SlideShare une entreprise Scribd logo
1  sur  42
GROWTH AND
DEVELOPMENT
VEGETATIVE GROWTH AND
            DEVELOPMENT
   Shoot and Root Systems
       Crop plants must yield for profit
   Root functions
       Anchor
       Absorb
       Conduct
       Store

    As the shoot system enlarges, the root system must
      also increase to meet demands of leaves/stems
MEASURING GROWTH

   Increase in fresh weight
   Increase in dry weight
   Volume
   Length
   Height
   Surface area
MEASURING GROWTH

   Definition:

       Size increase by cell division and enlargement,
        including synthesis of new cellular material and
        organization of subcellular organelles.
MEASURING GROWTH

   Classifying shoot growth

       Determinate – flower buds initiate terminally;
        shoot elongation stops; e.g. bush snap beans

       Indeterminate – flower buds born laterally;
        shoot terminals remain vegetative; e.g. pole beans
SHOOT GROWTH PATTERNS

   Annuals

       Herbaceous (nonwoody) plants
       Complete life cycle in one growing season
       See general growth curve; fig. 9-1
           Note times of flower initiation
       See life cycle of angiosperm annual; fig. 9-3
           Note events over 120-day period
SHOOT GROWTH PATTERNS

   Biennials

       Herbaceous plants
       Require two growing seasons to complete their
        life cycle (not necessarily two full years)
       Stem growth limited during first growing season;
        see fig. 9-4; Note vegetative growth vs. flowering
        e.g. celery, beets, cabbage, Brussels sprouts
SHOOT GROWTH PATTERNS

   Perennials

       Either herbaceous or woody
       Herbaceous roots live indefinitely (shoots can)
           Shoot growth resumes in spring from adventitious buds in
            crown
           Many grown as annuals
       Woody roots and shoots live indefinitely
           Growth varies with annual environment and zone
           Pronounced diurnal variation in shoot growth; night greater
ROOT GROWTH PATTERNS

   Variation in pattern with species and season
   Growth peaks in spring, late summer/early fall
       Spring growth from previous year’s foods
       Fall growth from summer’s accumulated foods
   Some species roots grow during winter
   Some species have some roots ‘resting’ while,
    in the same plant, others are growing
HOW PLANTS GROW

   Meristems
       Dicots
           Apical meristems – vegetative buds
               shoot tips
               axils of leaves
           Cells divide/redivide by mitosis/cytokinesis
           Cell division/elongation causes shoot growth
           Similar meristematic cells at root tips
HOW PLANTS GROW

   Meristems (cont)

        Secondary growth in woody perennials
            Increase in diameter
              due to meristematic regions
            vascular cambium
              xylem to inside, phloem to outside
            cork cambium
              external to vascular cambium
              produces cork in the bark layer
GENETIC FACTORS AFFECTING
GROWTH AND DEVELOPMENT
   DNA directs growth and differentiation
       Enzymes catalyze biochemical reactions
   Structural genes
       Genes involved in protein synthesis
   Operator genes
       Regulate structural genes
   Regulatory genes
       Regulate operator genes
GENETIC FACTORS AFFECTING
GROWTH AND DEVELOPMENT
   What signals trigger these genes?

       Believed to include:
           Growth regulators
           Inorganic ions
           Coenzymes
           Environmental factors; e.g. temperature, light

           Therefore . . .
               Genetics directs the final form and size of the plant as
                altered by the environment
ENVIRONMENTAL FACTORS
INFLUENCING PLANT GROWTH
   Light
   Temperature
   Water
   Gases
ENVIRONMENTAL FACTORS
INFLUENCING PLANT GROWTH
   Light
       Sun’s radiation
           not all reaches earth; atmosphere absorbs much
           visible (and some invisible) rays pass, warming surface
           reradiation warms atmosphere
       Intensity
           high in deserts; no clouds, dry air
           low in cloudy, humid regions
           earth tilted on axis; rays strike more directly in summer
           day length varies during year due to tilt
ENVIRONMENTAL FACTORS
INFLUENCING PLANT GROWTH
   Light (cont)
       narrow band affects plant photoreaction processes
       PAR (Photosynthetically Active Radiation)
           400-700nm
       stomates regulated by red (660nm), blue (440nm)
       photomorphogenesis – shape determined by light
           controlled by pigment phytochrome
           phytochrome absorbs red (660nm) and far-red (730nm)
            but not at same time
           pigment changes form as it absorbs each wavelength
ENVIRONMENTAL FACTORS
INFLUENCING PLANT GROWTH
   Light (cont)
       importance of phytochrome in plant responses
           plants detect ratio of red:far-red light
           red light – full sun
               yields sturdy, branched, compact, dark green plants
           far-red light – crowded, shaded fields/greenhouses
               plants tall, spindly, weak, few branches; leaves light green
ENVIRONMENTAL FACTORS
INFLUENCING PLANT GROWTH
   Light (cont)
       Phototropism – movement toward light
           hormone auxin accumulates on shaded side
           cell growth from auxin effect bends plant
           blue light most active in process
           pigment uncertain
ENVIRONMENTAL FACTORS
INFLUENCING PLANT GROWTH
   Light (cont)
       Photoperiodism – response to varying length of
        light and dark
           shorter days (longer nights)
               onset of dormancy
               fall leaf color
               flower initiation in strawberry, poinsettia, chrysanthemum
               tubers/tuberous roots begin to form
           longer days (shorter nights)
               bulbs of onion begin to form
               flower initiation in spinach, sugar beets, winter barley
ENVIRONMENTAL FACTORS
INFLUENCING PLANT GROWTH
   Temperature
       correlates with seasonal variation of light intensity
       temperate-region growth between 39°F and 122°F
       high light intensity creates heat; sunburned
       low temp injury associated with frosts; heat loss
        by radiation contributes
           opaque cover reduces radiation heat loss
           burning smudge pots radiate heat to citrus trees
           wind machines circulate warm air from temperature
            inversions
ENVIRONMENTAL FACTORS
INFLUENCING PLANT GROWTH
   Water
       most growing plants contain about 90% water
       amount needed for growth varies with plant and
        light intensity
       transpiration drives water uptake from soil
           water pulled through xylem
           exits via stomates
       evapotranspiration - total loss of water from soil
           loss from soil evaporation and plant transpiration
ENVIRONMENTAL FACTORS
INFLUENCING PLANT GROWTH
   Gases
       Nitrogen is most abundant
       Oxygen and carbon dioxide are most important
           plants use CO2 for photosynthesis; give off O2
           plants use O2 for respiration; give off CO2
           stomatal opening and closing related to CO2 levels?
           oxygen for respiration limited in waterlogged soils
           increased CO2 levels in atmosphere associated with
            global warming
           additional pollutants harm plants
PHASE CHANGE: JUVENILITY,
MATURATION, SENESCENCE
   Phasic development
       embryonic growth
       juvenility
       transition stage
       maturity
       senescence
       death
   During maturation, seedlings of many woody
    perennials differ strikingly in appearance at
    various stages of development
PHASE CHANGE: JUVENILITY,
MATURATION, SENESCENCE
   Juvenility
       terminated by flowering and fruiting
       may be extensive in certain forest species
   Maturity
       loss or reduction in ability of cuttings to form adventitious
        roots
   Physiologically related
       lower part of plant may be oldest chronologically, yet be
        youngest physiologically (e.g. some woody plants)
       top part of plant may be youngest in days, yet develop into
        the part that matures and bears flowers and fruit
AGING AND SENESCENCE
   Life spans among plants differ greatly
       range from few months to thousands of years
           e.g. bristlecone pine (over 4000 years old)
           e.g. California redwoods (over 3000 years old)
       clones should be able to exist indefinately
   Senescence
       a physiological aging process in which tissues in an
        organism deteriorate and finally die
       considered to be terminal, irreversible
       can be postponed by removing flowers before seeds start
        to form
REPRODUCTIVE GROWTH
AND DEVELOPMENT
   Phases
       Flower induction and initiation
       Flower differentiation and development
       Pollination
       Fertilization
       Fruit set and seed formation
       Growth and maturation of fruit and seed
       Fruit senescence
REPRODUCTIVE GROWTH
AND DEVELOPMENT
   Flower induction and initiation

       What causes a plant to flower?

           Daylength (photoperiod)

           Low temperatures (vernalization)

           Neither
REPRODUCTIVE GROWTH
AND DEVELOPMENT
   Photoperiodism (see table 9-5)
       Short-day plants (long-night; need darkness)
       Long-day plants (need sufficient light)
       Day-neutral plants (flowering unaffected by period)
   Change from vegetative to reproductive
   Manipulations enable year-round production
       Market may dictate; consumer’s expectations
        associated with seasons, e.g. poinsettias at
        Christmas
REPRODUCTIVE GROWTH
AND DEVELOPMENT
   Photoperiodism (cont)
       Stimulus transported from leaves to meristems
           Cocklebur
           Leaf removal – failed to flower
           Isolated leaf, dark exposure – flowering initiated
       Believed to be hormone related
       Interruption of night with light affects flowering
           Cocklebur
           Red light, 660 nm, inhibits
           Far-red, 730 nm, restores
           Discovery of Phytochrome
REPRODUCTIVE GROWTH
AND DEVELOPMENT
   Low temperature induction
   Vernalization
       “making ready for spring”
       Any temperature treatment that induces or
        promotes flowering
       First observed in winter wheat; many biennials
       Temperature and exposure varies among species
       Note difference/relationship to dormancy
        Many plants do not respond to changed
        daylength or low temperature; agricultural
REPRODUCTIVE GROWTH
AND DEVELOPMENT

   Flower development
       Stimulus from leaves to apical meristem changes
        vegetative to flowering
       Some SDPs require only limited stimulus to
        induce flowering; e.g. cocklebur – one day (night)
       Once changed the process is not reversible
       Environmental conditions must be favorable for
        full flower development
REPRODUCTIVE GROWTH
AND DEVELOPMENT

   Pollination
       Transfer of pollen from anther to stigma
       May be:
           Same flower (self-pollination)
           Different flowers, but same plant (self-pollination)
           Different flowers/plants, same cultivar (self-pollination)
           Different flowers, different cultivars (cross-pollination)
REPRODUCTIVE GROWTH
AND DEVELOPMENT

   Self-fertile plant produces fruit and seed with
    its own pollen
   Self-sterile plant requires pollen from another
    cultivar to set fruit and seed
       Often due to incompatibility; pollen will not grow
        through style to embryo sac
       Sometimes cross-pollination incompatibility
REPRODUCTIVE GROWTH
AND DEVELOPMENT
   Pollen transferred by:
       Insects; chiefly honeybees
           Bright flowers
           Attractive nectar
       Wind
           Important for plants with inconspicuous flowers
           e.g. grasses, cereal grain crops, forest tree species, some
            fruit and nut crops
       Other minor agents – water, snails, slugs, birds, bats
REPRODUCTIVE GROWTH
AND DEVELOPMENT
   What if pollination and fertilization fail to
    occur?
   Fruit and seed don’t develop
   Exception: Parthenocarpy
       Formation of fruit without pollination/fertilization
       Parthenocarpic fruit are seedless
           e.g. ‘Washington Navel’ orange, many fig cultivars
       Note: not all seedless fruits are parthenocarpic
           Certain seedless grapes – fruit forms but embryo aborts
REPRODUCTIVE GROWTH
AND DEVELOPMENT

   Fertilization
       Angiosperms (flowering plants)
           Termed double fertilization
       Gymnosperms (cone-bearing plants)
           Staminate, pollen-producing cones
           Ovulate cones produce “naked” seed on cone scales
REPRODUCTIVE GROWTH
AND DEVELOPMENT
   Fruit setting
       Accessory tissues often involved
           e.g. enlarged, fleshy receptacle of apple and pear
           True fruit is enlarged ovary
       Not all flowers develop into fruit
       Certain plant hormones involved
       Optimum level of fruit setting
           Remove excess by hand, machine, or chemical
           Some species self-thinning; Washington Navel Orange
       Temperature strongly influences fruit set
REPRODUCTIVE GROWTH
AND DEVELOPMENT

   Fruit growth and development
       After set, true fruit and associated tissues begin to
        grow
       Food moves from other plant parts into fruit tissue
       Hormones from seeds and fruit affect growth
       Auxin relation in strawberry fruits
       Gibberellins in grape (fig. 9-21, 9-22)
       Patterns of growth vary with fruits (fig. 9-16, 9-17)
PLANT GROWTH REGULATORS

   Plant hormones are natural
   Plant growth regulators include:
       Plant hormones (natural)
       Plant hormones (synthetic)
       Non-nutrient chemicals
   Five groups of natural plant hormones:
       Auxins, Gibberellins, Cytokinins, Ethylene, and
        Abscisic acid

Contenu connexe

Tendances

Rose production technology
Rose production technology Rose production technology
Rose production technology
Anushri Agrawal
 
FACTORS AFFECTING CROP PRODUCTION
FACTORS AFFECTING CROP PRODUCTIONFACTORS AFFECTING CROP PRODUCTION
FACTORS AFFECTING CROP PRODUCTION
prabhakarareddy A V
 

Tendances (20)

Crop physiology
Crop physiologyCrop physiology
Crop physiology
 
Methods of breaking dormancy
Methods of breaking dormancyMethods of breaking dormancy
Methods of breaking dormancy
 
Crop growth analysis
Crop growth analysisCrop growth analysis
Crop growth analysis
 
Role of Agrometeteorology Advisory Services In Agriculture
Role of Agrometeteorology Advisory Services In AgricultureRole of Agrometeteorology Advisory Services In Agriculture
Role of Agrometeteorology Advisory Services In Agriculture
 
physiological disorders ,disease and insect pest in tomato and Brinjal
physiological disorders ,disease and insect pest in tomato and Brinjal physiological disorders ,disease and insect pest in tomato and Brinjal
physiological disorders ,disease and insect pest in tomato and Brinjal
 
Production Technology Of Apple
Production Technology Of AppleProduction Technology Of Apple
Production Technology Of Apple
 
PHYSIOLOGY AND BIOCHEMISTRY OF SEED GERMINATION.pptx
PHYSIOLOGY AND BIOCHEMISTRY OF SEED GERMINATION.pptxPHYSIOLOGY AND BIOCHEMISTRY OF SEED GERMINATION.pptx
PHYSIOLOGY AND BIOCHEMISTRY OF SEED GERMINATION.pptx
 
Environmental factors influencing Growth of Vegetables
Environmental factors influencing Growth of VegetablesEnvironmental factors influencing Growth of Vegetables
Environmental factors influencing Growth of Vegetables
 
Seed germination
Seed germinationSeed germination
Seed germination
 
growth and phenological stages of different crops
growth and phenological stages of different crops growth and phenological stages of different crops
growth and phenological stages of different crops
 
Bearing fruits
Bearing  fruitsBearing  fruits
Bearing fruits
 
Crop regulation in guava and pomegranate
Crop regulation in guava and pomegranateCrop regulation in guava and pomegranate
Crop regulation in guava and pomegranate
 
Physiology of flowering, photoperiodism
 Physiology of flowering,  photoperiodism Physiology of flowering,  photoperiodism
Physiology of flowering, photoperiodism
 
Rose production technology
Rose production technology Rose production technology
Rose production technology
 
Germination of seed
Germination of seedGermination of seed
Germination of seed
 
Biennial bearing habit in apple
Biennial bearing habit in appleBiennial bearing habit in apple
Biennial bearing habit in apple
 
Unfruitful
UnfruitfulUnfruitful
Unfruitful
 
Botany of maize
Botany of maizeBotany of maize
Botany of maize
 
FACTORS AFFECTING CROP PRODUCTION
FACTORS AFFECTING CROP PRODUCTIONFACTORS AFFECTING CROP PRODUCTION
FACTORS AFFECTING CROP PRODUCTION
 
Plant and growth development in agronomy
Plant and growth development in agronomyPlant and growth development in agronomy
Plant and growth development in agronomy
 

En vedette

Tissueculture copy-150516181545-lva1-app6891
Tissueculture copy-150516181545-lva1-app6891Tissueculture copy-150516181545-lva1-app6891
Tissueculture copy-150516181545-lva1-app6891
Rajesh Kumar
 
Plant growth and development [compatibility mode]
Plant growth and development [compatibility mode]Plant growth and development [compatibility mode]
Plant growth and development [compatibility mode]
Jasper Obico
 
เนื้อเยื่อพืช
เนื้อเยื่อพืชเนื้อเยื่อพืช
เนื้อเยื่อพืช
Jaratpong Moonjai
 
Computer application in hrm final
Computer application in hrm finalComputer application in hrm final
Computer application in hrm final
Abhishek Soni
 

En vedette (20)

Prof. Dr.Yash Dev Singh (Plant Physiologist)
Prof. Dr.Yash Dev Singh (Plant Physiologist)Prof. Dr.Yash Dev Singh (Plant Physiologist)
Prof. Dr.Yash Dev Singh (Plant Physiologist)
 
Tissueculture copy-150516181545-lva1-app6891
Tissueculture copy-150516181545-lva1-app6891Tissueculture copy-150516181545-lva1-app6891
Tissueculture copy-150516181545-lva1-app6891
 
Rana group of academies papers
Rana group of academies papersRana group of academies papers
Rana group of academies papers
 
Plant growth and development [compatibility mode]
Plant growth and development [compatibility mode]Plant growth and development [compatibility mode]
Plant growth and development [compatibility mode]
 
BS1003 - Light and plant development lecture
BS1003 - Light and plant development lectureBS1003 - Light and plant development lecture
BS1003 - Light and plant development lecture
 
Plant cell
Plant cellPlant cell
Plant cell
 
Plant groth and development
Plant groth and developmentPlant groth and development
Plant groth and development
 
movement of water from root to atmosphere
movement of water from root to atmospheremovement of water from root to atmosphere
movement of water from root to atmosphere
 
Global Information Systems for Plant Genetic Resources (2009)
Global Information Systems for Plant Genetic Resources (2009)Global Information Systems for Plant Genetic Resources (2009)
Global Information Systems for Plant Genetic Resources (2009)
 
DNA Fingerprinting
DNA FingerprintingDNA Fingerprinting
DNA Fingerprinting
 
Taxonomy
TaxonomyTaxonomy
Taxonomy
 
Principles of taxonomy
Principles of taxonomy Principles of taxonomy
Principles of taxonomy
 
Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis
Chapters 17,21 Fatty acid catabolism , Lipid biosynthesisChapters 17,21 Fatty acid catabolism , Lipid biosynthesis
Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis
 
Chromosome walking
Chromosome walkingChromosome walking
Chromosome walking
 
Dna finger printing
Dna finger printingDna finger printing
Dna finger printing
 
Chromosome walking
Chromosome walking Chromosome walking
Chromosome walking
 
Mechanism of water uptake by plants
Mechanism of water uptake by plantsMechanism of water uptake by plants
Mechanism of water uptake by plants
 
เนื้อเยื่อพืช
เนื้อเยื่อพืชเนื้อเยื่อพืช
เนื้อเยื่อพืช
 
Plant growth &development1
Plant growth &development1Plant growth &development1
Plant growth &development1
 
Computer application in hrm final
Computer application in hrm finalComputer application in hrm final
Computer application in hrm final
 

Similaire à Chp9 growth and development

Yellow Packet Notes
Yellow Packet NotesYellow Packet Notes
Yellow Packet Notes
Mrs. Sharp
 
juvenilityandflowerbuddifferentiation-220318165341.docx
juvenilityandflowerbuddifferentiation-220318165341.docxjuvenilityandflowerbuddifferentiation-220318165341.docx
juvenilityandflowerbuddifferentiation-220318165341.docx
Vijay HM
 
Pbl Presentation Plant Physiology
Pbl Presentation Plant PhysiologyPbl Presentation Plant Physiology
Pbl Presentation Plant Physiology
sweetynora27
 
Jonathan Urra and Aitor Pinillos HF 2009
Jonathan Urra and Aitor Pinillos HF 2009Jonathan Urra and Aitor Pinillos HF 2009
Jonathan Urra and Aitor Pinillos HF 2009
Aitor Pinillos
 
Jonathan Urra and Aitor Pinillos HF 2009
Jonathan Urra and Aitor Pinillos HF 2009Jonathan Urra and Aitor Pinillos HF 2009
Jonathan Urra and Aitor Pinillos HF 2009
Aitor Pinillos
 

Similaire à Chp9 growth and development (20)

Factors
FactorsFactors
Factors
 
Veg Crops-Lesson 05 Env, Prop.ppt
Veg Crops-Lesson 05 Env, Prop.pptVeg Crops-Lesson 05 Env, Prop.ppt
Veg Crops-Lesson 05 Env, Prop.ppt
 
Flowering physiology1 فسيولوجيا الإزهار
Flowering physiology1 فسيولوجيا الإزهار Flowering physiology1 فسيولوجيا الإزهار
Flowering physiology1 فسيولوجيا الإزهار
 
Yellow Packet Notes
Yellow Packet NotesYellow Packet Notes
Yellow Packet Notes
 
BS1003: The transition to flowering. Pat Heslop-Harrison
BS1003: The transition to flowering. Pat Heslop-HarrisonBS1003: The transition to flowering. Pat Heslop-Harrison
BS1003: The transition to flowering. Pat Heslop-Harrison
 
Practical Botany
Practical BotanyPractical Botany
Practical Botany
 
4. phases of plant growth and development
4. phases of plant growth and development4. phases of plant growth and development
4. phases of plant growth and development
 
Physiological response of crop plants
Physiological response of crop plantsPhysiological response of crop plants
Physiological response of crop plants
 
Influence of climate on fruit crops
Influence of climate on fruit cropsInfluence of climate on fruit crops
Influence of climate on fruit crops
 
FACTORS AFFECTING CROP PRODUCTION
FACTORS AFFECTING CROP PRODUCTIONFACTORS AFFECTING CROP PRODUCTION
FACTORS AFFECTING CROP PRODUCTION
 
76848 (1).pptx
76848 (1).pptx76848 (1).pptx
76848 (1).pptx
 
Agro-physiological basis of variation in yield.pptx
Agro-physiological basis of variation in yield.pptxAgro-physiological basis of variation in yield.pptx
Agro-physiological basis of variation in yield.pptx
 
Agro-physiological basis of variation in yield.pptx
Agro-physiological basis of variation in yield.pptxAgro-physiological basis of variation in yield.pptx
Agro-physiological basis of variation in yield.pptx
 
juvenilityandflowerbuddifferentiation-220318165341.docx
juvenilityandflowerbuddifferentiation-220318165341.docxjuvenilityandflowerbuddifferentiation-220318165341.docx
juvenilityandflowerbuddifferentiation-220318165341.docx
 
IMPACT OF CLIMATIC PARAMETERS ON PATHOGEN, INSECT PESTS AND CROP PRODUCTIVITY
IMPACT OF CLIMATIC PARAMETERS ON PATHOGEN, INSECT PESTS AND CROP PRODUCTIVITY IMPACT OF CLIMATIC PARAMETERS ON PATHOGEN, INSECT PESTS AND CROP PRODUCTIVITY
IMPACT OF CLIMATIC PARAMETERS ON PATHOGEN, INSECT PESTS AND CROP PRODUCTIVITY
 
Pbl Presentation Plant Physiology
Pbl Presentation Plant PhysiologyPbl Presentation Plant Physiology
Pbl Presentation Plant Physiology
 
Influence of environmental parameter on cut flower
Influence of environmental parameter on cut flowerInfluence of environmental parameter on cut flower
Influence of environmental parameter on cut flower
 
Jonathan Urra and Aitor Pinillos HF 2009
Jonathan Urra and Aitor Pinillos HF 2009Jonathan Urra and Aitor Pinillos HF 2009
Jonathan Urra and Aitor Pinillos HF 2009
 
Jonathan Urra and Aitor Pinillos HF 2009
Jonathan Urra and Aitor Pinillos HF 2009Jonathan Urra and Aitor Pinillos HF 2009
Jonathan Urra and Aitor Pinillos HF 2009
 
Ecological factors.pptx
Ecological factors.pptxEcological factors.pptx
Ecological factors.pptx
 

Plus de Muhammad Fahad Saleh (20)

Chemical coordination
Chemical coordinationChemical coordination
Chemical coordination
 
Nervous coordination
Nervous coordinationNervous coordination
Nervous coordination
 
Cupping therapy
Cupping therapyCupping therapy
Cupping therapy
 
Plant classification
Plant classificationPlant classification
Plant classification
 
Introduction to plants 1233859493415311-3
Introduction to plants 1233859493415311-3Introduction to plants 1233859493415311-3
Introduction to plants 1233859493415311-3
 
Chap. 4 plant reproduction final
Chap. 4 plant reproduction finalChap. 4 plant reproduction final
Chap. 4 plant reproduction final
 
plant morphological lab activities ch 091129203156-phpapp01
plant morphological lab activities ch 091129203156-phpapp01plant morphological lab activities ch 091129203156-phpapp01
plant morphological lab activities ch 091129203156-phpapp01
 
chapter 4
chapter 4chapter 4
chapter 4
 
Stems 100926175806-phpapp02
Stems 100926175806-phpapp02Stems 100926175806-phpapp02
Stems 100926175806-phpapp02
 
Mende
MendeMende
Mende
 
Genotype and phenotype
Genotype and phenotypeGenotype and phenotype
Genotype and phenotype
 
Genetics 2
Genetics 2Genetics 2
Genetics 2
 
Genetics
GeneticsGenetics
Genetics
 
Genetics
GeneticsGenetics
Genetics
 
Genetic code 2081
Genetic code 2081Genetic code 2081
Genetic code 2081
 
Genetic traits
Genetic traitsGenetic traits
Genetic traits
 
52 ch13mendel2007
52 ch13mendel200752 ch13mendel2007
52 ch13mendel2007
 
07 gene mutations
07 gene mutations07 gene mutations
07 gene mutations
 
Molecular genetics partii 100131193902-phpapp01
Molecular  genetics partii 100131193902-phpapp01Molecular  genetics partii 100131193902-phpapp01
Molecular genetics partii 100131193902-phpapp01
 
Zoology kingdom animalia
Zoology kingdom animaliaZoology kingdom animalia
Zoology kingdom animalia
 

Dernier

Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
KarakKing
 

Dernier (20)

Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
Plant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptxPlant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptx
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
 
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxOn_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 

Chp9 growth and development

  • 2. VEGETATIVE GROWTH AND DEVELOPMENT  Shoot and Root Systems  Crop plants must yield for profit  Root functions  Anchor  Absorb  Conduct  Store As the shoot system enlarges, the root system must also increase to meet demands of leaves/stems
  • 3. MEASURING GROWTH  Increase in fresh weight  Increase in dry weight  Volume  Length  Height  Surface area
  • 4. MEASURING GROWTH  Definition:  Size increase by cell division and enlargement, including synthesis of new cellular material and organization of subcellular organelles.
  • 5. MEASURING GROWTH  Classifying shoot growth  Determinate – flower buds initiate terminally; shoot elongation stops; e.g. bush snap beans  Indeterminate – flower buds born laterally; shoot terminals remain vegetative; e.g. pole beans
  • 6. SHOOT GROWTH PATTERNS  Annuals  Herbaceous (nonwoody) plants  Complete life cycle in one growing season  See general growth curve; fig. 9-1  Note times of flower initiation  See life cycle of angiosperm annual; fig. 9-3  Note events over 120-day period
  • 7.
  • 8. SHOOT GROWTH PATTERNS  Biennials  Herbaceous plants  Require two growing seasons to complete their life cycle (not necessarily two full years)  Stem growth limited during first growing season; see fig. 9-4; Note vegetative growth vs. flowering e.g. celery, beets, cabbage, Brussels sprouts
  • 9. SHOOT GROWTH PATTERNS  Perennials  Either herbaceous or woody  Herbaceous roots live indefinitely (shoots can)  Shoot growth resumes in spring from adventitious buds in crown  Many grown as annuals  Woody roots and shoots live indefinitely  Growth varies with annual environment and zone  Pronounced diurnal variation in shoot growth; night greater
  • 10. ROOT GROWTH PATTERNS  Variation in pattern with species and season  Growth peaks in spring, late summer/early fall  Spring growth from previous year’s foods  Fall growth from summer’s accumulated foods  Some species roots grow during winter  Some species have some roots ‘resting’ while, in the same plant, others are growing
  • 11. HOW PLANTS GROW  Meristems  Dicots  Apical meristems – vegetative buds  shoot tips  axils of leaves  Cells divide/redivide by mitosis/cytokinesis  Cell division/elongation causes shoot growth  Similar meristematic cells at root tips
  • 12. HOW PLANTS GROW  Meristems (cont)  Secondary growth in woody perennials  Increase in diameter  due to meristematic regions  vascular cambium  xylem to inside, phloem to outside  cork cambium  external to vascular cambium  produces cork in the bark layer
  • 13. GENETIC FACTORS AFFECTING GROWTH AND DEVELOPMENT  DNA directs growth and differentiation  Enzymes catalyze biochemical reactions  Structural genes  Genes involved in protein synthesis  Operator genes  Regulate structural genes  Regulatory genes  Regulate operator genes
  • 14. GENETIC FACTORS AFFECTING GROWTH AND DEVELOPMENT  What signals trigger these genes?  Believed to include:  Growth regulators  Inorganic ions  Coenzymes  Environmental factors; e.g. temperature, light  Therefore . . .  Genetics directs the final form and size of the plant as altered by the environment
  • 15. ENVIRONMENTAL FACTORS INFLUENCING PLANT GROWTH  Light  Temperature  Water  Gases
  • 16. ENVIRONMENTAL FACTORS INFLUENCING PLANT GROWTH  Light  Sun’s radiation  not all reaches earth; atmosphere absorbs much  visible (and some invisible) rays pass, warming surface  reradiation warms atmosphere  Intensity  high in deserts; no clouds, dry air  low in cloudy, humid regions  earth tilted on axis; rays strike more directly in summer  day length varies during year due to tilt
  • 17. ENVIRONMENTAL FACTORS INFLUENCING PLANT GROWTH  Light (cont)  narrow band affects plant photoreaction processes  PAR (Photosynthetically Active Radiation)  400-700nm  stomates regulated by red (660nm), blue (440nm)  photomorphogenesis – shape determined by light  controlled by pigment phytochrome  phytochrome absorbs red (660nm) and far-red (730nm) but not at same time  pigment changes form as it absorbs each wavelength
  • 18. ENVIRONMENTAL FACTORS INFLUENCING PLANT GROWTH  Light (cont)  importance of phytochrome in plant responses  plants detect ratio of red:far-red light  red light – full sun  yields sturdy, branched, compact, dark green plants  far-red light – crowded, shaded fields/greenhouses  plants tall, spindly, weak, few branches; leaves light green
  • 19. ENVIRONMENTAL FACTORS INFLUENCING PLANT GROWTH  Light (cont)  Phototropism – movement toward light  hormone auxin accumulates on shaded side  cell growth from auxin effect bends plant  blue light most active in process  pigment uncertain
  • 20. ENVIRONMENTAL FACTORS INFLUENCING PLANT GROWTH  Light (cont)  Photoperiodism – response to varying length of light and dark  shorter days (longer nights)  onset of dormancy  fall leaf color  flower initiation in strawberry, poinsettia, chrysanthemum  tubers/tuberous roots begin to form  longer days (shorter nights)  bulbs of onion begin to form  flower initiation in spinach, sugar beets, winter barley
  • 21. ENVIRONMENTAL FACTORS INFLUENCING PLANT GROWTH  Temperature  correlates with seasonal variation of light intensity  temperate-region growth between 39°F and 122°F  high light intensity creates heat; sunburned  low temp injury associated with frosts; heat loss by radiation contributes  opaque cover reduces radiation heat loss  burning smudge pots radiate heat to citrus trees  wind machines circulate warm air from temperature inversions
  • 22. ENVIRONMENTAL FACTORS INFLUENCING PLANT GROWTH  Water  most growing plants contain about 90% water  amount needed for growth varies with plant and light intensity  transpiration drives water uptake from soil  water pulled through xylem  exits via stomates  evapotranspiration - total loss of water from soil  loss from soil evaporation and plant transpiration
  • 23. ENVIRONMENTAL FACTORS INFLUENCING PLANT GROWTH  Gases  Nitrogen is most abundant  Oxygen and carbon dioxide are most important  plants use CO2 for photosynthesis; give off O2  plants use O2 for respiration; give off CO2  stomatal opening and closing related to CO2 levels?  oxygen for respiration limited in waterlogged soils  increased CO2 levels in atmosphere associated with global warming  additional pollutants harm plants
  • 24. PHASE CHANGE: JUVENILITY, MATURATION, SENESCENCE  Phasic development  embryonic growth  juvenility  transition stage  maturity  senescence  death  During maturation, seedlings of many woody perennials differ strikingly in appearance at various stages of development
  • 25. PHASE CHANGE: JUVENILITY, MATURATION, SENESCENCE  Juvenility  terminated by flowering and fruiting  may be extensive in certain forest species  Maturity  loss or reduction in ability of cuttings to form adventitious roots  Physiologically related  lower part of plant may be oldest chronologically, yet be youngest physiologically (e.g. some woody plants)  top part of plant may be youngest in days, yet develop into the part that matures and bears flowers and fruit
  • 26. AGING AND SENESCENCE  Life spans among plants differ greatly  range from few months to thousands of years  e.g. bristlecone pine (over 4000 years old)  e.g. California redwoods (over 3000 years old)  clones should be able to exist indefinately  Senescence  a physiological aging process in which tissues in an organism deteriorate and finally die  considered to be terminal, irreversible  can be postponed by removing flowers before seeds start to form
  • 27. REPRODUCTIVE GROWTH AND DEVELOPMENT  Phases  Flower induction and initiation  Flower differentiation and development  Pollination  Fertilization  Fruit set and seed formation  Growth and maturation of fruit and seed  Fruit senescence
  • 28. REPRODUCTIVE GROWTH AND DEVELOPMENT  Flower induction and initiation  What causes a plant to flower?  Daylength (photoperiod)  Low temperatures (vernalization)  Neither
  • 29. REPRODUCTIVE GROWTH AND DEVELOPMENT  Photoperiodism (see table 9-5)  Short-day plants (long-night; need darkness)  Long-day plants (need sufficient light)  Day-neutral plants (flowering unaffected by period)  Change from vegetative to reproductive  Manipulations enable year-round production  Market may dictate; consumer’s expectations associated with seasons, e.g. poinsettias at Christmas
  • 30.
  • 31. REPRODUCTIVE GROWTH AND DEVELOPMENT  Photoperiodism (cont)  Stimulus transported from leaves to meristems  Cocklebur  Leaf removal – failed to flower  Isolated leaf, dark exposure – flowering initiated  Believed to be hormone related  Interruption of night with light affects flowering  Cocklebur  Red light, 660 nm, inhibits  Far-red, 730 nm, restores  Discovery of Phytochrome
  • 32.
  • 33. REPRODUCTIVE GROWTH AND DEVELOPMENT  Low temperature induction  Vernalization  “making ready for spring”  Any temperature treatment that induces or promotes flowering  First observed in winter wheat; many biennials  Temperature and exposure varies among species  Note difference/relationship to dormancy Many plants do not respond to changed daylength or low temperature; agricultural
  • 34. REPRODUCTIVE GROWTH AND DEVELOPMENT  Flower development  Stimulus from leaves to apical meristem changes vegetative to flowering  Some SDPs require only limited stimulus to induce flowering; e.g. cocklebur – one day (night)  Once changed the process is not reversible  Environmental conditions must be favorable for full flower development
  • 35. REPRODUCTIVE GROWTH AND DEVELOPMENT  Pollination  Transfer of pollen from anther to stigma  May be:  Same flower (self-pollination)  Different flowers, but same plant (self-pollination)  Different flowers/plants, same cultivar (self-pollination)  Different flowers, different cultivars (cross-pollination)
  • 36. REPRODUCTIVE GROWTH AND DEVELOPMENT  Self-fertile plant produces fruit and seed with its own pollen  Self-sterile plant requires pollen from another cultivar to set fruit and seed  Often due to incompatibility; pollen will not grow through style to embryo sac  Sometimes cross-pollination incompatibility
  • 37. REPRODUCTIVE GROWTH AND DEVELOPMENT  Pollen transferred by:  Insects; chiefly honeybees  Bright flowers  Attractive nectar  Wind  Important for plants with inconspicuous flowers  e.g. grasses, cereal grain crops, forest tree species, some fruit and nut crops  Other minor agents – water, snails, slugs, birds, bats
  • 38. REPRODUCTIVE GROWTH AND DEVELOPMENT  What if pollination and fertilization fail to occur?  Fruit and seed don’t develop  Exception: Parthenocarpy  Formation of fruit without pollination/fertilization  Parthenocarpic fruit are seedless  e.g. ‘Washington Navel’ orange, many fig cultivars  Note: not all seedless fruits are parthenocarpic  Certain seedless grapes – fruit forms but embryo aborts
  • 39. REPRODUCTIVE GROWTH AND DEVELOPMENT  Fertilization  Angiosperms (flowering plants)  Termed double fertilization  Gymnosperms (cone-bearing plants)  Staminate, pollen-producing cones  Ovulate cones produce “naked” seed on cone scales
  • 40. REPRODUCTIVE GROWTH AND DEVELOPMENT  Fruit setting  Accessory tissues often involved  e.g. enlarged, fleshy receptacle of apple and pear  True fruit is enlarged ovary  Not all flowers develop into fruit  Certain plant hormones involved  Optimum level of fruit setting  Remove excess by hand, machine, or chemical  Some species self-thinning; Washington Navel Orange  Temperature strongly influences fruit set
  • 41. REPRODUCTIVE GROWTH AND DEVELOPMENT  Fruit growth and development  After set, true fruit and associated tissues begin to grow  Food moves from other plant parts into fruit tissue  Hormones from seeds and fruit affect growth  Auxin relation in strawberry fruits  Gibberellins in grape (fig. 9-21, 9-22)  Patterns of growth vary with fruits (fig. 9-16, 9-17)
  • 42. PLANT GROWTH REGULATORS  Plant hormones are natural  Plant growth regulators include:  Plant hormones (natural)  Plant hormones (synthetic)  Non-nutrient chemicals  Five groups of natural plant hormones:  Auxins, Gibberellins, Cytokinins, Ethylene, and Abscisic acid