Ce diaporama a bien été signalé.
Nous utilisons votre profil LinkedIn et vos données d’activité pour vous proposer des publicités personnalisées et pertinentes. Vous pouvez changer vos préférences de publicités à tout moment.

Cuadratura gaussiana-deducción

553 vues

Publié le

  • Soyez le premier à commenter

  • Soyez le premier à aimer ceci

Cuadratura gaussiana-deducción

  1. 1. INTEGRACIÓN NUMÉRICA CON PUNTOS DE BASE EQUIDISTANTE Diana Lizbeth Buenfil León Jessica Sharlin Landeros Juárez Ricardo José Lara Castellanos Nayla Berenice Muñoz Euan Daniela PérezYáñez
  2. 2. CUADRATURA DE GAUSS Introducción
  3. 3. Cuadratura de gauss con dos puntos
  4. 4. CUADRATURA GAUSSIANA
  5. 5.  Los siguientes gráficos muestran como se integra usando el trapezoide uniendo el punto A de coordenadas (a,f(a)) con el punto B de coordenadas (b,f(b)) con h=(b-a)
  6. 6. Deducción de la técnica Gaussiana  Consideremos la figura a seguir donde se desea encontrar la integral de la función mostrada entre los limites -1 y 1 si los limites fueran diferentes se hace un cambio de variable con la finalidad de pasar a -1 y +1 , los puntos C y D se seleccionan sobre la curva y se forma el trapezoide , E,F, G y H .
  7. 7. “Polinomios de Legendre”  Es un conjunto {P0(x), P1(x),...,Pn (x),... } que tienen las siguientes propiedades:
  8. 8.  Debemos decir que todos estos polinomios tienen raíces distintas y se encuentran en el intervalo [-1,1] y se ubican simétricamente con respecto al origen y lo mas importante son los nodos que se utilizan para resolver nuestro problema.
  9. 9.  Debemos tener en cuenta los nodos que son necesarios para generar una formula de integración numérica que sea exacta en los polinomios de grado menor o igual a 2n-1 son las raíces del polinomio de Legendre de grado n. En donde los coeficientes apropiados para evaluar las funciones en cada nodo son dado de la siguiente manera:
  10. 10. Para la comodidad debemos decir que tanto las raíces de los polinomios de Legendre como los coeficientes se encuentran tabulados.
  11. 11. EJEMPLO
  12. 12. Instrumentación computacional de la Cuadratura de Gauss
  13. 13. Instrumentación computacional de la cuadratura de Gauss. function s= cgauss(f, a, b) t1= -(b- a)/2*1/sqrt(3)+(b+a)/2; t2= (b- a)/2*1/sqrt(3)+(b+a)/2; s = (b- a)/2*(f(t1)+f(t2));
  14. 14. Para mejorar la precisión de esta fórmula se la puede aplicar mas de una vez dividiendo el intervalo de integración en sub-intervalos. Ejemplo: use la función cgauss para calcular >> syms x >> f=x*exp (x) >> s=cgauss (inline(f),1,2) s = 7.3832
  15. 15. Ejemplo: aplique dos veces la cuadratura de Gauss en el ejemplo anterior. En cada sub-intervalo se le aplica la fórmula de la Cuadratura de Gauss: >> syms x >> f= x*exp (x); >> s= cgauss(inline(f),1,1.5)+ cgauss(inline(f),1,1.5,2) s = 7.3886 Se puede dividir el intervalo en más sub-intervalos para obtener mayor precisión.
  16. 16. Instrumentación extendida de la Cuadratura de Gauss
  17. 17. function t=cgaussm(f, a, b, m) h=(b-a)/m; t=0; x=a; for i=1:m a=x+(i-1)*h; b=x+i*h; s=cgauss(f,a,b); t=t+s; end m es la cantidad de sub-intervalos
  18. 18. Ejemplo: aplicar sucesivamente la Cuadratura de Gauss incrementando el número de sub-intervalos, hasta que la respuesta tenga 4 decimales exactos. >> syms x >> f=x*exp (x); >> s=cgaussm (inline(f), 1,2,1) s= 7.3833 >> s=cgaussm(inline(f), 1,2,2) s= 7.3887 >> s=cgaussm(inline(f), 1,2,3) s= 7.3890 >> s=cgaussm(inline(f), 1,2,4) s= 7.3890En el último calculo se han usado 4 sub-intervalos. El valor obtenido tiene 4 decimales fijos. Para obtener fórmulas de cuadratura de Gauss con más puntos no es practico usar el método de
  19. 19. Bibliografía  http://es.slideshare.net/KikePrieto1/an-23- integracionnumericasegundaparte#

×