente AIP 2024 clllll.pdf
plan de capacitacion docente  AIP 2024          clllll.pdfplan de capacitacion docente  AIP 2024          clllll.pdf
plan de capacitacion docente AIP 2024 clllll.pdf
 
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
 
Valoración Crítica de EEEM Feco2023 FFUCV
Valoración Crítica de EEEM Feco2023 FFUCVValoración Crítica de EEEM Feco2023 FFUCV
Valoración Crítica de EEEM Feco2023 FFUCV
 
PIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonablesPIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonables
 

introducción a las proteínas.pdf

  • 2. Concepto de proteínas • La palabra proteína viene del griego protos que significa "lo más antiguo, lo primero”. • Las proteínas son biopolímeros (macromoléculas orgánicas) de elevado peso molecular; compuestos químicos muy complejos que se encuentran en todas las células vivas. • Hay ciertos elementos químicos que todas ellas poseen, pero los diversos tipos de proteínas los contienen en diferentes cantidades. • Están constituidas básicamente por carbono (C), hidrógeno (H), oxígeno (O) y nitrógeno (N); aunque pueden contener también azufre (S) y fósforo (P) y, en menor proporción, hierro (Fe), cobre (Cu), magnesio (Mg), yodo (Y). 2
  • 3. • Las proteínas son las moléculas orgánicas más abundantes en las células; constituyen alrededor del 50% de su peso seco o más en algunos casos. • Una bacteria puede tener cerca de 1000 proteínas diferentes, pero en una célula humana puede haber 10.000 clases de proteínas distintas. • Químicamente, las proteínas están formadas por la unión de muchas moléculas relativamente sencillas y no hidrolizables, denominadas Aminoácidos (Aa). • Los aminoácidos se unen entre sí originando péptidos. Según su tamaño molecular, pueden ser oligopéptidos, formados por no más de 10 Aa y polipéptidos, constituidos por más de 10 Aa. • Cuando el número de Aa supera los 50 y el polipéptido tiene una estructura tridimensional específica, entonces se habla propiamente de proteínas. 3
  • 4. PROTEÍNAS Holoproteínas Proteínas filamentosas Proteínas globulares Heteroproteínas Cromo proteínas Glucoproteínas Lipoproteínas Nucleoproteínas Fosfoproteínas Clasificación de las proteínas 4
  • 5. Los aminoácidos son compuestos orgánicos de bajo peso molecular. Están compuestos siempre de C, H, O y N y además pueden presentar otros elementos. Se caracterizan por poseer un grupo carboxilo (—COOH) y un grupo amino (—NH2) que se unen al mismo carbono (carbono α). 5 Las otras dos valencias del carbono se saturan con un átomo de H y con un grupo variable denominado radical R. Este radical es el que determina las propiedades químicas y biológicas de cada aminoácido. Según éste se distinguen 20 tipos de aminoácidos. Aminoácidos: Unidades estructurales de las Proteínas
  • 7. 1. Aminoácidos alifáticos. Son los aminoácidos en los que el radical R es una cadena hidrocarbonada abierta, que puede tener, además, grupos —COOH y —NH2. Los aminoácidos alifáticos se clasifican en neutros, ácidos y básicos. 1. Neutros. Si el radical R no posee grupos carboxilo ni amino. 2. Ácidos. Si el radical R presenta grupos carboxilo, pero no amino. 3. Básicos. Si el radical R tiene grupos amino, pero no grupos carboxilo 2. Aminoácidos aromáticos. Son aquellos cuyo radical R es una cadena cerrada, generalmente relacionada con el benceno. 3. Aminoácidos heterocíclicos. Aquellos cuyo radical R es una cadena cerrada, generalmente compleja y con algunos átomos distintos del carbono y del hidrógeno. 7 Clasificación de aminoácidos
  • 8. 8
  • 9. 1. Aminoácidos con R no polar, hidrófobo 2. Aminoácidos con R polar sin carga, hidrófilos y por tanto más solubles que los anteriores. 3. Aminoácidos ácidos. Presentan carboxilos en el radical R, que normalmente está ionizado. 4. Aminoácidos básicos. Presentan un radical R que se carga positivamente a pH neutro. Existe otra clasificación basada en función de la carga del radical R (es la que viene en el libro de texto): De los 20 aminoácidos proteicos (hay otros 150 que no forman parte de las proteínas), hay 8 que son esenciales para la especie humana y que deben ser incorporados en la dieta. Sólo los vegetales y las bacterias pueden sintetizarlos, aunque todos los seres vivos los necesitan para fabricar sus proteínas. 9 Clasificación de aminoácidos
  • 10. 10
  • 11. 11
  • 12. 12
  • 13. • Son aquellos que los organismos heterótrofos deben tomar de su dieta ya que no pueden sintetizarlos en su cuerpo (los autótrofos pueden sintetizarlos todos) • Las rutas metabólicas para su obtención suelen ser largas y energéticamente costosas, por lo que los vertebrados las han ido perdiendo a lo largo de la evolución (resulta menos costoso obtenerlos en los alimentos). • EN ADULTOS: 8 – Fenilalanina – Isoleucina – Leucina – Lisina – Metionina – Treonina – Triptófano – Valina • EN NIÑOS los anteriores y: – Arginina – Histidina Aminoácidos Esenciales
  • 14. 14 En un aminoácido, un carbono central (ɑ) se une a: • Un grupo amino –NH2 • Un grupo carboxilo –COOH • Un hidrógeno • Un cadena lateral R que difiere en los 20 aminoácidos existentes. C H2 N COOH H CH3 Monómero AMINOÁCIDO Estructura de los aminoácidos
  • 15. 1. Los aminoácidos son compuestos sólidos. 2. compuestos cristalinos 3. Presentan un elevado punto de fusión. 4. Son solubles en agua. 5. Tienen actividad óptica 15 6. Presentan un comportamiento químico anfótero. Esto se debe a que a pH=7 presentan una ionización dipolar, llamada zwitterion, que permanece en equilibrio con la forma no iónica. Este estado varía con el pH. A pH alcalino, el grupo carboxilo está ionizado (-COO-) y el grupo amino no. A pH ácido, el grupo amino está ionizado (NH3+) y el grupo carboxilo no. Propiedades de los aminoácidos
  • 16. Todos los aminoácidos, salvo la glicocola o glicina, presentan el carbono α asimétrico, ya que está enlazado a cuatro radicales diferentes: un grupo amino, un grupo carboxilo. un radical R y un hidrógeno. Debido a esta característica, los aminoácidos presentan actividad óptica, es decir, son capaces de desviar el plano de luz polarizada que atraviesa una disolución de aminoácidos. Si un aminoácido desvía el plano de luz polarizada hacia la derecha, se denomina dextrógiro (+), y si lo hace hacia la izquierda, levógiro (—). 16 Actividad óptica de los aminoácidos
  • 17. Debido a la presencia del carbono asimétrico, los aminoácidos pueden presentar dos configuraciones espaciales. Un aminoácido tendrá una configuración D si al disponerlo en el espacio, de forma que el grupo carboxilo quede arriba, el grupo —NH2 queda situado a la derecha, mientras que, si se encuentra a la izquierda, poseerá una configuración L. 17 Estereoisomería de los aminoácidos La disposición L o D es independiente de la actividad óptica. Por ello, un L-aminoácido podrá ser levógiro o dextrógiro, e igual ocurrirá con la configuración D. En la naturaleza, la forma L es la más abundante, y todas las proteínas están formadas por aminoácidos L
  • 18. En disolución acuosa, los aminoácidos muestran un comportamiento anfótero, es decir, pueden ionizarse, dependiendo del pH, como un ácido (los grupos -COOH liberan protones, quedando como -COO- ), como una base (los grupos -NH2 captan protones, quedando como -NH3+ ) o como un ácido y una base a la vez. En el último caso los aminoácidos se ionizan doblemente, apareciendo una forma dipolar iónica llamada zwitterion. 18 Comportamiento químico: propiedades ácido-básicas
  • 19. La forma dipolar, en un medio ácido, capta protones y se comporta como una base y en un medio básico libera protones y se comporta como un ácido. El pH en el cual el aminoácido tiende a adoptar una forma dipolar neutra, con tantas cargas positivas como negativas, se denomina punto isoeléctrico. El carácter anfótero de los aminoácidos permite la regulación del pH, ya que se comporta como un ácido o como una base según le convenga al organismo. 19
  • 20. 20 El punto isoeléctrico es el valor de pH al que el aminoácido presenta una carga neta igual al cero
  • 21. Unión de los aminoácidos. ✔Los enlaces químicos entre aminoácidos se denominan enlaces peptídicos y a las cadenas formadas, péptidos. ✔Si el número de aminoácidos que forma un péptido es dos, se denomina dipéptido, si es tres, tripéptido. etc. ✔Si es inferior a 50 (10 según que textos) se habla de oligopéptido, y si es superior a 50 se denomina polipéptido. ✔Sólo cuando un polipéptido se halla constituido por más de cincuenta moléculas de aminoácidos o si el valor de su peso molecular excede de 5 000 se habla de proteína. 21
  • 22. 22 Los aminoácidos se unen entre sí mediante uniones peptídicas para formar cadenas lineales no ramificadas. C H R C = O OH N H H C H R C = O OH N H H C N = O H C H R N H H C H R C = O OH + H2 O Unión Peptídica Unión Peptídica entre Aminoácidos CONDENSACIÓN
  • 23. 23
  • 24. 1. En un enlace peptídico, los átomos del grupo carboxilo y del grupo amino se sitúan en un mismo plano, con distancias y ángulos fijos. 2. Los grupos de aminoácidos unidos por este enlace se denominan residuos para resaltar la pérdida de una molécula de agua en cada enlace. 3. El amino libre de un extremo y el carboxilo libre del otro extremo de la cadena reciben el nombre de N-terminal y C-terminal respectivamente. Por convenio, los aminoácidos se numeran desde el N-terminal. Enlace peptídico 24
  • 25. 4. El enlace peptídico tiene un comportamiento similar al de un enlace doble, es decir, presenta una cierta rigidez que inmoviliza en un plano los átomos que lo forman. 5. Además es un enlace más corto que otros enlaces C-N. Esto le impide girar libremente, los únicos enlaces que pueden girar son los Cα-C y los Cα-N que no corresponden al enlace peptídico. Enlace peptídico 25
  • 26. 26
  • 27. 27 Péptidos y oligopéptidos de interés biológico Existen algunos péptidos cortos con función biológica. Entre ellos podemos citar: •El tripéptido glutatión (que actúa como transportador de hidrógeno en algunas reacciones metabólicas). •Los nanopéptidos oxitocina y vasopresina (con actividad hormonal), la insulina y el glucagón que regulan la concentración de glucosa en sangre. •Los decapéptidos tirocidina, gramicidina y valinomicina (antibióticos).
  • 29. La organización de una proteína viene definida por cuatro niveles estructurales ( o cuatro niveles de organización) denominados: 1. ESTRUCTURA PRIMARIA 2. ESTRUCTURA SECUNDARIA 3. ESTRUCTURA TERCIARIA 4. ESTRUCTURA CUATERNARIA Cada una de estas estructuras informa de la disposición de la anterior en el espacio. Estructura de las proteínas 29
  • 30. La estructura primaria es la secuencia de aminoácidos de la proteína. Nos indica qué aminoácidos componen la cadena polipeptídica y el orden en que dichos aminoácidos se encuentran. La secuencia de una proteína se escribe enumerando los aminoácidos desde el extremo N-terminal hasta el C-terminal. 30 Estructura primaria
  • 31. La función de una proteína depende de su secuencia de aminoácidos y de la forma que ésta adopte. El cambio de un solo aa de la secuencia de la proteína puede tener efectos muy importantes, como el cambio de un solo aa en la hemoglobina humana que provoca la anemia falciforme. 31 Estructura primaria
  • 32. 32 Serina Glicina Tirosina Alanina Leucina Estructura primaria
  • 34. La estructura secundaria es la disposición de la secuencia de aminoácidos o estructura primaria en el espacio. Los aminoácidos, a medida que van siendo enlazados durante la síntesis de las proteínas, y gracias a la capacidad de giro de sus enlaces, adquieren una disposición espacial estable, la estructura secundaria. Son conocidos tres tipos de estructura secundaria: la α-hélice, la hélice de colágeno y la conformación β o lámina plegada β. La estructura secundaria de la cadena polipeptídica depende de los aminoácidos que la forman. 34 Estructura secundaria
  • 35. 35 • Las interacciones no covalentes entre los restos laterales de los aminoácidos dan origen a la estructura secundaria. • Esta conformación viene dada por puentes de hidrógeno intercatenarios. • La estructura secundaria puede ser: – Conformación ɑ (Hélice) – Conformación β (Hoja plegada) • Si bien las conformaciones anteriores son las más usuales, existen otras menos frecuentes. • Existen sectores de los polipéptidos cuya estructura no está bien definida: los enroscamientos aleatorios o “ad-random”. Conformación β Conformación ɑ Estructura secundaria
  • 36. 36 • Estructura en forma de bastón. • Los restos laterales de los aminoácidos se ubican de forma perpendicular al eje de la hélice. • Los enlaces puente de hidrógeno se establecen entre el hidrógeno unido al nitrógeno y el oxígeno del primitivp carboxilo. α-hélice
  • 37. ▪ La estructura secundaria en α-hélice se forma al enrollarse helicoidalmente sobre sí misma la estructura primaria. ▪ Esto se debe a la formación espontánea de enlaces de hidrógeno entre el —CO— de un aminoácido y el —NH— del cuarto aminoácido que le sigue. ▪ En la α-hélice, los oxígenos de todos los grupos —CO— quedan orientados en el mismo sentido, y los hidrógenos de todos los grupos —NH— quedan orientados justo en el sentido contrario. ▪ La α-hélice presenta 3,6 aminoácidos por vuelta y la rotación es hacia la derecha. 37 α-hélice
  • 38. • El colágeno posee una disposición en hélice especial, mas alargada que la α-hélice, debido a la abundancia de prolina e hidroxiprolina. • Estos aa poseen una estructura que dificulta la formación de enlaces de hidrógeno, por lo que se forma una hélice más extendida, con sólo tres aminoácidos por vuelta. 38 Hélice de colágeno
  • 39. • Su estabilidad viene dada por la asociación de tres hélices empaquetadas, para formar la triple hélice o superhélice que es la responsable de la gran fuerza de tensión del colágeno. • Las tres hélices se unen mediante enlaces covalentes y enlaces débiles de tipo puente de hidrógeno. Las maromas y cables se construyen de forma semejante a esta triple hélice. 39 Hélice de colágeno • Hay algunas alteraciones del colágeno que provocan síndromes como el de el hombre de goma o el síndrome de Marfán que padecía Paganini y que explicaba sus dedos largos e hiperextensibles
  • 41. 41 • Son estructuras flexibles que no se pueden estirar. • Los restos laterales se ubican hacia arriba y hacia abajo del plano de las hojas. Conformación-β
  • 42. •Los aminoácidos forman una cadena en forma de zigzag. •No existen enlaces de hidrógeno entre los aminoácidos próximos de la cadena polipeptídica. Si que existen enlaces de hidrógeno intercatenarios, en los que participan todos los enlaces peptídicos, dando una gran estabilidad a la estructura. •Las dos cadenas se pueden unir de dos formas distintas; paralela y antiparalela. Esta última es un poco mas compacta y aparece con mayor frecuencia en las proteínas. •Si la cadena con conformación β se repliega sobre si misma, se pueden establecer puentes de hidrógeno entre segmentos, antes distantes, que ahora han quedado próximos. Esto da lugar a una lámina en zigzag muy estable denominada β-lámina plegada. Esta estructura también se puede formar entre dos o mas cadenas polipeptídicas diferentes. 42 Conformación-β
  • 44. •Muchas proteínas globulares presentan segmentos con conformación β alternados con segmentos de estructura en α-hélice. •En general, las proteínas que se quedan en la estructura secundaria, dan lugar a proteínas filamentosas alargadas. •Son insolubles en agua y soluciones salinas y realizan funciones esqueléticas. •Las más conocidas son la α-queratina del pelo, plumas, uñas, cuernos, etc, la fibroína del hilo de seda y de las telarañas, y la elastina del tejido conjuntivo, que forma una red deformable por la tensión. 44 Conformación-β
  • 45. 45
  • 46. 46 Características de la Hoja plegada (beta-lamina): •Los grupos C=O y N-H de los enlaces peptídicos de cadenas adyacentes (o de segmentos adyacentes de una misma cadena) están en el mismo plano apuntando uno hacia el otro, de tal forma que se hace posible el enlace de hidrogeno entre ellos. •Los puentes de hidrogeno son mas o menos perpendiculares al eje principal de la estructura en hoja plegada. •Todos los grupos R en cada una de las cadenas alternan, primero arriba del eje de la lamina, después abajo del mismo, y así sucesivamente. Conformación-β
  • 47. 47 Secuencias de la cadena polipeptídica con estructura α o β a menudo están conectadas entre sí por medio de los llamados giros β. Son secuencias cortas, con una conformación característica que impone un brusco giro de 180o a la cadena principal de un polipéptido. Giros β AA como Asn, Gly y Pro (que se acomodan mal en estructuras de tipo α o β) aparecen con frecuencia en este tipo de estructura. La conformación de los giros b está estabilizada generalmente por medio de un puente de hidrógeno entre los residuos 1 y 4 del giro β Sirven para que la proteína adopte estructuras más compactas
  • 48. 48 • La conformación terciaria de una proteína globular es la conformación tridimensional del polipéptido plegado. • Las interacciones que intervienen en el plegamiento de la estructura secundaria son: • Interacciones hidrofóbicas entre restos laterales no polares. • Uniones de Van der Waals. • Puentes de Hidrógeno. • Interacciones salinas. • Puentes Disulfuro. • Las funciones de las proteínas dependen del plegamiento particular que adopten. • Esta estructura está altamente influenciada por la estructura primaria. Estructura terciaria
  • 49. •Es disposición espacial de la estructura secundaria de un polipéptido al plegarse sobre sí misma originando una conformación globular. •La conformación globular en las proteínas facilita su solubilidad en agua y en disoluciones salinas. Esto les permite realizar funciones de transporte, enzimáticas, hormonales, etc •Las conformaciones globulares se mantienen estables por la existencia de enlaces entre los radicales R de los aminoácidos. 49 Estructura terciaria Lámina β Hélice α
  • 51. Aceptores Donadores Enlaces de hidrógeno en estructura terciaria
  • 52. Enlaces salinos o iónicos en estructura terciaria
  • 53. Enlaces covalentes en estructura terciaria: disulfuro S S
  • 54. Enlaces covalentes en estructura terciaria: amida
  • 55. 55 Interacciones que intervienen en el plegamiento de la estructura terciaria
  • 56. • En los tramos rectos, la cadena polipeptídica posee estructura secundaria de tipo α-hélice o β-lámina • En los codos o giros presenta secuencias sin estructura precisa. • Existen combinaciones estables, compactas y de aspecto globular de α-hélice y conformación-β que aparecen repetidamente en proteínas distintas. • Reciben el nombre de dominios estructurales y cada dominio se pliega y se desnaturaliza casi independientemente de los demás. • Evolutivamente, se considera que los dominios estructurales han servido como unidades modulares para constituir diferentes tipos de proteínas globulares. • Los distintos dominios suelen estar unidos por zonas estrechas o «cuellos», lo que posibilita un cierto movimiento rotacional. Así, al separarse dos dominios, permiten la introducción de la molécula de sustrato y, al acercarse, la fijan para actuar sobre ella. 56
  • 57. 57 - Enlaza a un pequeño ligando - “Atravesar” la membrana plasmática - Contiene el sitio catalítico (enzimas) - Enlazar al DNA (en factores de transcripción) - Provee una superficie para enlazarse específicamente a otra proteína. Funciones de los Dominios: A menudo un dominio realiza una función especifica y separada para la proteína:
  • 58. 1. La estructura cuaternaria es la unión mediante enlaces débiles (no covalentes) de varias cadenas polipeptídicas con estructura terciana, idénticas o no, para formar un complejo proteico. 2. Cada una de estas cadenas polipeptídicas recibe el nombre de protómero (subunidad o monómero) 3. Según el número de protómeros que se asocian. las proteínas que tienen estructura cuaternaria se denominan: • Dímeros, como la hexoquinasa. • tetrámero como la hemoglobina. • Pentámeros, como la ARN-polimerasa. • Polímeros, cuando en su composición intervienen gran número de protómeros. (cápsida del virus de la poliomielitis, que consta de 60 subunidades proteicas, los filamentos de actina y miosina de las células musculares, etc). 58 Estructura cuaternaria
  • 59. 59 • Las interacciones que estabilizan esta estructura son en general uniones débiles: • Interacciones hidrofóbicas. • Puentes de hidrógeno. • Interacciones salinas. • Fuerza de Van der Waals. • En algunas ocasiones puede haber enlaces fuertes tipo puentes disulfuro, en el caso de las inmunoglobulinas. Estructura cuaternaria
  • 60. 60
  • 61. • Reduce la cantidad de información genética necesaria. • El ensamblaje y la disgregación se controlan fácilmente, ya que las subunidades se asocian por enlaces débiles. • Los mecanismos de corrección pueden excluir durante el ensamblaje las subunidades defectuosas, con lo que disminuyen los errores en la síntesis de la estructura. Se pueden distinguir dentro de las estructuras cuaternarias dos tipos: • Homotípicas: Las cadenas polipeptídicas son idénticas o casi idénticas. • Heterotípicas: Las subunidades poseen estructuras muy diferentes. 61 El uso de subunidades menores para construir grandes estructuras presenta varias ventajas:
  • 62. 62 En resumen, la estructura de una proteína. Primaria Secundaria Terciaria Cuaternaria Secuencia Conformación Asociación Hélice Hoja Plegada Globular Fibrosa Subunidades iguales Subunidades distintas Combinación ilimitada de aminoácidos. Unión Peptídica Puente de Hidrógeno Puente de Hidrógeno, Interacciones hidrofóbicas, salinas, electrostáticas. Fuerzas diversas no covalentes.
  • 63. PROPIEDADES DE LAS PROTEINAS Las propiedades de las proteínas dependen sobre todo de los radicales R libres y de que éstos sobresalgan de la molécula y, por tanto, tengan la posibilidad de reaccionar con otras moléculas. El conjunto de aminoácidos de una proteína cuyos radicales poseen la capacidad de unirse a otras moléculas y de reaccionar con éstas se denomina centro activo de la proteína. 63
  • 64. 64
  • 65. ❑ Las proteínas globulares poseen un elevado tamaño molecular, por lo que al disolverse, dan lugar a disoluciones coloidales. ❑ La solubilidad de estas moléculas se debe a los radicales R que, al ionizarse, establecen puentes de hidrógeno con las moléculas de agua. Así, la proteína queda recubierta de una capa de moléculas de agua que impide que se pueda unir a otras proteínas, lo que provocaría su precipitación. 65 Solubilidad ❑ La solubilidad depende del pH, temperatura, concentración iónica... A pesar de ser solubles, la mayoría de las membranas biológicas son impermeables al paso de proteínas. Capa de moléculas de agua
  • 66. Consiste en la pérdida de todas las estructuras de orden superior (secundaria, terciaria y cuaternaria) quedando la proteína reducida a un polímero con estructura primaria. Consecuencias inmediatas son: - Disminución drástica de la solubilidad de la proteína, acompañada frecuentemente de precipitación - Pérdida de todas sus funciones biológicas - Alteración de sus propiedades hidrodinámicas Desnaturalización y renaturalización
  • 67. Agentes desnaturalizantes I. Físicos 1. Calor. La mayor parte de las proteínas experimentan desnaturalizaciones cuando se calientan entre 50 y 60 ºC; otras se desnaturalizan también cuando se enfrían por debajo de los 10 a 15 ºC. 2. Radiaciones II. Químicos: todos los agentes que rompen interacciones o enlaces presentes en la estructura nativa de la proteína: 1. Detergentes 2. Urea y guanidina a altas concentraciones 3. Altas concentraciones de sal y extremos de pH 4. Reactivos de grupos -SH
  • 68. 2-mercaptoetanol Ditiotreitol (DTT) Dodecilsulfato sódico (SDS, laurilsulfato) Urea Guanidina Agentes desnaturalizantes
  • 69. 69
  • 70. La especificidad es doble: • de especie • de función. Especificidad de especie: En su secuencia de aminoácidos, las proteínas presentan dos tipos de sectores: • Sectores estables • Sectores variables: Algunos aminoácidos pueden ser sustituidos por otros distintos sin que se altere la funcionalidad de la molécula. Ello ha dado lugar, durante la evolución, a una gran variabilidad de proteínas, lo que permite que cada especie tenga sus proteínas específicas y que, incluso, aparezcan diferencias entre individuos de la misma especie (rechazo en trasplantes de tejidos). Las diferencias entre proteínas homologas, es decir, con la misma función, son grandes entre especies alejadas evolutivamente y escasas entre especies emparentadas. 70 Especificidad
  • 71. Especificidad de función. La especificidad también se refiere a la función. •Cada proteína realiza una determinada función exclusivamente, por ejemplo, catalizar cierta reacción química sobre cierto substrato y no sobre otro. •La especificidad se debe a que su actuación se realiza mediante interacciones selectivas con otras moléculas, para lo que necesitan una determinada secuencia de aa y una conformación concreta. •Un cambio en la secuencia o conformación puede impedir la unión y por lo tanto dificultar la función. 71
  • 72. Las proteínas, al estar constituidas por aminoácidos, tienen un comportamiento anfótero. Tienden a neutralizar las variaciones de pH del medio, ya que pueden comportarse como un ácido o una base y, por tanto, liberar o retirar protones (H+) del medio 72 Capacidad amortiguadora
  • 73. CLASIFICACIÓN DE PROTEÍNAS Se clasifican en: • Holoproteínas: Formadas solamente por aminoácidos. • Heteroproteínas: Formadas por una fracción proteínica y por un grupo no proteínico, que se denomina "grupo prostético. Se clasifican según la naturaleza del grupo prostético. 73 PROTEÍNAS Holoproteínas Proteínas filamentosas Proteínas globulares Heteroproteínas Cromoproteínas Glucoproteínas Lipoproteínas Nucleoproteínas Fosfoproteínas
  • 74. Globulares: 1. Prolaminas: Zeína (maíza),gliadina (trigo), hordeína (cebada) 2. Gluteninas: Glutenina (trigo), orizanina (arroz). 3. Albúminas: Seroalbúmina (sangre), ovoalbúmina (huevo), lactoalbúmina (leche) 4. Hormonas: Insulina, hormona del crecimiento, prolactina, tirotropina 5. Enzimas: Hidrolasas, Oxidasas, Ligasas, Liasas, Transferasas . 74 HOLOPROTEÍNAS Más complejas que las fibrosas. Forman estructuras compactas, casi esféricas, solubles en agua o disolventes polares. Son responsables de la actividad celular
  • 75. Fibrosas: 1. Colágenos: en tejidos conjuntivos, cartilaginosos 2. Queratinas: En formaciones epidérmicas: pelos, uñas, plumas, cuernos. 3. Elastinas: En tendones y vasos sanguíneos 4. Fibroínas: En hilos de seda, (arañas, insectos) 75 HOLOPROTEÍNAS Más simples que las globulares. Forman estructuras alargadas, ordenadas en una sola dimensión, formando haces paralelos. Son responsables de funciones estructurales y protectoras
  • 76. 1. Glucoproteínas: ribonucleasa mucoproteínas, anticuerpos, hormona luteinizante 2. Lipoproteínas: De alta, baja y muy baja densidad, que transportan lípidos en la sangre. 3. Nucleoproteínas: Nucleosomas de la cromatina, ribosomas, histonas y protaminas de eucariotas. 4. Cromoproteínas: Pueden ser de dos tipos: a) Porfirínicas. Hemoglobina, mioglobina que transportan oxígeno, citocromos, que transportan electrones b) No profirínicas como la hemocianina (pigmento respiratorio de crustáceos y moluscos, de color azul y que contiene cobre) 5. Fosfoproteínas: Tienen PO4 H3 en el grupo prostético. La caseína de la leche. 76 HETEROPROTEÍNAS
  • 77. 77 1. Estructural 2. Enzimática 3. Hormonal 4. Defensiva 5. Transporte 6. Reserva 7. Función homeostática 8. Anticongelante 9. Actividad contráctil FUNCIONES Y EJEMPLOS DE PROTEÍNAS:
  • 78. Es una de las funciones más características: 1. Algunas glucoproteínas forman parte de las membranas celulares. Intervienen en el transporte selectivo de iones (bomba de Na-K) 2. Otras proteínas forman el citoesqueleto de las células, las fibras del huso, de los cilios y flagelos. 3. Otras, como las histonas forman parte de los cromosomas eucariotas. 4. El colágeno, que mantiene unidos los tejidos animales y forma los tendones y la matriz de los huesos y cartílagos. 5. La elastina, en el tejido conjuntivo elástico (ligamentos paredes de vasos sanguíneos). 6. La queratina, que se sintetiza en la epidermis y forma parte de pelos, uñas, escamas de reptiles, plumas, etc. 7. La fibroína, que forma la seda y las telas de arañas. Es una disolución viscosa que solidifica rápidamente al contacto con el aire. 78 Estructural
  • 79. • Es la función más importante. • Las enzimas son las proteínas más numerosas y especializadas y actúan como biocatalizadores de las reacciones que constituyen el metabolismo celular. • Se diferencian de los catalizadores no biológicos porque las enzimas son específicas de la reacción que catalizan y de los sustratos que intervienen en ellas. 79 Insulina y glucagón Hormona del crecimiento segregada por la hipófisis Calcitonina Enzimática Hormonal Inmunoglobulina, trombina y fibrinógeno Defensiva
  • 80. • Además de las proteínas transportadoras de las membranas, existen otras extracelulares que transportan sustancias a lugares diferentes del organismo. • Hemoglobina, la hemocianina y la mioglobina del músculo estriado. • Los citocromos transportan electrones en la cadena respiratoria (mitocondrias) y en la fase luminosa de la fotosíntesis (cloroplastos). • La seroalbúmina transporta ácidos grasos, fármacos y productos tóxicos por la sangre. • Las lipoproteínas transportan el colesterol y los triacilglicéridos por la sangre. 80 Transporte
  • 81. 81 En general, las proteínas no se utilizan para la obtención de energía. No obstante, algunas como la ovoalbúmina de la clara de huevo, la caseína de la leche o la gliadina de la semilla de trigo, son utilizadas por el embrión en desarrollo como nutrientes. Las proteínas intracelulares y del medio interno intervienen en el mantenimiento del equilibrio osmótico en coordinación con los tampones. Reserva Función homeostática
  • 82. Presentes en el citoplasma de ciertos peces antárticos. El movimiento y la locomoción en los organismos unicelulares y pluricelulares dependen de las proteínas contráctiles: • la dineína, en cilios y flagelos, • la actina y miosina, responsables de la contracción muscular. 82 Anticongelante Función contráctil