SlideShare une entreprise Scribd logo
1  sur  88
PHYSICS 025             CHAPTER 9




           CHAPTER 9:
      Simple Harmonic Motion
             (6 Hours)




                                    1
PHYSICS 025                   CHAPTER 9
 Learning Outcome:
 9.1 Simple harmonic motion (1 hour)
 At the end of this chapter,
 students should be able to:           REMARKS :
 a) Explain SHM as periodic             Examples         :       simple
      motion without loss of energy.    pendulum,          frictionless
                                        horizontal    and       vertical
 b)   Introduce and use SHM             spring oscillations.
      formulae:

              2
          d x
       a  2   2 x
          dt

                                                                      2
PHYSICS 025                                   CHAPTER 9
 9.1 Simple harmonic motion
 9.1.1 Simple harmonic motion (SHM)
    is defined as the periodic motion without loss of energy in
     which the acceleration of a body is directly proportional to
     its displacement from the equilibrium position (fixed point)
     and is directed towards the equilibrium position but in
     opposite direction of the displacement.
     OR mathematically,

                              d 2x
                    a   x  2
                          2
                                                             (9.1)
                              dt
     where   a : accelerati on of the body
             ω : angular ve locity(ang ular frequency)
             x : displaceme nt from the equilibriu m position, O
                                                                     3
PHYSICS 025                                       CHAPTER 9
    The angular frequency,  always constant thus
                                 a  x
    The negative sign in the equation 9.1 indicates that the
     direction of the acceleration, a is always opposite to the
     direction of the displacement, x.
    The equilibrium position is a position at which the body would
     come to rest if it were to lose all of its energy.
    When the body in SHM is at the point of equilibrium.
         displacement x = 0
         acceleration a = 0
         resultant force on the body F = 0




                                                                      4
PHYSICS 025                                      CHAPTER 9
 o   The displacement x is measured from the point of equilibrium.
     The maximum distance from the point of equilibrium is known as
     the amplitude of the simple harmonic motion.
 o   The period T of a simple harmonic is the time taken for a
     complete oscillation.
 o   The frequency f of the motion is the number of complete
     oscillations per second.

                                          1
                         frequency, f 
                                        period


     The unit of frequency is the hertz (Hz).




                                                                      5
PHYSICS 025                                       CHAPTER 9

    Equation 9.1 is the hallmark of the linear SHM.
    Examples of linear SHM system are simple pendulum,
     horizontal and vertical spring oscillations as shown in Figures
     9.1a, 9.1b and 9.1c.


                                                     
                                                     a
                                                     
                                                     Fs
                                                 m


                               x        O       x

                                   Figure 9.1a
                                                                       6
PHYSICS 025                    CHAPTER 9




     x                             
                                             
                                             a
                                             
     O                                       Fs
                                         m

     x      m          x            x
                   Fs a           O

          Figure 9.1b          Figure 9.1c




                                                  7
PHYSICS 025                    CHAPTER 9
 Exercise
   A particle in simple harmonic motion
   makes 20 complete oscillations in 5.0
   s. what is
   a. the frequency
   b. the period
   of the motion




                                           8
PHYSICS 025                       CHAPTER 9
Solution:
                  20
a. frequency, f =     Hz  4.0 Hz
                  5.0

              1   1
b. period, T =      s  0.25s
               f 4.0




                                              9
PHYSICS 025                                           CHAPTER 9
 Learning Outcome:
 9.2 Kinematics of SHM (2 hours)
 At the end of this chapter, students should be able to:
 a) Write and use SHM displacement equation x  A sin t

 b)   Derive and apply equations for :
      i) velocity,             dx
                              v          A2  x 2
                                   dt
      ii) acceleration,          dv d 2 x
                              a    2   2 x
                                 dt dt
      iii) kinetic energy,
                                 1
                                             
                              K  m 2 A2  x 2
                                 2
                                                      
      iv) potential energy,
                                         1
                                   U      m 2 x 2
                                         2
                                                                  10
PHYSICS 025                                        CHAPTER 9
 9.2 Kinematics of SHM
 9.2.1 Displacement, x
    Uniform circular motion can be translated into linear SHM and
     obtained a sinusoidal curve for displacement, x against angular
     displacement, graph as shown in Figure 9.6.
                                 x
                  S             A
                                                           Simulation 9.3

                        N        x1
                            M
              A
                      
                        1
              O               P 0  1              3    2          (rad)
                                         2             2

                               A
 Figure 9.6   T                                                         11
PHYSICS 025                                          CHAPTER 9
         At time, t = 0 the object is at point M (Figure 9.6) and after time t
          it moves to point N , therefore the expression for displacement,
          x1 is given by
                          x1  A sin 1 where 1     and   t
                         x1  A sin t   
         In general the equation of displacement as a function of time
          in SHM is given by           phase

  equilibrium position x  A sin t 
  displacement from
                                                            (9.4)


                                                      Initial phase angle
                    amplitude                         (phase constant)
                                angular time
                                frequency
       The S.I. unit of displacement is metre (m).
      Phase
                                         
       It is the time-varying quantity t   . 
       Its unit is radian.

                                                                         12
PHYSICS 025                                      CHAPTER 9
     Initial phase angle (phase constant),
        It is indicate the starting point in SHM where the time, t = 0 s.
        If  =0 , the equation (9.4) can be written as
                           x  A sin t 
         where the starting point of SHM is at the equilibrium position,
         O.
        For examples:
         a. At t = 0 s, x = +A
                                      x  A sin t   
                                      A  A sin 0   
                                          
                  A O A                rad
                                          2
                                     
           Equation : x  A sin  t   OR x  A cost 
                                     2
                                                                     13
PHYSICS 025                               CHAPTER 9
      b. At t = 0 s, x = A
                                    x  A sin t   
                                  A  A sin 0   
                                        3              
                                          rad OR  rad
               A O A                     2             2
                                   3  x  A sin  t   
        Equation : x  A sin  t       OR               
                                    2                  2
                     OR   x   A cost 
      c. At   t = 0 s, x = 0 but v = vmax
                            ,
                            vmax


                  A      O A
        Equation :   x  A sin t    OR x   A sin t 
                                                            14
PHYSICS 025                                     CHAPTER 9
     9.2.2 Velocity, v
        From the definition of instantaneous velocity,
                       dx
                   v       and x  A sin t   
                       dt
                   v   A sin( t   ) 
                       d
                       dt
                   v  A sin( t   ) 
                          d
                          dt
                   v  A cos(t   )                          (9.5)

        Eq. (9.5) is an equation of velocity as a function of time in SHM.
        The maximum velocity, vmax occurs when cos(t+)=1
         hence
                     v A  max                      (9.6)

                                                                        15
PHYSICS 025                                      CHAPTER 9
        The S.I. unit of velocity in SHM is m s1.
        If  = 0 , equation (9.5) becomes
                         v  A cos t
     Relationship between velocity, v and displacement, x
      From the eq. (9.5) :
                            v  A cos(t   )         (1)
        From the eq. (9.4) :
                            x  A sin t   
                 sin t    
                                 x
                                                        (2)
                                 A
        From the trigonometry identical,
               sin 2   cos 2   1and   t   
               cost     1  sin 2 t            (3)

                                                                16
PHYSICS 025                                      CHAPTER 9

        By substituting equations (3) and (2) into equation (1), thus
                                                 2
                                    x
                         v  A 1   
                                     A
                                        x2 
                         v   A2  A2  2 
                                       A 
                                        

                        v  A  x    2      2
                                                                    (9.7)




                                                                         17
PHYSICS 025                                      CHAPTER 9
     9.2.3 Acceleration, a
        From the definition of instantaneous acceleration,
                          and v  A cost   
                       dv
                  a
                       dt
                   a   A cos(t   ) 
                       d
                       dt
                  a  A cos(t   ) 
                          d
                          dt
                  a   A sin( t   )
                           2
                                                                   (9.8)

        Eq. (9.8) is an equation of acceleration as a function of time in
         SHM.
        The maximum acceleration, amax occurs when sin(t+)=1

                                     
         hence
                     a A 2max
                                                      (9.9)
                                                                      18
PHYSICS 025                                       CHAPTER 9
        The S.I. unit of acceleration in SHM is m s2.
        If  = 0 , equation (9.8) becomes
                        a   A sin t
                                      2

     Relationship between acceleration, a and displacement, x
      From the eq. (9.8) :
                        a   2 A sin( t   )        (1)
         From the eq. (9.4) :
                                x  A sin t   
     
                                                           (2)
        By substituting eq. (2) into eq. (1), therefore

                                a   x  2




                                                                 19
PHYSICS 025                                    CHAPTER 9
        Caution :
           Some of the reference books use other general equation for
            displacement in SHM such as

                         x  A cost                  (9.10)

            The equation of velocity in term of time, t becomes

                        dx
                     v      A sin( t   )                    (9.11)
                        dt
            And the equation of acceleration in term of time, t becomes

                       dv
                    a      A 2 cos(t   )                    (9.12)
                       dt

                                                                      20
PHYSICS 025                                     CHAPTER 9
     9.2.4 Energy in SHM
     Potential energy, U
      Consider the oscillation of a spring as a SHM hence the
       potential energy for the spring is given by
                        1 2
                     U  kx and k  m 2
                        2
                        1
                     U  m 2 x 2       (9.13)
                        2
        The potential energy in term of time, t is given by
                   1
                U  m 2 x 2 and x  A sin t   
                   2
                U  m A sin t   
                   1   2 2      2
                                                               (9.14)
                   2                                                    21
PHYSICS 025                                      CHAPTER 9
     Kinetic energy, K
      The kinetic energy of the object in SHM is given by
                       1 2
                    K  mv and v   A2  x 2
                       2
                    K  m A  x 
                       1   2  2    2
                                              (9.15)
                       2
        The kinetic energy in term of time, t is given by

                  K  mv and v  A cost   
                     1 2
                     2
                  K  m A cos t   
                     1   2 2    2
                                                             (9.16)
                     2

                                                                22
PHYSICS 025                                      CHAPTER 9
     Total energy, E
      The total energy of a body in SHM is the sum of its kinetic
       energy, K and its potential energy, U .
                            E  K U
        From the principle of conservation of energy, this total energy is
         always constant in a closed system hence
                          E  K  U  constant
        The equation of total energy in SHM is given by
                       1
                       2
                          2  2  2
                                  
                                  1
                    E  m A  x  m 2 x 2
                                  2
                                             
                       1
                    E  m A
                           2 2
                                   (9.17)
                       2
                                                           Simulation 9.4
                               1 2
                  OR        E  kA                    (9.18)
                               2                                      23
PHYSICS 025                                       CHAPTER 9
         Example 3 :
An object executes SHM whose displacement x varies with time t
according to the relation

                                              
                           x  5.00 sin  2t  
                                              2
where x is in centimetres and t is in seconds.
Determine
a. the amplitude, frequency, period and phase constant of the
   motion,
b. the velocity and acceleration of the object at any time, t ,
c. the displacement, velocity and acceleration of the object at
  t = 2.00 s,
d. the maximum speed and maximum acceleration of the object.

                                                                  24
PHYSICS 025                                     CHAPTER 9
     Solution :
     a. By comparing
                           
        x  5.00 sin  2t   with x  A sin t   
       thus                2
            i. A  5.00 cm
            ii.      2 rad s   1
                                       and     2f
                  2f  2
                    f  1.00 Hz
            iii. The period of the motion is
                          1               1
                      f          1.00 
                          T              T
                                     T  1.00 s
            iv. The phase constant is
                                        
                                          rad
                                         2                  25
PHYSICS 025                                      CHAPTER 9
     Solution :
     b. i. Differentiating x respect to time, thus

                   dx d                       
               v       5.00 sin  2t   
                   dt dt                    2 
                                        
               v  5.002  cos 2t  
                                        2
                                     
               v  10.0 cos 2t  
                                     2
               where v is in cm s 1 and t is in seconds.


                                                             26
PHYSICS 025                                       CHAPTER 9
     Solution :
     b. ii. Differentiating v respect to time, thus

                   dv d                         
               a      10.0 cos 2t   
                                                   
                   dt dt                       2 
                                            
               a  10.0 2 sin  2t  
                                            2
                                       
               a  20.0 sin  2t  
                            2

                                        2
               where a is in cm s 2 and t is in seconds.


                                                              27
PHYSICS 025                                    CHAPTER 9
     Solution :
     c. For t = 2.00 s
        i. The displacement of the object is
                                           
                  x  5.00 sin  2 2.00  
                                           2
                  x  5.00 cm
       ii. The velocity of the object is
                                           
                  v  10.0 cos 2 2.00  
                               1
                                
                                            2
                  v  0.00 cm s
          OR
                  v  A  x  2      2


                  v  2 5.00   5.00
                                  2       2

                                1
                  v  0.00 cm s
                                                           28
PHYSICS 025                                      CHAPTER 9
     Solution :
     c. For t = 2.00 s
        iii. The acceleration of the object is
                                                
                  a  20.0 sin  2 2.00  
                                 2

                                                2
                  a  20.0 2 cm s 2  197 cm s 2
           OR
                   a   2 x
                   a  2   5.00
                               2


                   a  20.0 cm s  197 cm s
                              2    2        2




                                                             29
PHYSICS 025                                  CHAPTER 9
     Solution :
     d. i. The maximum speed of the object is given by
                   vmax  A
                   vmax  5.002 
                   vmax  10.0 cm s  1

       ii. The maximum acceleration of the object is
                    amax   A 2


                    amax  2  5.00
                                2


                    amax  20.0 2 cm s 2



                                                         30
PHYSICS 025                                      CHAPTER 9
     Example 4 :
     The length of a simple pendulum is 75.0 cm and it is released at an
     angle 8 to the vertical. Calculate
     a. the frequency of the oscillation,
     b. the pendulum’s bob speed when it passes through the lowest
        point of the swing.
     (Given g = 9.81 m s2)
     Solution :


                                         L
                                    8
                                     A
                                             m

                      A        O            A                    31
PHYSICS 025                                     CHAPTER 9
     Solution : L  0.75 m;   8
     a. The frequency of the simple pendulum oscillation is
                         1             L
                      f  and T  2
                         T             g
                          1 g
                     f 
                         2 L
                          1 9.81
                     f              f  0.576 Hz
                         2 0.75
     b. At the lowest point, the velocity of the pendulum’s bob is
        maximum hence v           A and A  L sin 8
                                               
                           max
                          vmax  L sin 8 2f 
                                            


                                                   
                          vmax  0.75 sin 8 2 0.576
                                           

                                           1
                          vmax  0.378 m s
                                                                     32
PHYSICS 025                                  CHAPTER 9
     Example 5 :
     A body hanging from one end of a vertical spring performs vertical
     SHM. The distance between two points, at which the speed of the
     body is zero is 7.5 cm. If the time taken for the body to move
     between the two points is 0.17 s, Determine
     a. the amplitude of the motion,
     b. the frequency of the motion,
     c. the maximum acceleration of body in the motion.
     Solution :
                                    a. The amplitude is
                                         7.5 102
                                      A            3.75 102 m
                                             2
         A                       b. The period of the motion is
                                            T  2t  20.17
    7.5 cm O             t  0.17 s
                m                           T  0.34 s
         A                                                        33
PHYSICS 025                                    CHAPTER 9
     Solution :
     b. Therefore the frequency of the motion is
                         1     1
                     f  
                         T 0.34
                     f  2.94 Hz
     c. From the equation of the maximum acceleration in SHM, hence
                   amax    A 2 and   2f
                           A2f 
                                   2
                   amax
                   amax              2
                                           
                           3.75 10 2 2.94
                                                2


                   amax    12.8 m s 2


                                                               34
PHYSICS 025                                    CHAPTER 9
     Example 6 :
     An object of mass 450 g oscillates from a vertically hanging light
     spring once every 0.55 s. The oscillation of the mass-spring is
     started by being compressed 10 cm from the equilibrium position
     and released.
     a. Write down the equation giving the object’s displacement as a
        function of time.
     b. How long will the object take to get to the equilibrium position
        for the first time?
     c. Calculate
              i. the maximum speed of the object,
              ii. the maximum acceleration of the object.




                                                                    35
PHYSICS 025                                   CHAPTER 9
     Solution : m  0.450 kg; T  0.55 s
                        a. The amplitude of the motion is A  10 cm
                           The angular frequency of the oscillation is
                                          2     2
                                            
                                           T    0.55
   10 cm    m       t 0                11.4 rad s 1

                             and the initial phase angle is given by
      0                              x  A sin t   
                                     A  A sin 0   
  10 cm                                 
                                       rad
                                         2
     Therefore the equation of the displacement as a function of time is
           x  A sin t   
                              
           x  10 sin 11.4t       OR   x  10 cos11.4t 
                              2
           where x is in cm and t is in seconds.                   36
PHYSICS 025                                       CHAPTER 9
     Solution : m  0.450 kg; T      0.55 s
     b. At the equilibrium position, x = 0
                                                   T 0.55
              x  10 sin 11.4t            OR   t 
                                   2                4     4
                                               t  0.138 s
              0  10 sin 11.4t  
                                  2
                      
             11.4t    sin 0
                                 1

                      2
                      
             11.4t    
                       2
                          t  0.138 s


                                                                37
PHYSICS 025                                   CHAPTER 9
     Solution : m  0.450 kg; T  0.55 s
     c. i. The maximum speed of the object is
                      vmax  A
                      vmax  0.111.4
                      vmax  1.14 m s 1
        ii. The maximum acceleration of the object is
                      amax  A    2


                      amax  0.111.4
                                         2


                      amax  13.0 m s 2




                                                          38
PHYSICS 025                                   CHAPTER 9
     Example 7 :
     An object of mass 50.0 g is connected to a spring with a force
     constant of 35.0 N m-1 oscillates on a horizontal frictionless surface
     with an amplitude of 4.00 cm. Determine
     a. the total energy of the system,
     b. the speed of the object when the position is 1.00 cm,
     c. the kinetic and potential energy when the position is 3.00 cm.
                                3                   1                 2
     Solution : m  50.0 10 kg; k  35.0 N m ; A  4.00 10 m
     a. By applying the equation of the total energy in SHM, thus
                            1 2
                        E  kA
                            2
                            1
                            2
                                       
                        E  35.0 4.00 10 2       2



                        E  2.80 102 J
                                                                    39
PHYSICS 025                                 CHAPTER 9
     Solution : m  50.0 103   kg; k  35.0 N m1; A  4.00 102 m
     b. The speed of the object when x = 1.00 102 m
                                        k
        v   A  x and
                      2   2
                                     
                                        m
        v
              m
               k
                  A x
                      2     2
                                 
        v
                 35.0 
              50.0 10 3 
                              4.00 10   1.00 10  
                                       2 2          2 2 

                                                          
                     1
        v  1.03 m s



                                                               40
PHYSICS 025                                   CHAPTER 9
     Solution : m  50.0 103   kg; k  35.0 N m1; A  4.00 102 m
     c. The kinetic energy of the object when x = 3.00 102 m is
                  1
              K  m A  x
                  2
                        2  2
                              2 and
                                          
                                     k  m 2


                  1
                         
              K  k A2  x 2
                  2
                                      
                  1
                  2
                                 
              K  35.0 4.00 10   3.00 10 
                                  2 2          2 2
                                                                         
              K  1.23 102 J
       and the potential energy of the object when x = 3.00 102 m is
                 1 2
              U  kx
                 2                       2
                                                  
                                     U  35.0 3.00 10
                                         1               2
                                                                    
                                                                    2



                                     U  1.58 102 J
                                                                    41
PHYSICS 025                                     CHAPTER 9
     Exercise 9.1 :
     1. A mass which hangs from the end of a vertical helical spring is
        in SHM of amplitude 2.0 cm. If three complete oscillations take
        4.0 s, determine the acceleration of the mass
        a. at the equilibrium position,
        b. when the displacement is maximum.
     ANS. : U think ; 44.4 cm s2
     2. A body of mass 2.0 kg moves in simple harmonic motion. The
        displacement x from the equilibrium position at time t is given by
                                        
                     x  6.0 sin 2 t  
                                        6
        where x is in metres and t is in seconds. Determine
        a. the amplitude, period and phase angle of the SHM.
        b. the maximum acceleration of the motion.
        c. the kinetic energy of the body at time t = 5 s.
                            
     ANS. : 6.0 m, 1.0 s,       rad ; 24.02 m s2; 355 J           42
                            3
PHYSICS 025                                    CHAPTER 9
     3. A horizontal plate is vibrating vertically with SHM at a frequency
        of 20 Hz. What is the amplitude of vibration so that the fine sand
        on the plate always remain in contact with it?
     ANS. : 6.21104 m
     4. An object of mass 2.1 kg is executing simple harmonic motion,
        attached to a spring with spring constant k = 280 N m1. When
        the object is 0.020 m from its equilibrium position, it is moving
        with a speed of 0.55 m s1. Calculate
        a. the amplitude of the motion.
        b. the maximum velocity attained by the object.
     ANS. : 5.17102 m; 0.597 m s1
     5. A simple harmonic oscillator has a total energy of E.
        a. Determine the kinetic energy and potential energy when the
           displacement is one half the amplitude.
        b. For what value of the displacement does the kinetic energy
           equal to the potential energy?
     ANS. :   3 1      2
               E , E;    A
              4 4     2                                             43
PHYSICS 025                                CHAPTER 9
    Learning Outcome:
     9.3 Graphs of SHM (2 hours)
     At the end of this chapter, students should be able to:
         Sketch, interpret and distinguish the following graphs:
             displacement - time
             velocity - time
             acceleration - time
             energy - displacement




                                                              44
PHYSICS 025                                     CHAPTER 9
    9.3 Graphs of SHM
     9.3.1 Graph of displacement-time (x-t)
        From the general equation of displacement as a function of time
         in SHM,                   
                      x  A sin t        
             If  = 0 , thus x  A sin t 
             The displacement-time graph is shown in Figure 9.7.
                      x
                                       Period
                      A

                          Amplitude

                      0        T        T       3T   T   t
                               4        2        4
                                                       Simulation 9.5
                    A
                                   Figure 9.7                       45
PHYSICS 025                                CHAPTER 9
        For examples:
         a. At t = 0 s, x = +A
                                    
           Equation: x  A sin  t   OR x  A cost 
           Graph of x against t:    2
                  x
                  A



                  0       T      T    3T     T   t
                          4      2     4
               A



                                                            46
PHYSICS 025                               CHAPTER 9
      b. At t = 0 s, x = A
                                    3                  
         Equation: x  A sin  t     OR x  A sin  t  
                                     2                  2
                  OR   x   A cost 
        Graph of x against t:
                x
                A



                 0       T          T    3T   T t
                         4          2     4
              A


                                                         47
PHYSICS 025                                 CHAPTER 9
      c. At t = 0 s, x = 0, but v = vmax

        Equation:   x  A sin t    OR x   A sin t 
       Graph of x against t:
                 x
                    A



                    0     T       T        3T   T   t
                          4       2         4
               A




                                                               48
PHYSICS 025                                      CHAPTER 9
     How to sketch the x against t graph when   0
     Sketch the x against t graph for the following expression:
                                      π
                   x  5 cm sin  3t  
        From the expression,
                                      2
             the amplitude, A  5 cm
         
                                                        2          2
             the angular frequency,   3
                                                  1
                                            rad s             T s
                                                        T           3
        Sketch the x against t graph for equation x  5 sin 3t 
                                x(cm)
                              T5
                              4
                                0                                 t (s )
                                             1           2
                                             3           3
                              5
                                                                           49
PHYSICS 025                                  CHAPTER 9
                                   T
        Because of    rad  t    hence shift the y-axis to the
                           2        4 left by T
        Sketch the new graph.                4
                         x(cm)
                        5

                        0                           t (s )
                                     1          2
                                     3          3
                      5
          RULES
          If  = negative value
          shift the y-axis to the left

          If  = positive value
          shift the y-axis to the right
                                                                 50
PHYSICS 025                                      CHAPTER 9
     9.3.2 Graph of velocity-time (v-t)
        From the general equation of velocity as a function of time in
         SHM,                        
                     v  A cos t      
             If  = 0 , thus v  A cost 
             The velocity-time graph is shown in Figure 9.8.
                      v
                    A



                      0        T         T      3T    T    t
                               4         2       4
                   A
                                   Figure 9.8

                                                                     51
PHYSICS 025                                   CHAPTER 9
        From the relationship between velocity and displacement,

                          v   A2  x 2
         thus the graph of velocity against displacement (v-x) is
         shown in Figure 9.9.
                                  v
                                A



             A                   0                     A       x

                              A
                               Figure 9.9

                                                                    52
PHYSICS 025                                     CHAPTER 9
     9.3.3 Graph of acceleration-time (a-t)
        From the general equation of acceleration as a function of time
         in SHM,
                       a   A sin t   
                              2


              If  = 0 , thus a   A sin t 
                                      2
          

             The acceleration-time graph is shown in Figure 9.10.
                     a
                   A 2


                      0       T       T      3T       T   t
                              4       2       4
                 A 2
                                  Figure 9.10
                                                                     53
PHYSICS 025                                  CHAPTER 9
        From the relationship between acceleration and displacement,
                             a   2 x
         thus the graph of acceleration against displacement (a-x) is
         shown in Figure 9.11.  a
                             A 2



            A                  0                   A      x

                            A 2
                            Figure 9.11
        The gradient of the a-x graph represents

                       gradient , m   2
                                                                 54
PHYSICS 025                                      CHAPTER 9
      9.3.4 Graph of energy-displacement (E-x)
         From the equations of kinetic, potential and total energies as a
          term of displacement
             1
                        
          K  m 2 A2  x 2
             2
                                          1            1
                                      ; U  m x and E  m 2 A2
                                           2
                                              2 2

                                                        2
          thus the graph of energy against displacement (a-x) is shown
          in Figure 9.12.        E          1
                                         E  m 2 A2  constant
                                            2
                                                        1
                                                    U  m 2 x 2
                                                        2
                                                    K  m 2 A2  x 2 
                                                       1
  Figure 9.12
                                                       2
                                                           x
                                                                      55
PHYSICS 025                                     CHAPTER 9
           The graph of Energy against time (E-t) is shown in Figure
            9.13.
            Energy

      1
 E     m 2 A2
      2
                                                 U  m 2 A2 sin 2 t 
                                                    1
                                                    2

                                                 K  m 2 A2 cos 2 t 
                                                    1
                                                    2
                                                        t
                                Figure 9.13             Simulation 9.6
                                                                    56
PHYSICS 025                                    CHAPTER 9
     Example 8 :
     The displacement of an oscillating object as a function of time is
     shown in Figure 9.14.
                   x(cm)
                 15.0


                    0                                t (s)
                                        0.8
               15.0
                              Figure 9.14
     From the graph above, determine for these oscillations
     a. the amplitude, the period and the frequency,
     b. the angular frequency,
     c. the equation of displacement as a function of time,
     d. the equation of velocity and acceleration as a function of time.
                                                                     57
PHYSICS 025                                    CHAPTER 9
     Solution :
     a. From the graph,
            Amplitude, A  0.15 m
            Period, T  0.8 s
                           1     1
            Frequency,
                         f      
                             T 0.8
                         f  1.25 Hz
     b. The angular frequency of the oscillation is given by
                             2 2
                               
                             T     0.8 1
                           2.5 rad s
     c. From the graph, when t = 0, x = 0 thus   0
        By applying the general equation of displacement in SHM
        x  A sin t       x  0.15 sin 2.5t 
                  where x is in metres and t is in seconds.
                                                                  58
PHYSICS 025                                     CHAPTER 9
     Solution :
     d. i. The equation of velocity as a function of time is

                          0.15 sin 2.5t 
                      dx d
                  v
                      dt dt
                  v  0.152.5 cos 2.5t
                  v  0.375 cos 2.5t
                  where v is in m s 1 and t is in seconds.
       ii. and the equation of acceleration as a function of time is

                          0.375 cos 2.5t 
                      dv d
                  a
                      dt dt
                  a  0.375 2.5 sin 2.5t
                  a  0.938 2 sin 2.5t
                                   2
                  where a is in m s and t is in seconds.
                                                                       59
PHYSICS 025                                   CHAPTER 9
     Example 9 :            a ( m s 2 )
                           0.80



           4.00               0                  4.00 x(cm)

                          0.80
                              Figure 9.15
     Figure 9.15 shows the relationship between the acceleration a and
     its displacement x from a fixed point for a body of mass 2.50 kg at
     which executes SHM. Determine
     a. the amplitude,
     b. the period,
     c. the maximum speed of the body,
     d. the total energy of the body.                               60
PHYSICS 025                                   CHAPTER 9
     Solution : m  2.50 kg
                                                    2
     a. The amplitude of the motion is A  4.00 10 m
                                                                    2
     b. From the graph, the maximum acceleration is amax  0.80 m s
        By using the equation of maximum acceleration, thus
                                           2
                   amax  A and  
                                2

                             2 
                                   2
                                            T
                   amax  A 
                            T 
                                      2  2 
                                                2

                   0.80  4.00 10  
                      T  1.40 s         T 
      OR The gradient of the a-x graph is
                       y2  y1        0  0.80
            gradient                                2
                                          
                       x2  x1 0   4.00 10 2          
                                   2 
                                         2

                           20           T  1.40 s
                                  T                   61
PHYSICS 025                                   CHAPTER 9
     Solution : m  2.50 kg
     c. By applying the equation of the maximum speed, thus
                                            2
                     vmax    A and  
                                 2        T
                     vmax    A 
                                T 
                                        2  2 
                     vmax    4.00 10         
                                        1  1.40 
                     vmax    0.180 m s
     d. The total energy of the body is given by
                         1
                     E  m 2 A2
                         2
                                 2 
                                         2

                     E  2.50        4.00 10 
                         1                        2 2

                         2       1.40 
                     E  4.03 102 J
                                                              62
PHYSICS 025                                   CHAPTER 9
     Example 10 :
                   x(m)
                 0.2

                   0                                t (s )
                         1    2   3 4 5

                0.2
                             Figure 9.16
     Figure 9.16 shows the displacement of an oscillating object of
     mass 1.30 kg varying with time. The energy of the oscillating object
     consists the kinetic and potential energies. Calculate
     a. the angular frequency of the oscillation,
     b. the sum of this two energy.


                                                                   63
PHYSICS 025                                   CHAPTER 9
     Solution : m  1.30 kg
     From the graph,
             Amplitude, A  0.2 m
             Period, T  4 s
     a. The angular frequency is given by
                             2 2
                                
                              T       4
                             
                         rad s      1

                              2
     b. The sum of the kinetic and potential energies is
                              1
                       E  m 2 A2
                              2
                                        
                                              2

                       E  1.30  0.2
                              1                     2

                              2         2 
                       E  6.42 10 2 J
                                                           64
PHYSICS 025                                    CHAPTER 9
     9.3.5 Phase difference,
        Considering two SHM with the following equations,
                     x1  A1 sin 1t  1 
                     x2  A2 sin 2t  2 
        is defined as     phase 2   phase 1 
                           2t  2   1t  1 
        For examples,
         a. x

          A                                     x2  A cost 
                                       x2           OR
                                                                
                                                x2  A sin  t  
           0              T             T     t                 2
                          2            x1       x1  A sin t 
         A
                                                              65
PHYSICS 025                                   CHAPTER 9
           Thus the phase difference is given by
                                    
                          Δ   t    t 
                                    2
                               
                          Δ  rad
           If  > 0 , hence
                                2
                       x2 leads the x1 by phase difference ½ rad
                       and constant with time.
      b.    x
           A                                    x2   A cost 
                                                    OR
                                                                
                                                x2  A sin  t  
           0           T             T        t                 2
                       2            x1              x1  A sin t 
       A
                                    x2                                 66
PHYSICS 025                                   CHAPTER 9
           Thus the phase difference is given by
                                  
                        Δ   t    t 
                                  2
                                
                        Δ   rad
                                2
           If  < 0 , hence
                         x2 lags behind the x1 by phase difference
                         ½ rad and constant with time.
      c.    x
           A                                        x2   A sin t 
                                   x2                   OR
                                                  x2  A sin t   
           0                         T        t
                                                    x1  A sin t 
                        T
                        2            x1
       A
                                                                       67
PHYSICS 025                                            CHAPTER 9
                    Thus the phase difference is given by
                                  Δ  t     t 
                                  Δ   rad
                    If  =  , hence
                                  x2 is antiphase with the x1 and constant with
                                  time.
             d.        x
                     A                                        x2  A sin t 
                                                              x1  A sin t 
                                             x2              The phase difference is
                     0            T           T         t Δ  t   t 
                                  2         x1            Δ  0
Simulation 9.7    A
                    If  = 0 , hence
Simulation 9.8                    x2 is in phase with the x1 and constant with
                                  time.
                                                                              68
PHYSICS 025                                    CHAPTER 9
     Example 11 :
           x(cm)

               4

               0        1.0     2.0      3.0         t (s )
             4
                           Figure 9.17
     Figure 9.17 shows the variation of displacement, x with time, t for
     an object in SHM.
     a. Determine the amplitude, period and frequency of the motion.
     b. Another SHM leads the SHM above by phase difference of
        0.5 radian where the amplitude and period of both SHM are
       the same. On the same axes, sketch the displacement, x against
       time, t graph for both SHM.
                                                                    69
PHYSICS 025                                    CHAPTER 9
     Solution :
     a. From the graph,
             Amplitude, A  4 cm
             Period, T  2.0 s
             The frequency is given by
                           1     1
                       f  
                           T 2.0
                       f  0.5 Hz
     b. Equation for 1st SHM (from the graph):
                      x1  A sin t   
                      x1  A sin 2ft   
                                      
                      x1  4 sin  t  
                                      2

                                                           70
PHYSICS 025                                     CHAPTER 9
     Solution :
     b. The 2nd SHM leads the 1st SHM by the phase difference of 0.5
                           
        radian thus Δ   rad
                             2              
                      Δ  t      t  
                                            2
                                           
                          t      t               rad
                       2                    2
      Equation for 2nd SHM :      x2  4 sin t   
          x(cm)
                  4                                          x1
                                                             x2
                  0                                               t (s )
                            1.0        2.0      3.0

              4                                                           71
Summary :
                                     t   x    v  a  K                         U
PHYSICS 025                amax              CHAPTER 9
                                                                         1 2
                                     0   A    0      A 2      0
    max                                                                 2
                                                                           kA

                          vmax
                                     T                        1
                                         0    A     0         mA2 2        0
                                     4                        2
            amax    v   A2  x 2
                         a   2 x T                                     1 2
  max                       1 2      A 0           A   2
                                                                 0          kA
                         K  mv 2                                         2

                    vmax     2
                              1 2 3T                          1
                         U  kx        0 A           0       2
                                                                mA2 2        0
                              2     4
                           amax                                           1 2
                                     T   A    0      A 2      0           kA
                                                                          2
    max
               A     O          A                                       72
PHYSICS 025                  CHAPTER 9
   Learning outcome
   9.4 Period of simple harmonic motion
         Derive and use expression for
          period of SHM, T for simple
         pendulum and single spring

                                L
        Simple pendulum T  2
                                g
        Simple         m
                 T  2
                        k



                                          73
PHYSICS 025                                CHAPTER 9
     9.4.1 Terminology in SHM
     Amplitude (A)
      is defined as the maximum magnitude of the displacement
       from the equilibrium position.
      Its unit is metre (m).
     Period (T)
      is defined as the time taken for one cycle.
      Its unit is second (s).
      Equation :
                          1
                  T
                       f
     Frequency (f)
      is defined as the number of cycles in one second.
      Its unit is hertz (Hz) :
                      1 Hz = 1 cycle s1 = 1 s1
      Equation :
                                           
                        2f OR f 
                                      2                   74
PHYSICS 025                                  CHAPTER 9
     9.4.2 System of SHM
     A. Simple pendulum oscillation
      Figure 9.2 shows the oscillation of the simple pendulum of
        length, L.




                                                      L
                                                         
                                                          T
                                                      x   m P
                                               O
                                               mg sin 
                                       Figure 9.2
                                                            mg cos 
                                                           
                                                          mg
                                                                    75
PHYSICS 025                                     CHAPTER 9
        A pendulum bob is pulled slightly to point P.
        The string makes an angle,  to the vertical and the arc length,
         x as shown in Figure 9.2.
        The forces act on the bob are mg, weight and T, the tension in
         the string.
        Resolve the weight into
             the tangential component         : mg sin
           the radial component               : mg cos 
        The resultant force in the radial direction provides the
         centripetal force which enables the bob to move along the arc
         and is given by                 mv2
                        T  mg cos  
                                           r
        The restoring force, Fs contributed by the tangential
         component of the weight pulls the bob back to equilibrium
         position. Thus
                          Fs  mg sin 
                                                                     76
PHYSICS 025                                   CHAPTER 9
            The negative sign shows that the restoring force, Fs is
             always against the direction of increasing x.
        For small angle, ;
            sin    in radian
            arc length, x of the bob becomes straight line (shown in
             Figure 9.3) then

                                       x
                                sin    
                                      L
                         L
                                               x
                                thus   Fs  mg 
                                               L
                     x
                Figure 9.3

                                                                  77
PHYSICS 025                                   CHAPTER 9
        By applying Newton’s second law of motion,
                        F  ma  F  s
                                    mgx
                             ma  
                                     L
                                   g
                              a    x
                                   L
         Thus   a  x          Simple pendulum executes
                                linear SHM
                             g
        By comparing   a    x   with   a   2 x
                             L
                     g             2
         Thus     
                   2
                          and   
                     L             T

                                                           78
PHYSICS 025                                     CHAPTER 9

                            L
         Therefore   T  2                             (9.2)
                            g
                     where   T : period of the simple pendulum
                             L : length of the string
                             g : gravitatio nal accelerati on
        The conditions for the simple pendulum executes SHM are
            the angle,  has to be small (less than 10).
            the string has to be inelastic and light.
            only the gravitational force and tension in the string acting
             on the simple pendulum.


                                                        Simulation 9.1
                                                                    79
PHYSICS 025                                  CHAPTER 9
     B. Spring-mass oscillation
     Vertical spring oscillation




                                                          
                                     F                     F1
             x1
                              O
                                                 x
                                                     O          
                                     m                          a
                                                           m
                                    
                                   mg
                                                          
                                                         mg
      Figure 9.4a              Figure 9.4b           Figure 9.4c

                                                           80
PHYSICS 025                                     CHAPTER 9
        Figure 9.4a shows a free light spring with spring constant, k
         hung vertically.
        An object of mass, m is tied to the lower end of the spring as
         shown in Figure 9.4b. When the object achieves an equilibrium
         condition, the spring is stretched by an amount x1 . Thus
                        F 0            F W  0
                                       kx1  W  0
                                              W  kx1
        The object is then pulled downwards to a distance, x and
         released as shown in Figure 9.4c. Hence
                            F  ma
                          F1  W  ma and F1  k x1  x 
            k x1  x    kx1   ma
                                       k
                                a    x
                                       m
         then   a  x            Vertical spring oscillation executes
                                  linear SHM                       81
  
                                                          a
PHYSICS 025                                    CHAPTER Fs
                                                       9
                                                              m
   Horizontal spring oscillation
    Figure 9.5 shows a spring is                                    t 0
     initially stretched with a                      Fs  0
     displacement, x = A and then                      m
     released.                                                           T
                                                                    t
    According to Hooke’s law,                        a                  4
               Fs  kx                        Fs
      The mass accelerates toward
                                                m
                                                                         T
       equilibrium position, x = 0 by                                t
       the restoring force, Fs hence                 Fs  0              2
              Fs  ma                                 m
              ma  kx                                               3T
                    k
                                                        
                                                        a         t 4
               a    x                                         F
                                                                  s
       Then
                    m                                       m
       a  x          executes
                       linear SHM                                     t T
                               Figure 9.5   x  A   x 0     xA82
PHYSICS 025                                 CHAPTER 9
                           k
         By comparing a    x with a   x
                                            2
     
                           m
                     k           2
         Thus          and  
                 2

                     m           T
                                  where         (9.3)
                            m T : period of the spring oscillatio n
         Therefore   T  2
                            k m : mass of the object
                              k : spring constant (force constant)
        The conditions for the spring-mass system executes SHM are
           The elastic limit of the spring is not exceeded when the
            spring is being pulled.
           The spring is light and obeys Hooke’s law.

           No air resistance and surface friction.
                                                      Simulation 9.2
                                                                83
PHYSICS 025                                    CHAPTER 9
     Example 1 :
     A certain simple pendulum has a period on the Earth surface’s of
     1.60 s. Determine the period of the simple pendulum on the
     surface of Mars where its gravitational acceleration is 3.71 m s2.
     (Given the gravitational acceleration on the Earth’s surface is
     g = 9.81 m s2)
                                               2                  2
     Solution : TE  1.60 s; g E  9.81 m s ; g M  3.71 m s
     The period of simple pendulum on the Earth’s surface is
                               l
                      TE  2                             (1)
                              gE
     But its period on the surface of Mars is given by

                              l
                     TM  2                              (2)
                             gM
                                                                   84
PHYSICS 025                                  CHAPTER 9
     Solution : TE  1.60 s; g E  9.81 m s 2 ; g M    3.71 m s 2
     By dividing eqs. (1) and (2), thus

                                 l
                             2
                      TE        gE
                         
                      TM         l
                             2
                                gM
                      TE       gM
                         
                      TM       gE
                     1.60   3.71
                          
                      TM    9.81
                      TM  2.60 s
                                                                  85
PHYSICS 025                                   CHAPTER 9
     Example 2 :
     A mass m at the end of a spring vibrates with a frequency of
     0.88 Hz. When an additional mass of 1.25 kg is added to the mass
     m, the frequency is 0.48 Hz. Calculate the value of m.
     Solution : f1  0.88 Hz; f 2  0.48 Hz; Δm  1.25 kg
     The frequency of the spring is given by
                         1           m
                    f1  and T1  2
                         T1          k
                          1 k
                    f1                               (1)
                         2 m
     After the additional mass is added to the m, the frequency of the
     spring becomes
                      1         k
                f2                                         (2)
                     2      m  Δm
                                                                   86
PHYSICS 025                               CHAPTER 9
     Solution : f1  0.88 Hz; f 2  0.48 Hz;   Δm  1.25 kg
     By dividing eqs. (1) and (2), thus
                                1   k
                     f1
                              2  m
                     f2    1        k
                          2     m  Δm
                     f1   m  Δm
                        
                     f2     m
                  0.88   m  1.25
                       
                  0.48      m
                     m  0.529 kg
                                                              87
PHYSICS             CHAPTER 9




          THE END…
           Next Chapter…
           CHAPTER 10 :
          Mechanical waves



                                88

Contenu connexe

Tendances

Fisika (X) - Percobaan maxwell
Fisika (X) - Percobaan maxwellFisika (X) - Percobaan maxwell
Fisika (X) - Percobaan maxwellSeptiani Pratiwi
 
Fisika kelas 11 gelombang mekanik
Fisika kelas 11 gelombang mekanikFisika kelas 11 gelombang mekanik
Fisika kelas 11 gelombang mekanikshfdr
 
Osilasi fisika dasar 1
Osilasi fisika dasar 1Osilasi fisika dasar 1
Osilasi fisika dasar 1RifkaNurbayti
 
Struktur Kristal 1 (Kuliah Fisika Zat Padat)
Struktur Kristal 1 (Kuliah Fisika Zat Padat)Struktur Kristal 1 (Kuliah Fisika Zat Padat)
Struktur Kristal 1 (Kuliah Fisika Zat Padat)Khoirul Ummah
 
Elastisitas dan gerak harmonik sederhana
Elastisitas dan gerak harmonik sederhanaElastisitas dan gerak harmonik sederhana
Elastisitas dan gerak harmonik sederhanaBella Andreana
 
Moment of Inertia.pptx
Moment of Inertia.pptxMoment of Inertia.pptx
Moment of Inertia.pptxJVCMaliackal1
 
Derivation of Kinematic Equations
Derivation of Kinematic EquationsDerivation of Kinematic Equations
Derivation of Kinematic Equationsomar_egypt
 
Fisika kuantum
Fisika kuantumFisika kuantum
Fisika kuantumHana Dango
 
1.struktur kristal (hand_out)
1.struktur kristal (hand_out)1.struktur kristal (hand_out)
1.struktur kristal (hand_out)Putu Adi Susanta
 
Fisika Matematika II (5 - 7) solusi-deret dari persamaan differensial
Fisika Matematika II (5 - 7) solusi-deret dari persamaan differensialFisika Matematika II (5 - 7) solusi-deret dari persamaan differensial
Fisika Matematika II (5 - 7) solusi-deret dari persamaan differensialjayamartha
 
Bar Pendulum experiment ppt.pptx
Bar Pendulum experiment ppt.pptxBar Pendulum experiment ppt.pptx
Bar Pendulum experiment ppt.pptxGaneshGK5
 
Kc tuntas kimia 11 1 andywaluyo.wordpress.com
Kc tuntas kimia 11 1 andywaluyo.wordpress.comKc tuntas kimia 11 1 andywaluyo.wordpress.com
Kc tuntas kimia 11 1 andywaluyo.wordpress.comDedi Wahyudin
 
Laporan lengkap praktikum f okus lensa konvergen
Laporan lengkap praktikum f okus lensa konvergenLaporan lengkap praktikum f okus lensa konvergen
Laporan lengkap praktikum f okus lensa konvergenSylvester Saragih
 
Pelatihan Mekanika untuk OSK Fisika 2014
Pelatihan Mekanika untuk OSK Fisika 2014Pelatihan Mekanika untuk OSK Fisika 2014
Pelatihan Mekanika untuk OSK Fisika 2014Zainal Abidin Mustofa
 

Tendances (20)

Rumus gelombang bunyi
Rumus gelombang bunyiRumus gelombang bunyi
Rumus gelombang bunyi
 
Fisika (X) - Percobaan maxwell
Fisika (X) - Percobaan maxwellFisika (X) - Percobaan maxwell
Fisika (X) - Percobaan maxwell
 
Fisika kelas 11 gelombang mekanik
Fisika kelas 11 gelombang mekanikFisika kelas 11 gelombang mekanik
Fisika kelas 11 gelombang mekanik
 
Vektor potensial
Vektor potensialVektor potensial
Vektor potensial
 
Osilasi fisika dasar 1
Osilasi fisika dasar 1Osilasi fisika dasar 1
Osilasi fisika dasar 1
 
Wave functions
Wave functionsWave functions
Wave functions
 
Struktur Kristal 1 (Kuliah Fisika Zat Padat)
Struktur Kristal 1 (Kuliah Fisika Zat Padat)Struktur Kristal 1 (Kuliah Fisika Zat Padat)
Struktur Kristal 1 (Kuliah Fisika Zat Padat)
 
Elastisitas dan gerak harmonik sederhana
Elastisitas dan gerak harmonik sederhanaElastisitas dan gerak harmonik sederhana
Elastisitas dan gerak harmonik sederhana
 
Moment of Inertia.pptx
Moment of Inertia.pptxMoment of Inertia.pptx
Moment of Inertia.pptx
 
01b model atom
01b model atom01b model atom
01b model atom
 
Derivation of Kinematic Equations
Derivation of Kinematic EquationsDerivation of Kinematic Equations
Derivation of Kinematic Equations
 
Fisika kuantum
Fisika kuantumFisika kuantum
Fisika kuantum
 
1.struktur kristal (hand_out)
1.struktur kristal (hand_out)1.struktur kristal (hand_out)
1.struktur kristal (hand_out)
 
Fisika Matematika II (5 - 7) solusi-deret dari persamaan differensial
Fisika Matematika II (5 - 7) solusi-deret dari persamaan differensialFisika Matematika II (5 - 7) solusi-deret dari persamaan differensial
Fisika Matematika II (5 - 7) solusi-deret dari persamaan differensial
 
Bar Pendulum experiment ppt.pptx
Bar Pendulum experiment ppt.pptxBar Pendulum experiment ppt.pptx
Bar Pendulum experiment ppt.pptx
 
Kc tuntas kimia 11 1 andywaluyo.wordpress.com
Kc tuntas kimia 11 1 andywaluyo.wordpress.comKc tuntas kimia 11 1 andywaluyo.wordpress.com
Kc tuntas kimia 11 1 andywaluyo.wordpress.com
 
Laporan lengkap praktikum f okus lensa konvergen
Laporan lengkap praktikum f okus lensa konvergenLaporan lengkap praktikum f okus lensa konvergen
Laporan lengkap praktikum f okus lensa konvergen
 
Sifat gelombang de broglie
Sifat gelombang de broglieSifat gelombang de broglie
Sifat gelombang de broglie
 
Pelatihan Mekanika untuk OSK Fisika 2014
Pelatihan Mekanika untuk OSK Fisika 2014Pelatihan Mekanika untuk OSK Fisika 2014
Pelatihan Mekanika untuk OSK Fisika 2014
 
Materi olimpiade fisika Mekanika bagian c
Materi olimpiade fisika Mekanika bagian cMateri olimpiade fisika Mekanika bagian c
Materi olimpiade fisika Mekanika bagian c
 

En vedette

Physics Chapter 14- Kinetic Theory of Gases
Physics Chapter 14- Kinetic Theory of GasesPhysics Chapter 14- Kinetic Theory of Gases
Physics Chapter 14- Kinetic Theory of GasesMuhammad Solehin
 
Physics Chapter 8- Rotational of a Rigid Body
Physics Chapter 8- Rotational of a Rigid BodyPhysics Chapter 8- Rotational of a Rigid Body
Physics Chapter 8- Rotational of a Rigid BodyMuhammad Solehin
 
Intro to the pt and elements
Intro to the pt and elementsIntro to the pt and elements
Intro to the pt and elementsLily Kotze
 
Under pressure
Under pressureUnder pressure
Under pressureLily Kotze
 
2. formulae and symbols
2. formulae and symbols2. formulae and symbols
2. formulae and symbolsLily Kotze
 
Chemical bonding and the lewis structure
Chemical bonding and the lewis structureChemical bonding and the lewis structure
Chemical bonding and the lewis structureLily Kotze
 
Redox reactions
Redox reactionsRedox reactions
Redox reactionsLily Kotze
 
Slim vang sy baas
Slim vang sy baasSlim vang sy baas
Slim vang sy baasLily Kotze
 
Edu290 physics powerpoint
Edu290 physics powerpointEdu290 physics powerpoint
Edu290 physics powerpointmille1rk
 
2. electrostatics
2. electrostatics2. electrostatics
2. electrostaticsLily Kotze
 
The Kinetic Theory Of Matter
The Kinetic Theory Of MatterThe Kinetic Theory Of Matter
The Kinetic Theory Of MatterMarie.Adam
 

En vedette (20)

Physics Chapter 13- Heat
Physics Chapter 13- HeatPhysics Chapter 13- Heat
Physics Chapter 13- Heat
 
Chapter 15=Thermodynamics
Chapter 15=ThermodynamicsChapter 15=Thermodynamics
Chapter 15=Thermodynamics
 
Chapter 8 sesi 1112 1
Chapter 8 sesi 1112 1Chapter 8 sesi 1112 1
Chapter 8 sesi 1112 1
 
Physics Chapter 14- Kinetic Theory of Gases
Physics Chapter 14- Kinetic Theory of GasesPhysics Chapter 14- Kinetic Theory of Gases
Physics Chapter 14- Kinetic Theory of Gases
 
Note chapter9 0708-edit-1
Note chapter9 0708-edit-1Note chapter9 0708-edit-1
Note chapter9 0708-edit-1
 
WATER PURIFIER
WATER PURIFIERWATER PURIFIER
WATER PURIFIER
 
Physics Chapter 8- Rotational of a Rigid Body
Physics Chapter 8- Rotational of a Rigid BodyPhysics Chapter 8- Rotational of a Rigid Body
Physics Chapter 8- Rotational of a Rigid Body
 
Waterrrrrrr copy
Waterrrrrrr   copyWaterrrrrrr   copy
Waterrrrrrr copy
 
Intro to the pt and elements
Intro to the pt and elementsIntro to the pt and elements
Intro to the pt and elements
 
1. magnetism
1. magnetism1. magnetism
1. magnetism
 
Under pressure
Under pressureUnder pressure
Under pressure
 
2. formulae and symbols
2. formulae and symbols2. formulae and symbols
2. formulae and symbols
 
Chemical bonding and the lewis structure
Chemical bonding and the lewis structureChemical bonding and the lewis structure
Chemical bonding and the lewis structure
 
Redox reactions
Redox reactionsRedox reactions
Redox reactions
 
Slim vang sy baas
Slim vang sy baasSlim vang sy baas
Slim vang sy baas
 
Edu290 physics powerpoint
Edu290 physics powerpointEdu290 physics powerpoint
Edu290 physics powerpoint
 
2. electrostatics
2. electrostatics2. electrostatics
2. electrostatics
 
The Kinetic Theory Of Matter
The Kinetic Theory Of MatterThe Kinetic Theory Of Matter
The Kinetic Theory Of Matter
 
Chapter 1
Chapter 1Chapter 1
Chapter 1
 
General physics-i 18
General physics-i 18General physics-i 18
General physics-i 18
 

Similaire à Note chapter9 0708-edit-1

IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...ijceronline
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
Get bebas redaman_2014
Get bebas redaman_2014Get bebas redaman_2014
Get bebas redaman_2014Abdul Rahman
 
Introduction to oscillations and simple harmonic motion
Introduction to oscillations and simple harmonic motionIntroduction to oscillations and simple harmonic motion
Introduction to oscillations and simple harmonic motionMichael Marty
 
Structure Design-I (Moment of Inertia)
Structure Design-I (Moment of Inertia)Structure Design-I (Moment of Inertia)
Structure Design-I (Moment of Inertia)Simran Vats
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...ijceronline
 
mechanic of machine-Mechanical Vibrations
mechanic of machine-Mechanical Vibrationsmechanic of machine-Mechanical Vibrations
mechanic of machine-Mechanical VibrationsYarwindran Mogan
 
A Study of Periodic Points and Their Stability on a One-Dimensional Chaotic S...
A Study of Periodic Points and Their Stability on a One-Dimensional Chaotic S...A Study of Periodic Points and Their Stability on a One-Dimensional Chaotic S...
A Study of Periodic Points and Their Stability on a One-Dimensional Chaotic S...IJMER
 
Selected topics in nonlinear dynamics and theoretical electrical engineering
Selected topics in nonlinear dynamics and theoretical electrical engineeringSelected topics in nonlinear dynamics and theoretical electrical engineering
Selected topics in nonlinear dynamics and theoretical electrical engineeringSpringer
 
Iast.lect19.slides
Iast.lect19.slidesIast.lect19.slides
Iast.lect19.slidesha88ni
 
SOIL DYNAMICS - THEORY OF VIBRATIONS
SOIL DYNAMICS - THEORY OF VIBRATIONSSOIL DYNAMICS - THEORY OF VIBRATIONS
SOIL DYNAMICS - THEORY OF VIBRATIONSSanjay Thakare
 
Damped and undamped motion differential equations.pptx
Damped and undamped motion differential equations.pptxDamped and undamped motion differential equations.pptx
Damped and undamped motion differential equations.pptxBrijeshMishra525980
 
Minimal surface economies and networks
Minimal surface economies and networksMinimal surface economies and networks
Minimal surface economies and networksRichard Anthony Baum
 

Similaire à Note chapter9 0708-edit-1 (20)

IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)
 
Oscillation & Oscillatory Motion
Oscillation & Oscillatory MotionOscillation & Oscillatory Motion
Oscillation & Oscillatory Motion
 
Reflection Data Analysis
Reflection Data AnalysisReflection Data Analysis
Reflection Data Analysis
 
Get bebas redaman_2014
Get bebas redaman_2014Get bebas redaman_2014
Get bebas redaman_2014
 
Introduction to oscillations and simple harmonic motion
Introduction to oscillations and simple harmonic motionIntroduction to oscillations and simple harmonic motion
Introduction to oscillations and simple harmonic motion
 
Structure Design-I (Moment of Inertia)
Structure Design-I (Moment of Inertia)Structure Design-I (Moment of Inertia)
Structure Design-I (Moment of Inertia)
 
Lesson 2.pptx
Lesson 2.pptxLesson 2.pptx
Lesson 2.pptx
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
 
mechanic of machine-Mechanical Vibrations
mechanic of machine-Mechanical Vibrationsmechanic of machine-Mechanical Vibrations
mechanic of machine-Mechanical Vibrations
 
A Study of Periodic Points and Their Stability on a One-Dimensional Chaotic S...
A Study of Periodic Points and Their Stability on a One-Dimensional Chaotic S...A Study of Periodic Points and Their Stability on a One-Dimensional Chaotic S...
A Study of Periodic Points and Their Stability on a One-Dimensional Chaotic S...
 
Selected topics in nonlinear dynamics and theoretical electrical engineering
Selected topics in nonlinear dynamics and theoretical electrical engineeringSelected topics in nonlinear dynamics and theoretical electrical engineering
Selected topics in nonlinear dynamics and theoretical electrical engineering
 
Iast.lect19.slides
Iast.lect19.slidesIast.lect19.slides
Iast.lect19.slides
 
SOIL DYNAMICS - THEORY OF VIBRATIONS
SOIL DYNAMICS - THEORY OF VIBRATIONSSOIL DYNAMICS - THEORY OF VIBRATIONS
SOIL DYNAMICS - THEORY OF VIBRATIONS
 
ch10 SHM 13 04 2023F.pptx
ch10  SHM 13 04 2023F.pptxch10  SHM 13 04 2023F.pptx
ch10 SHM 13 04 2023F.pptx
 
Image transforms
Image transformsImage transforms
Image transforms
 
Free vibrations
Free vibrationsFree vibrations
Free vibrations
 
Simple harmonic motion
Simple harmonic motionSimple harmonic motion
Simple harmonic motion
 
Damped and undamped motion differential equations.pptx
Damped and undamped motion differential equations.pptxDamped and undamped motion differential equations.pptx
Damped and undamped motion differential equations.pptx
 
Minimal surface economies and networks
Minimal surface economies and networksMinimal surface economies and networks
Minimal surface economies and networks
 

Dernier

08448380779 Call Girls In Karol Bagh Women Seeking Men
08448380779 Call Girls In Karol Bagh Women Seeking Men08448380779 Call Girls In Karol Bagh Women Seeking Men
08448380779 Call Girls In Karol Bagh Women Seeking MenDelhi Call girls
 
ppt on Myself, Occupation and my Interest
ppt on Myself, Occupation and my Interestppt on Myself, Occupation and my Interest
ppt on Myself, Occupation and my InterestNagaissenValaydum
 
大学假文凭《原版英国Imperial文凭》帝国理工学院毕业证制作成绩单修改
大学假文凭《原版英国Imperial文凭》帝国理工学院毕业证制作成绩单修改大学假文凭《原版英国Imperial文凭》帝国理工学院毕业证制作成绩单修改
大学假文凭《原版英国Imperial文凭》帝国理工学院毕业证制作成绩单修改atducpo
 
Italy vs Albania Tickets: Italy's Quest for Euro Cup Germany History, Defendi...
Italy vs Albania Tickets: Italy's Quest for Euro Cup Germany History, Defendi...Italy vs Albania Tickets: Italy's Quest for Euro Cup Germany History, Defendi...
Italy vs Albania Tickets: Italy's Quest for Euro Cup Germany History, Defendi...Eticketing.co
 
大学学位办理《原版美国USD学位证书》圣地亚哥大学毕业证制作成绩单修改
大学学位办理《原版美国USD学位证书》圣地亚哥大学毕业证制作成绩单修改大学学位办理《原版美国USD学位证书》圣地亚哥大学毕业证制作成绩单修改
大学学位办理《原版美国USD学位证书》圣地亚哥大学毕业证制作成绩单修改atducpo
 
🔝|97111༒99012🔝 Call Girls In {Delhi} Cr Park ₹5.5k Cash Payment With Room De...
🔝|97111༒99012🔝 Call Girls In  {Delhi} Cr Park ₹5.5k Cash Payment With Room De...🔝|97111༒99012🔝 Call Girls In  {Delhi} Cr Park ₹5.5k Cash Payment With Room De...
🔝|97111༒99012🔝 Call Girls In {Delhi} Cr Park ₹5.5k Cash Payment With Room De...Diya Sharma
 
VIP Kolkata Call Girl Liluah 👉 8250192130 Available With Room
VIP Kolkata Call Girl Liluah 👉 8250192130  Available With RoomVIP Kolkata Call Girl Liluah 👉 8250192130  Available With Room
VIP Kolkata Call Girl Liluah 👉 8250192130 Available With Roomdivyansh0kumar0
 
JORNADA 5 LIGA MURO 2024INSUGURACION.pdf
JORNADA 5 LIGA MURO 2024INSUGURACION.pdfJORNADA 5 LIGA MURO 2024INSUGURACION.pdf
JORNADA 5 LIGA MURO 2024INSUGURACION.pdfArturo Pacheco Alvarez
 
Plan d'orientations stratégiques rugby féminin
Plan d'orientations stratégiques rugby fémininPlan d'orientations stratégiques rugby féminin
Plan d'orientations stratégiques rugby fémininThibaut TATRY
 
Spain Vs Italy 20 players confirmed for Spain's Euro 2024 squad, and three po...
Spain Vs Italy 20 players confirmed for Spain's Euro 2024 squad, and three po...Spain Vs Italy 20 players confirmed for Spain's Euro 2024 squad, and three po...
Spain Vs Italy 20 players confirmed for Spain's Euro 2024 squad, and three po...World Wide Tickets And Hospitality
 
08448380779 Call Girls In IIT Women Seeking Men
08448380779 Call Girls In IIT Women Seeking Men08448380779 Call Girls In IIT Women Seeking Men
08448380779 Call Girls In IIT Women Seeking MenDelhi Call girls
 
Croatia vs Albania Clash of Euro Cup 2024 Squad Preparations and Euro Cup Dre...
Croatia vs Albania Clash of Euro Cup 2024 Squad Preparations and Euro Cup Dre...Croatia vs Albania Clash of Euro Cup 2024 Squad Preparations and Euro Cup Dre...
Croatia vs Albania Clash of Euro Cup 2024 Squad Preparations and Euro Cup Dre...Eticketing.co
 
Chennai Call Girls Anna Nagar Phone 🍆 8250192130 👅 celebrity escorts service
Chennai Call Girls Anna Nagar Phone 🍆 8250192130 👅 celebrity escorts serviceChennai Call Girls Anna Nagar Phone 🍆 8250192130 👅 celebrity escorts service
Chennai Call Girls Anna Nagar Phone 🍆 8250192130 👅 celebrity escorts servicevipmodelshub1
 
Tableaux 9ème étape circuit fédéral 2024
Tableaux 9ème étape circuit fédéral 2024Tableaux 9ème étape circuit fédéral 2024
Tableaux 9ème étape circuit fédéral 2024HechemLaameri
 
Dubai Call Girls Bikni O528786472 Call Girls Dubai Ebony
Dubai Call Girls Bikni O528786472 Call Girls Dubai EbonyDubai Call Girls Bikni O528786472 Call Girls Dubai Ebony
Dubai Call Girls Bikni O528786472 Call Girls Dubai Ebonyhf8803863
 
CALL ON ➥8923113531 🔝Call Girls Chinhat Lucknow best sexual service
CALL ON ➥8923113531 🔝Call Girls Chinhat Lucknow best sexual serviceCALL ON ➥8923113531 🔝Call Girls Chinhat Lucknow best sexual service
CALL ON ➥8923113531 🔝Call Girls Chinhat Lucknow best sexual serviceanilsa9823
 
CALL ON ➥8923113531 🔝Call Girls Saharaganj Lucknow best Female service 🦺
CALL ON ➥8923113531 🔝Call Girls Saharaganj Lucknow best Female service  🦺CALL ON ➥8923113531 🔝Call Girls Saharaganj Lucknow best Female service  🦺
CALL ON ➥8923113531 🔝Call Girls Saharaganj Lucknow best Female service 🦺anilsa9823
 

Dernier (20)

08448380779 Call Girls In Karol Bagh Women Seeking Men
08448380779 Call Girls In Karol Bagh Women Seeking Men08448380779 Call Girls In Karol Bagh Women Seeking Men
08448380779 Call Girls In Karol Bagh Women Seeking Men
 
ppt on Myself, Occupation and my Interest
ppt on Myself, Occupation and my Interestppt on Myself, Occupation and my Interest
ppt on Myself, Occupation and my Interest
 
大学假文凭《原版英国Imperial文凭》帝国理工学院毕业证制作成绩单修改
大学假文凭《原版英国Imperial文凭》帝国理工学院毕业证制作成绩单修改大学假文凭《原版英国Imperial文凭》帝国理工学院毕业证制作成绩单修改
大学假文凭《原版英国Imperial文凭》帝国理工学院毕业证制作成绩单修改
 
Italy vs Albania Tickets: Italy's Quest for Euro Cup Germany History, Defendi...
Italy vs Albania Tickets: Italy's Quest for Euro Cup Germany History, Defendi...Italy vs Albania Tickets: Italy's Quest for Euro Cup Germany History, Defendi...
Italy vs Albania Tickets: Italy's Quest for Euro Cup Germany History, Defendi...
 
大学学位办理《原版美国USD学位证书》圣地亚哥大学毕业证制作成绩单修改
大学学位办理《原版美国USD学位证书》圣地亚哥大学毕业证制作成绩单修改大学学位办理《原版美国USD学位证书》圣地亚哥大学毕业证制作成绩单修改
大学学位办理《原版美国USD学位证书》圣地亚哥大学毕业证制作成绩单修改
 
🔝|97111༒99012🔝 Call Girls In {Delhi} Cr Park ₹5.5k Cash Payment With Room De...
🔝|97111༒99012🔝 Call Girls In  {Delhi} Cr Park ₹5.5k Cash Payment With Room De...🔝|97111༒99012🔝 Call Girls In  {Delhi} Cr Park ₹5.5k Cash Payment With Room De...
🔝|97111༒99012🔝 Call Girls In {Delhi} Cr Park ₹5.5k Cash Payment With Room De...
 
VIP Kolkata Call Girl Liluah 👉 8250192130 Available With Room
VIP Kolkata Call Girl Liluah 👉 8250192130  Available With RoomVIP Kolkata Call Girl Liluah 👉 8250192130  Available With Room
VIP Kolkata Call Girl Liluah 👉 8250192130 Available With Room
 
Call Girls 🫤 Malviya Nagar ➡️ 9999965857 ➡️ Delhi 🫦 Russian Escorts FULL ENJOY
Call Girls 🫤 Malviya Nagar ➡️ 9999965857  ➡️ Delhi 🫦  Russian Escorts FULL ENJOYCall Girls 🫤 Malviya Nagar ➡️ 9999965857  ➡️ Delhi 🫦  Russian Escorts FULL ENJOY
Call Girls 🫤 Malviya Nagar ➡️ 9999965857 ➡️ Delhi 🫦 Russian Escorts FULL ENJOY
 
JORNADA 5 LIGA MURO 2024INSUGURACION.pdf
JORNADA 5 LIGA MURO 2024INSUGURACION.pdfJORNADA 5 LIGA MURO 2024INSUGURACION.pdf
JORNADA 5 LIGA MURO 2024INSUGURACION.pdf
 
Plan d'orientations stratégiques rugby féminin
Plan d'orientations stratégiques rugby fémininPlan d'orientations stratégiques rugby féminin
Plan d'orientations stratégiques rugby féminin
 
Spain Vs Italy 20 players confirmed for Spain's Euro 2024 squad, and three po...
Spain Vs Italy 20 players confirmed for Spain's Euro 2024 squad, and three po...Spain Vs Italy 20 players confirmed for Spain's Euro 2024 squad, and three po...
Spain Vs Italy 20 players confirmed for Spain's Euro 2024 squad, and three po...
 
08448380779 Call Girls In IIT Women Seeking Men
08448380779 Call Girls In IIT Women Seeking Men08448380779 Call Girls In IIT Women Seeking Men
08448380779 Call Girls In IIT Women Seeking Men
 
Croatia vs Albania Clash of Euro Cup 2024 Squad Preparations and Euro Cup Dre...
Croatia vs Albania Clash of Euro Cup 2024 Squad Preparations and Euro Cup Dre...Croatia vs Albania Clash of Euro Cup 2024 Squad Preparations and Euro Cup Dre...
Croatia vs Albania Clash of Euro Cup 2024 Squad Preparations and Euro Cup Dre...
 
Chennai Call Girls Anna Nagar Phone 🍆 8250192130 👅 celebrity escorts service
Chennai Call Girls Anna Nagar Phone 🍆 8250192130 👅 celebrity escorts serviceChennai Call Girls Anna Nagar Phone 🍆 8250192130 👅 celebrity escorts service
Chennai Call Girls Anna Nagar Phone 🍆 8250192130 👅 celebrity escorts service
 
Tableaux 9ème étape circuit fédéral 2024
Tableaux 9ème étape circuit fédéral 2024Tableaux 9ème étape circuit fédéral 2024
Tableaux 9ème étape circuit fédéral 2024
 
Call Girls 🫤 Paharganj ➡️ 9999965857 ➡️ Delhi 🫦 Russian Escorts FULL ENJOY
Call Girls 🫤 Paharganj ➡️ 9999965857  ➡️ Delhi 🫦  Russian Escorts FULL ENJOYCall Girls 🫤 Paharganj ➡️ 9999965857  ➡️ Delhi 🫦  Russian Escorts FULL ENJOY
Call Girls 🫤 Paharganj ➡️ 9999965857 ➡️ Delhi 🫦 Russian Escorts FULL ENJOY
 
Dubai Call Girls Bikni O528786472 Call Girls Dubai Ebony
Dubai Call Girls Bikni O528786472 Call Girls Dubai EbonyDubai Call Girls Bikni O528786472 Call Girls Dubai Ebony
Dubai Call Girls Bikni O528786472 Call Girls Dubai Ebony
 
CALL ON ➥8923113531 🔝Call Girls Chinhat Lucknow best sexual service
CALL ON ➥8923113531 🔝Call Girls Chinhat Lucknow best sexual serviceCALL ON ➥8923113531 🔝Call Girls Chinhat Lucknow best sexual service
CALL ON ➥8923113531 🔝Call Girls Chinhat Lucknow best sexual service
 
CALL ON ➥8923113531 🔝Call Girls Saharaganj Lucknow best Female service 🦺
CALL ON ➥8923113531 🔝Call Girls Saharaganj Lucknow best Female service  🦺CALL ON ➥8923113531 🔝Call Girls Saharaganj Lucknow best Female service  🦺
CALL ON ➥8923113531 🔝Call Girls Saharaganj Lucknow best Female service 🦺
 
Call Girls In Vasundhara 📱 9999965857 🤩 Delhi 🫦 HOT AND SEXY VVIP 🍎 SERVICE
Call Girls In Vasundhara 📱  9999965857  🤩 Delhi 🫦 HOT AND SEXY VVIP 🍎 SERVICECall Girls In Vasundhara 📱  9999965857  🤩 Delhi 🫦 HOT AND SEXY VVIP 🍎 SERVICE
Call Girls In Vasundhara 📱 9999965857 🤩 Delhi 🫦 HOT AND SEXY VVIP 🍎 SERVICE
 

Note chapter9 0708-edit-1

  • 1. PHYSICS 025 CHAPTER 9 CHAPTER 9: Simple Harmonic Motion (6 Hours) 1
  • 2. PHYSICS 025 CHAPTER 9 Learning Outcome: 9.1 Simple harmonic motion (1 hour) At the end of this chapter, students should be able to: REMARKS : a) Explain SHM as periodic Examples : simple motion without loss of energy. pendulum, frictionless horizontal and vertical b) Introduce and use SHM spring oscillations. formulae: 2 d x a  2   2 x dt 2
  • 3. PHYSICS 025 CHAPTER 9 9.1 Simple harmonic motion 9.1.1 Simple harmonic motion (SHM)  is defined as the periodic motion without loss of energy in which the acceleration of a body is directly proportional to its displacement from the equilibrium position (fixed point) and is directed towards the equilibrium position but in opposite direction of the displacement. OR mathematically, d 2x a   x  2 2 (9.1) dt where a : accelerati on of the body ω : angular ve locity(ang ular frequency) x : displaceme nt from the equilibriu m position, O 3
  • 4. PHYSICS 025 CHAPTER 9  The angular frequency,  always constant thus a  x  The negative sign in the equation 9.1 indicates that the direction of the acceleration, a is always opposite to the direction of the displacement, x.  The equilibrium position is a position at which the body would come to rest if it were to lose all of its energy.  When the body in SHM is at the point of equilibrium.  displacement x = 0  acceleration a = 0  resultant force on the body F = 0 4
  • 5. PHYSICS 025 CHAPTER 9 o The displacement x is measured from the point of equilibrium. The maximum distance from the point of equilibrium is known as the amplitude of the simple harmonic motion. o The period T of a simple harmonic is the time taken for a complete oscillation. o The frequency f of the motion is the number of complete oscillations per second. 1 frequency, f  period The unit of frequency is the hertz (Hz). 5
  • 6. PHYSICS 025 CHAPTER 9  Equation 9.1 is the hallmark of the linear SHM.  Examples of linear SHM system are simple pendulum, horizontal and vertical spring oscillations as shown in Figures 9.1a, 9.1b and 9.1c.  a  Fs m x O x Figure 9.1a 6
  • 7. PHYSICS 025 CHAPTER 9 x   a  O Fs m x m   x x Fs a O Figure 9.1b Figure 9.1c 7
  • 8. PHYSICS 025 CHAPTER 9 Exercise A particle in simple harmonic motion makes 20 complete oscillations in 5.0 s. what is a. the frequency b. the period of the motion 8
  • 9. PHYSICS 025 CHAPTER 9 Solution: 20 a. frequency, f = Hz  4.0 Hz 5.0 1 1 b. period, T =  s  0.25s f 4.0 9
  • 10. PHYSICS 025 CHAPTER 9 Learning Outcome: 9.2 Kinematics of SHM (2 hours) At the end of this chapter, students should be able to: a) Write and use SHM displacement equation x  A sin t b) Derive and apply equations for : i) velocity, dx v   A2  x 2 dt ii) acceleration, dv d 2 x a  2   2 x dt dt iii) kinetic energy, 1  K  m 2 A2  x 2 2  iv) potential energy, 1 U m 2 x 2 2 10
  • 11. PHYSICS 025 CHAPTER 9 9.2 Kinematics of SHM 9.2.1 Displacement, x  Uniform circular motion can be translated into linear SHM and obtained a sinusoidal curve for displacement, x against angular displacement, graph as shown in Figure 9.6. x S  A Simulation 9.3 N x1 M A   1 O P 0  1   3 2  (rad) 2 2 A Figure 9.6 T 11
  • 12. PHYSICS 025 CHAPTER 9  At time, t = 0 the object is at point M (Figure 9.6) and after time t it moves to point N , therefore the expression for displacement, x1 is given by x1  A sin 1 where 1     and   t x1  A sin t     In general the equation of displacement as a function of time in SHM is given by phase equilibrium position x  A sin t  displacement from   (9.4) Initial phase angle amplitude (phase constant) angular time frequency  The S.I. unit of displacement is metre (m). Phase   It is the time-varying quantity t   .   Its unit is radian. 12
  • 13. PHYSICS 025 CHAPTER 9 Initial phase angle (phase constant),  It is indicate the starting point in SHM where the time, t = 0 s.  If  =0 , the equation (9.4) can be written as x  A sin t  where the starting point of SHM is at the equilibrium position, O.  For examples: a. At t = 0 s, x = +A x  A sin t    A  A sin 0     A O A   rad 2   Equation : x  A sin  t   OR x  A cost   2 13
  • 14. PHYSICS 025 CHAPTER 9 b. At t = 0 s, x = A x  A sin t     A  A sin 0    3   rad OR  rad A O A 2 2  3  x  A sin  t    Equation : x  A sin  t   OR    2   2 OR x   A cost  c. At t = 0 s, x = 0 but v = vmax , vmax A O A Equation : x  A sin t    OR x   A sin t  14
  • 15. PHYSICS 025 CHAPTER 9 9.2.2 Velocity, v  From the definition of instantaneous velocity, dx v and x  A sin t    dt v   A sin( t   )  d dt v  A sin( t   )  d dt v  A cos(t   ) (9.5)  Eq. (9.5) is an equation of velocity as a function of time in SHM.  The maximum velocity, vmax occurs when cos(t+)=1 hence v A max  (9.6) 15
  • 16. PHYSICS 025 CHAPTER 9  The S.I. unit of velocity in SHM is m s1.  If  = 0 , equation (9.5) becomes v  A cos t Relationship between velocity, v and displacement, x  From the eq. (9.5) : v  A cos(t   ) (1)  From the eq. (9.4) : x  A sin t    sin t     x (2) A  From the trigonometry identical, sin 2   cos 2   1and   t    cost     1  sin 2 t    (3) 16
  • 17. PHYSICS 025 CHAPTER 9  By substituting equations (3) and (2) into equation (1), thus 2 x v  A 1     A  x2  v   A2  A2  2  A    v  A  x 2 2 (9.7) 17
  • 18. PHYSICS 025 CHAPTER 9 9.2.3 Acceleration, a  From the definition of instantaneous acceleration, and v  A cost    dv a dt a   A cos(t   )  d dt a  A cos(t   )  d dt a   A sin( t   ) 2 (9.8)  Eq. (9.8) is an equation of acceleration as a function of time in SHM.  The maximum acceleration, amax occurs when sin(t+)=1  hence a A 2max (9.9) 18
  • 19. PHYSICS 025 CHAPTER 9  The S.I. unit of acceleration in SHM is m s2.  If  = 0 , equation (9.8) becomes a   A sin t 2 Relationship between acceleration, a and displacement, x  From the eq. (9.8) : a   2 A sin( t   ) (1) From the eq. (9.4) : x  A sin t     (2)  By substituting eq. (2) into eq. (1), therefore a   x 2 19
  • 20. PHYSICS 025 CHAPTER 9  Caution :  Some of the reference books use other general equation for displacement in SHM such as x  A cost    (9.10)  The equation of velocity in term of time, t becomes dx v   A sin( t   ) (9.11) dt  And the equation of acceleration in term of time, t becomes dv a   A 2 cos(t   ) (9.12) dt 20
  • 21. PHYSICS 025 CHAPTER 9 9.2.4 Energy in SHM Potential energy, U  Consider the oscillation of a spring as a SHM hence the potential energy for the spring is given by 1 2 U  kx and k  m 2 2 1 U  m 2 x 2 (9.13) 2  The potential energy in term of time, t is given by 1 U  m 2 x 2 and x  A sin t    2 U  m A sin t    1 2 2 2 (9.14) 2 21
  • 22. PHYSICS 025 CHAPTER 9 Kinetic energy, K  The kinetic energy of the object in SHM is given by 1 2 K  mv and v   A2  x 2 2 K  m A  x  1 2 2 2 (9.15) 2  The kinetic energy in term of time, t is given by K  mv and v  A cost    1 2 2 K  m A cos t    1 2 2 2 (9.16) 2 22
  • 23. PHYSICS 025 CHAPTER 9 Total energy, E  The total energy of a body in SHM is the sum of its kinetic energy, K and its potential energy, U . E  K U  From the principle of conservation of energy, this total energy is always constant in a closed system hence E  K  U  constant  The equation of total energy in SHM is given by 1 2 2 2 2  1 E  m A  x  m 2 x 2 2  1 E  m A 2 2 (9.17) 2 Simulation 9.4 1 2 OR E  kA (9.18) 2 23
  • 24. PHYSICS 025 CHAPTER 9 Example 3 : An object executes SHM whose displacement x varies with time t according to the relation   x  5.00 sin  2t    2 where x is in centimetres and t is in seconds. Determine a. the amplitude, frequency, period and phase constant of the motion, b. the velocity and acceleration of the object at any time, t , c. the displacement, velocity and acceleration of the object at t = 2.00 s, d. the maximum speed and maximum acceleration of the object. 24
  • 25. PHYSICS 025 CHAPTER 9 Solution : a. By comparing   x  5.00 sin  2t   with x  A sin t    thus  2 i. A  5.00 cm ii.   2 rad s 1 and   2f 2f  2 f  1.00 Hz iii. The period of the motion is 1 1 f  1.00  T T T  1.00 s iv. The phase constant is    rad 2 25
  • 26. PHYSICS 025 CHAPTER 9 Solution : b. i. Differentiating x respect to time, thus dx d     v   5.00 sin  2t    dt dt    2    v  5.002  cos 2t    2   v  10.0 cos 2t    2 where v is in cm s 1 and t is in seconds. 26
  • 27. PHYSICS 025 CHAPTER 9 Solution : b. ii. Differentiating v respect to time, thus dv d     a  10.0 cos 2t      dt dt   2    a  10.0 2 sin  2t    2   a  20.0 sin  2t   2  2 where a is in cm s 2 and t is in seconds. 27
  • 28. PHYSICS 025 CHAPTER 9 Solution : c. For t = 2.00 s i. The displacement of the object is   x  5.00 sin  2 2.00    2 x  5.00 cm ii. The velocity of the object is   v  10.0 cos 2 2.00   1  2 v  0.00 cm s OR v  A  x 2 2 v  2 5.00   5.00 2 2 1 v  0.00 cm s 28
  • 29. PHYSICS 025 CHAPTER 9 Solution : c. For t = 2.00 s iii. The acceleration of the object is   a  20.0 sin  2 2.00   2  2 a  20.0 2 cm s 2  197 cm s 2 OR a   2 x a  2   5.00 2 a  20.0 cm s  197 cm s 2 2 2 29
  • 30. PHYSICS 025 CHAPTER 9 Solution : d. i. The maximum speed of the object is given by vmax  A vmax  5.002  vmax  10.0 cm s 1 ii. The maximum acceleration of the object is amax   A 2 amax  2  5.00 2 amax  20.0 2 cm s 2 30
  • 31. PHYSICS 025 CHAPTER 9 Example 4 : The length of a simple pendulum is 75.0 cm and it is released at an angle 8 to the vertical. Calculate a. the frequency of the oscillation, b. the pendulum’s bob speed when it passes through the lowest point of the swing. (Given g = 9.81 m s2) Solution : L 8 A m A O A 31
  • 32. PHYSICS 025 CHAPTER 9 Solution : L  0.75 m;   8 a. The frequency of the simple pendulum oscillation is 1 L f  and T  2 T g 1 g f  2 L 1 9.81 f  f  0.576 Hz 2 0.75 b. At the lowest point, the velocity of the pendulum’s bob is maximum hence v  A and A  L sin 8   max vmax  L sin 8 2f     vmax  0.75 sin 8 2 0.576  1 vmax  0.378 m s 32
  • 33. PHYSICS 025 CHAPTER 9 Example 5 : A body hanging from one end of a vertical spring performs vertical SHM. The distance between two points, at which the speed of the body is zero is 7.5 cm. If the time taken for the body to move between the two points is 0.17 s, Determine a. the amplitude of the motion, b. the frequency of the motion, c. the maximum acceleration of body in the motion. Solution : a. The amplitude is 7.5 102 A  3.75 102 m 2 A b. The period of the motion is T  2t  20.17 7.5 cm O t  0.17 s m T  0.34 s A 33
  • 34. PHYSICS 025 CHAPTER 9 Solution : b. Therefore the frequency of the motion is 1 1 f   T 0.34 f  2.94 Hz c. From the equation of the maximum acceleration in SHM, hence amax  A 2 and   2f  A2f  2 amax amax  2   3.75 10 2 2.94 2 amax  12.8 m s 2 34
  • 35. PHYSICS 025 CHAPTER 9 Example 6 : An object of mass 450 g oscillates from a vertically hanging light spring once every 0.55 s. The oscillation of the mass-spring is started by being compressed 10 cm from the equilibrium position and released. a. Write down the equation giving the object’s displacement as a function of time. b. How long will the object take to get to the equilibrium position for the first time? c. Calculate i. the maximum speed of the object, ii. the maximum acceleration of the object. 35
  • 36. PHYSICS 025 CHAPTER 9 Solution : m  0.450 kg; T  0.55 s a. The amplitude of the motion is A  10 cm The angular frequency of the oscillation is 2 2   T 0.55 10 cm m t 0   11.4 rad s 1 and the initial phase angle is given by 0 x  A sin t    A  A sin 0    10 cm    rad 2 Therefore the equation of the displacement as a function of time is x  A sin t      x  10 sin 11.4t   OR x  10 cos11.4t   2 where x is in cm and t is in seconds. 36
  • 37. PHYSICS 025 CHAPTER 9 Solution : m  0.450 kg; T  0.55 s b. At the equilibrium position, x = 0   T 0.55 x  10 sin 11.4t   OR t   2 4 4   t  0.138 s 0  10 sin 11.4t    2   11.4t    sin 0 1  2   11.4t      2 t  0.138 s 37
  • 38. PHYSICS 025 CHAPTER 9 Solution : m  0.450 kg; T  0.55 s c. i. The maximum speed of the object is vmax  A vmax  0.111.4 vmax  1.14 m s 1 ii. The maximum acceleration of the object is amax  A 2 amax  0.111.4 2 amax  13.0 m s 2 38
  • 39. PHYSICS 025 CHAPTER 9 Example 7 : An object of mass 50.0 g is connected to a spring with a force constant of 35.0 N m-1 oscillates on a horizontal frictionless surface with an amplitude of 4.00 cm. Determine a. the total energy of the system, b. the speed of the object when the position is 1.00 cm, c. the kinetic and potential energy when the position is 3.00 cm. 3 1 2 Solution : m  50.0 10 kg; k  35.0 N m ; A  4.00 10 m a. By applying the equation of the total energy in SHM, thus 1 2 E  kA 2 1 2  E  35.0 4.00 10 2 2 E  2.80 102 J 39
  • 40. PHYSICS 025 CHAPTER 9 Solution : m  50.0 103 kg; k  35.0 N m1; A  4.00 102 m b. The speed of the object when x = 1.00 102 m k v   A  x and 2 2  m v m k A x 2 2  v 35.0  50.0 10 3  4.00 10   1.00 10   2 2 2 2   1 v  1.03 m s 40
  • 41. PHYSICS 025 CHAPTER 9 Solution : m  50.0 103 kg; k  35.0 N m1; A  4.00 102 m c. The kinetic energy of the object when x = 3.00 102 m is 1 K  m A  x 2 2 2  2 and  k  m 2 1  K  k A2  x 2 2  1 2  K  35.0 4.00 10   3.00 10  2 2 2 2  K  1.23 102 J and the potential energy of the object when x = 3.00 102 m is 1 2 U  kx 2 2  U  35.0 3.00 10 1 2  2 U  1.58 102 J 41
  • 42. PHYSICS 025 CHAPTER 9 Exercise 9.1 : 1. A mass which hangs from the end of a vertical helical spring is in SHM of amplitude 2.0 cm. If three complete oscillations take 4.0 s, determine the acceleration of the mass a. at the equilibrium position, b. when the displacement is maximum. ANS. : U think ; 44.4 cm s2 2. A body of mass 2.0 kg moves in simple harmonic motion. The displacement x from the equilibrium position at time t is given by   x  6.0 sin 2 t    6 where x is in metres and t is in seconds. Determine a. the amplitude, period and phase angle of the SHM. b. the maximum acceleration of the motion. c. the kinetic energy of the body at time t = 5 s.  ANS. : 6.0 m, 1.0 s, rad ; 24.02 m s2; 355 J 42 3
  • 43. PHYSICS 025 CHAPTER 9 3. A horizontal plate is vibrating vertically with SHM at a frequency of 20 Hz. What is the amplitude of vibration so that the fine sand on the plate always remain in contact with it? ANS. : 6.21104 m 4. An object of mass 2.1 kg is executing simple harmonic motion, attached to a spring with spring constant k = 280 N m1. When the object is 0.020 m from its equilibrium position, it is moving with a speed of 0.55 m s1. Calculate a. the amplitude of the motion. b. the maximum velocity attained by the object. ANS. : 5.17102 m; 0.597 m s1 5. A simple harmonic oscillator has a total energy of E. a. Determine the kinetic energy and potential energy when the displacement is one half the amplitude. b. For what value of the displacement does the kinetic energy equal to the potential energy? ANS. : 3 1 2 E , E; A 4 4 2 43
  • 44. PHYSICS 025 CHAPTER 9 Learning Outcome: 9.3 Graphs of SHM (2 hours) At the end of this chapter, students should be able to:  Sketch, interpret and distinguish the following graphs:  displacement - time  velocity - time  acceleration - time  energy - displacement 44
  • 45. PHYSICS 025 CHAPTER 9 9.3 Graphs of SHM 9.3.1 Graph of displacement-time (x-t)  From the general equation of displacement as a function of time in SHM,  x  A sin t     If  = 0 , thus x  A sin t   The displacement-time graph is shown in Figure 9.7. x Period A Amplitude 0 T T 3T T t 4 2 4 Simulation 9.5 A Figure 9.7 45
  • 46. PHYSICS 025 CHAPTER 9  For examples: a. At t = 0 s, x = +A   Equation: x  A sin  t   OR x  A cost  Graph of x against t:  2 x A 0 T T 3T T t 4 2 4 A 46
  • 47. PHYSICS 025 CHAPTER 9 b. At t = 0 s, x = A  3    Equation: x  A sin  t   OR x  A sin  t    2   2 OR x   A cost  Graph of x against t: x A 0 T T 3T T t 4 2 4 A 47
  • 48. PHYSICS 025 CHAPTER 9 c. At t = 0 s, x = 0, but v = vmax Equation: x  A sin t    OR x   A sin t  Graph of x against t: x A 0 T T 3T T t 4 2 4 A 48
  • 49. PHYSICS 025 CHAPTER 9 How to sketch the x against t graph when   0 Sketch the x against t graph for the following expression:  π x  5 cm sin  3t    From the expression,  2 the amplitude, A  5 cm  2 2 the angular frequency,   3 1  rad s  T s T 3  Sketch the x against t graph for equation x  5 sin 3t  x(cm) T5 4 0 t (s ) 1 2 3 3 5 49
  • 50. PHYSICS 025 CHAPTER 9  T  Because of    rad  t  hence shift the y-axis to the 2 4 left by T  Sketch the new graph. 4 x(cm) 5 0 t (s ) 1 2 3 3 5 RULES If  = negative value shift the y-axis to the left If  = positive value shift the y-axis to the right 50
  • 51. PHYSICS 025 CHAPTER 9 9.3.2 Graph of velocity-time (v-t)  From the general equation of velocity as a function of time in SHM,  v  A cos t     If  = 0 , thus v  A cost   The velocity-time graph is shown in Figure 9.8. v A 0 T T 3T T t 4 2 4  A Figure 9.8 51
  • 52. PHYSICS 025 CHAPTER 9  From the relationship between velocity and displacement, v   A2  x 2 thus the graph of velocity against displacement (v-x) is shown in Figure 9.9. v A A 0 A x  A Figure 9.9 52
  • 53. PHYSICS 025 CHAPTER 9 9.3.3 Graph of acceleration-time (a-t)  From the general equation of acceleration as a function of time in SHM, a   A sin t    2 If  = 0 , thus a   A sin t  2   The acceleration-time graph is shown in Figure 9.10. a A 2 0 T T 3T T t 4 2 4  A 2 Figure 9.10 53
  • 54. PHYSICS 025 CHAPTER 9  From the relationship between acceleration and displacement, a   2 x thus the graph of acceleration against displacement (a-x) is shown in Figure 9.11. a A 2 A 0 A x  A 2 Figure 9.11  The gradient of the a-x graph represents gradient , m   2 54
  • 55. PHYSICS 025 CHAPTER 9 9.3.4 Graph of energy-displacement (E-x)  From the equations of kinetic, potential and total energies as a term of displacement 1  K  m 2 A2  x 2 2  1 1 ; U  m x and E  m 2 A2 2 2 2 2 thus the graph of energy against displacement (a-x) is shown in Figure 9.12. E 1 E  m 2 A2  constant 2 1 U  m 2 x 2 2 K  m 2 A2  x 2  1 Figure 9.12 2 x 55
  • 56. PHYSICS 025 CHAPTER 9  The graph of Energy against time (E-t) is shown in Figure 9.13. Energy 1 E m 2 A2 2 U  m 2 A2 sin 2 t  1 2 K  m 2 A2 cos 2 t  1 2 t Figure 9.13 Simulation 9.6 56
  • 57. PHYSICS 025 CHAPTER 9 Example 8 : The displacement of an oscillating object as a function of time is shown in Figure 9.14. x(cm) 15.0 0 t (s) 0.8 15.0 Figure 9.14 From the graph above, determine for these oscillations a. the amplitude, the period and the frequency, b. the angular frequency, c. the equation of displacement as a function of time, d. the equation of velocity and acceleration as a function of time. 57
  • 58. PHYSICS 025 CHAPTER 9 Solution : a. From the graph, Amplitude, A  0.15 m Period, T  0.8 s 1 1 Frequency, f   T 0.8 f  1.25 Hz b. The angular frequency of the oscillation is given by 2 2   T 0.8 1   2.5 rad s c. From the graph, when t = 0, x = 0 thus   0 By applying the general equation of displacement in SHM x  A sin t    x  0.15 sin 2.5t  where x is in metres and t is in seconds. 58
  • 59. PHYSICS 025 CHAPTER 9 Solution : d. i. The equation of velocity as a function of time is  0.15 sin 2.5t  dx d v dt dt v  0.152.5 cos 2.5t v  0.375 cos 2.5t where v is in m s 1 and t is in seconds. ii. and the equation of acceleration as a function of time is  0.375 cos 2.5t  dv d a dt dt a  0.375 2.5 sin 2.5t a  0.938 2 sin 2.5t 2 where a is in m s and t is in seconds. 59
  • 60. PHYSICS 025 CHAPTER 9 Example 9 : a ( m s 2 ) 0.80  4.00 0 4.00 x(cm)  0.80 Figure 9.15 Figure 9.15 shows the relationship between the acceleration a and its displacement x from a fixed point for a body of mass 2.50 kg at which executes SHM. Determine a. the amplitude, b. the period, c. the maximum speed of the body, d. the total energy of the body. 60
  • 61. PHYSICS 025 CHAPTER 9 Solution : m  2.50 kg 2 a. The amplitude of the motion is A  4.00 10 m 2 b. From the graph, the maximum acceleration is amax  0.80 m s By using the equation of maximum acceleration, thus 2 amax  A and   2  2  2 T amax  A  T   2  2  2 0.80  4.00 10   T  1.40 s T  OR The gradient of the a-x graph is y2  y1 0  0.80 gradient     2  x2  x1 0   4.00 10 2   2  2  20    T  1.40 s T  61
  • 62. PHYSICS 025 CHAPTER 9 Solution : m  2.50 kg c. By applying the equation of the maximum speed, thus 2 vmax  A and    2  T vmax  A  T   2  2  vmax  4.00 10   1  1.40  vmax  0.180 m s d. The total energy of the body is given by 1 E  m 2 A2 2  2  2 E  2.50  4.00 10  1 2 2 2  1.40  E  4.03 102 J 62
  • 63. PHYSICS 025 CHAPTER 9 Example 10 : x(m) 0.2 0 t (s ) 1 2 3 4 5  0.2 Figure 9.16 Figure 9.16 shows the displacement of an oscillating object of mass 1.30 kg varying with time. The energy of the oscillating object consists the kinetic and potential energies. Calculate a. the angular frequency of the oscillation, b. the sum of this two energy. 63
  • 64. PHYSICS 025 CHAPTER 9 Solution : m  1.30 kg From the graph, Amplitude, A  0.2 m Period, T  4 s a. The angular frequency is given by 2 2   T 4    rad s 1 2 b. The sum of the kinetic and potential energies is 1 E  m 2 A2 2   2 E  1.30  0.2 1 2 2  2  E  6.42 10 2 J 64
  • 65. PHYSICS 025 CHAPTER 9 9.3.5 Phase difference,  Considering two SHM with the following equations, x1  A1 sin 1t  1  x2  A2 sin 2t  2   is defined as   phase 2   phase 1    2t  2   1t  1   For examples, a. x A x2  A cost  x2 OR   x2  A sin  t   0 T T t  2 2 x1 x1  A sin t  A 65
  • 66. PHYSICS 025 CHAPTER 9  Thus the phase difference is given by   Δ   t    t   2  Δ  rad  If  > 0 , hence 2 x2 leads the x1 by phase difference ½ rad and constant with time. b. x A x2   A cost  OR   x2  A sin  t   0 T T t  2 2 x1 x1  A sin t  A x2 66
  • 67. PHYSICS 025 CHAPTER 9  Thus the phase difference is given by   Δ   t    t   2  Δ   rad 2  If  < 0 , hence x2 lags behind the x1 by phase difference ½ rad and constant with time. c. x A x2   A sin t  x2 OR x2  A sin t    0 T t x1  A sin t  T 2 x1 A 67
  • 68. PHYSICS 025 CHAPTER 9  Thus the phase difference is given by Δ  t     t  Δ   rad  If  =  , hence x2 is antiphase with the x1 and constant with time. d. x A x2  A sin t  x1  A sin t  x2 The phase difference is 0 T T t Δ  t   t  2 x1 Δ  0 Simulation 9.7 A  If  = 0 , hence Simulation 9.8 x2 is in phase with the x1 and constant with time. 68
  • 69. PHYSICS 025 CHAPTER 9 Example 11 : x(cm) 4 0 1.0 2.0 3.0 t (s ) 4 Figure 9.17 Figure 9.17 shows the variation of displacement, x with time, t for an object in SHM. a. Determine the amplitude, period and frequency of the motion. b. Another SHM leads the SHM above by phase difference of 0.5 radian where the amplitude and period of both SHM are the same. On the same axes, sketch the displacement, x against time, t graph for both SHM. 69
  • 70. PHYSICS 025 CHAPTER 9 Solution : a. From the graph, Amplitude, A  4 cm Period, T  2.0 s The frequency is given by 1 1 f   T 2.0 f  0.5 Hz b. Equation for 1st SHM (from the graph): x1  A sin t    x1  A sin 2ft      x1  4 sin  t    2 70
  • 71. PHYSICS 025 CHAPTER 9 Solution : b. The 2nd SHM leads the 1st SHM by the phase difference of 0.5  radian thus Δ   rad 2   Δ  t      t    2     t      t      rad 2  2 Equation for 2nd SHM : x2  4 sin t    x(cm) 4 x1 x2 0 t (s ) 1.0 2.0 3.0 4 71
  • 72. Summary : t x v a K U PHYSICS 025 amax CHAPTER 9 1 2 0 A 0  A 2 0  max 2 kA vmax T 1 0  A 0 mA2 2 0 4 2 amax v   A2  x 2 a   2 x T 1 2  max 1 2 A 0 A 2 0 kA K  mv 2 2 vmax 2 1 2 3T 1 U  kx 0 A 0 2 mA2 2 0 2 4 amax 1 2 T A 0  A 2 0 kA 2  max A O A 72
  • 73. PHYSICS 025 CHAPTER 9 Learning outcome 9.4 Period of simple harmonic motion  Derive and use expression for period of SHM, T for simple pendulum and single spring L  Simple pendulum T  2 g  Simple m T  2 k 73
  • 74. PHYSICS 025 CHAPTER 9 9.4.1 Terminology in SHM Amplitude (A)  is defined as the maximum magnitude of the displacement from the equilibrium position.  Its unit is metre (m). Period (T)  is defined as the time taken for one cycle.  Its unit is second (s).  Equation : 1 T f Frequency (f)  is defined as the number of cycles in one second.  Its unit is hertz (Hz) : 1 Hz = 1 cycle s1 = 1 s1  Equation :    2f OR f  2 74
  • 75. PHYSICS 025 CHAPTER 9 9.4.2 System of SHM A. Simple pendulum oscillation  Figure 9.2 shows the oscillation of the simple pendulum of length, L. L   T x m P O mg sin  Figure 9.2  mg cos   mg 75
  • 76. PHYSICS 025 CHAPTER 9  A pendulum bob is pulled slightly to point P.  The string makes an angle,  to the vertical and the arc length, x as shown in Figure 9.2.  The forces act on the bob are mg, weight and T, the tension in the string.  Resolve the weight into  the tangential component : mg sin  the radial component : mg cos   The resultant force in the radial direction provides the centripetal force which enables the bob to move along the arc and is given by mv2 T  mg cos   r  The restoring force, Fs contributed by the tangential component of the weight pulls the bob back to equilibrium position. Thus Fs  mg sin  76
  • 77. PHYSICS 025 CHAPTER 9  The negative sign shows that the restoring force, Fs is always against the direction of increasing x.  For small angle, ;  sin    in radian  arc length, x of the bob becomes straight line (shown in Figure 9.3) then x sin      L L x thus Fs  mg  L x Figure 9.3 77
  • 78. PHYSICS 025 CHAPTER 9  By applying Newton’s second law of motion,  F  ma  F s mgx ma   L g a    x L Thus a  x Simple pendulum executes linear SHM g  By comparing a    x with a   2 x L g 2 Thus   2 and  L T 78
  • 79. PHYSICS 025 CHAPTER 9 L Therefore T  2 (9.2) g where T : period of the simple pendulum L : length of the string g : gravitatio nal accelerati on  The conditions for the simple pendulum executes SHM are  the angle,  has to be small (less than 10).  the string has to be inelastic and light.  only the gravitational force and tension in the string acting on the simple pendulum. Simulation 9.1 79
  • 80. PHYSICS 025 CHAPTER 9 B. Spring-mass oscillation Vertical spring oscillation   F F1 x1 O x O  m a m  mg  mg Figure 9.4a Figure 9.4b Figure 9.4c 80
  • 81. PHYSICS 025 CHAPTER 9  Figure 9.4a shows a free light spring with spring constant, k hung vertically.  An object of mass, m is tied to the lower end of the spring as shown in Figure 9.4b. When the object achieves an equilibrium condition, the spring is stretched by an amount x1 . Thus F 0 F W  0  kx1  W  0 W  kx1  The object is then pulled downwards to a distance, x and released as shown in Figure 9.4c. Hence  F  ma F1  W  ma and F1  k x1  x   k x1  x    kx1   ma k a    x m then a  x Vertical spring oscillation executes linear SHM 81
  • 82.   a PHYSICS 025 CHAPTER Fs 9 m Horizontal spring oscillation  Figure 9.5 shows a spring is  t 0 initially stretched with a Fs  0 displacement, x = A and then m released. T   t  According to Hooke’s law, a 4 Fs  kx Fs  The mass accelerates toward m T equilibrium position, x = 0 by  t the restoring force, Fs hence Fs  0 2 Fs  ma m ma  kx 3T k  a t 4 a    x F s Then m m a  x executes linear SHM t T Figure 9.5 x  A x 0 xA82
  • 83. PHYSICS 025 CHAPTER 9 k By comparing a    x with a   x 2  m k 2 Thus   and   2 m T where (9.3) m T : period of the spring oscillatio n Therefore T  2 k m : mass of the object k : spring constant (force constant)  The conditions for the spring-mass system executes SHM are  The elastic limit of the spring is not exceeded when the spring is being pulled.  The spring is light and obeys Hooke’s law.  No air resistance and surface friction. Simulation 9.2 83
  • 84. PHYSICS 025 CHAPTER 9 Example 1 : A certain simple pendulum has a period on the Earth surface’s of 1.60 s. Determine the period of the simple pendulum on the surface of Mars where its gravitational acceleration is 3.71 m s2. (Given the gravitational acceleration on the Earth’s surface is g = 9.81 m s2) 2 2 Solution : TE  1.60 s; g E  9.81 m s ; g M  3.71 m s The period of simple pendulum on the Earth’s surface is l TE  2 (1) gE But its period on the surface of Mars is given by l TM  2 (2) gM 84
  • 85. PHYSICS 025 CHAPTER 9 Solution : TE  1.60 s; g E  9.81 m s 2 ; g M  3.71 m s 2 By dividing eqs. (1) and (2), thus l 2 TE gE  TM l 2 gM TE gM  TM gE 1.60 3.71  TM 9.81 TM  2.60 s 85
  • 86. PHYSICS 025 CHAPTER 9 Example 2 : A mass m at the end of a spring vibrates with a frequency of 0.88 Hz. When an additional mass of 1.25 kg is added to the mass m, the frequency is 0.48 Hz. Calculate the value of m. Solution : f1  0.88 Hz; f 2  0.48 Hz; Δm  1.25 kg The frequency of the spring is given by 1 m f1  and T1  2 T1 k 1 k f1  (1) 2 m After the additional mass is added to the m, the frequency of the spring becomes 1 k f2  (2) 2 m  Δm 86
  • 87. PHYSICS 025 CHAPTER 9 Solution : f1  0.88 Hz; f 2  0.48 Hz; Δm  1.25 kg By dividing eqs. (1) and (2), thus 1 k f1  2 m f2 1 k 2 m  Δm f1 m  Δm  f2 m 0.88 m  1.25  0.48 m m  0.529 kg 87
  • 88. PHYSICS CHAPTER 9 THE END… Next Chapter… CHAPTER 10 : Mechanical waves 88