SlideShare une entreprise Scribd logo
1  sur  29
Algebraic Methods 1 Mathematics 1 Level 4 © University of Wales Newport 2009 This work is licensed under a  Creative Commons Attribution 2.0 License .
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Algebraic Methods 1
Mathematical Syntax The area of a rectangle is given by: Area = Length x Breath Area = L x B or L.B or LB When two symbols are written next to each other then this implies that they are multiplied. This is not true for numbers 23 is not 2 x 3. Also a shorthand for 2 x 2 x 2 x 2 x 2 is 2 5 And a x a x a x a x a x a is a 6 We must also be aware that 2a is not the same as a 2 One is a + a the other is a x a Algebraic Methods 1
Indices We can now look at what happens when we combine expressions which have indices: e.g. a 4  x a 3  = (a x a x a x a) x (a x a x a) (a x a x a x a) x (a x a x a) = a x a x a x a x a x a x a = a 7 When multiplying powers of the same letter we add the indices a n  x a m  = a n+m e.g. When dividing powers of the same letter we subtract the indices a n     a m  = a n-m Algebraic Methods 1
Examples ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Algebraic Methods 1
Common error What does 2a 2  mean? Does it mean 2 x a x a  or  2a x 2a It means the first one! If we wanted the second one we would write it as (2a) 2   So the indices only effect the adjacent letter unless a bracket is used. e.g. 1. (2a) 3 2. (3ab) 2 3. (ab) 3  x (a 2 b) 2 simplify these expressions Algebraic Methods 1
Powers Roots and Reciprocals What does (a 2 ) 3  give us? (a x a) x (a x a) x (a x a) = a x a x a x a x a x a = a 6 When raising a power of a term to a new power we multiply the indices (a n ) m  = a nxm What does √a 8  give us? a x a x a x a x a x a x a x a = (a x a x a x a) x (a x a x a x a)   = (a x a x a x a) 2 When rooting a power of a term we divide the indices √ (a n ) = a n  m m Algebraic Methods 1
Powers Roots and Reciprocals What does a    a give us? a 1    a 1  = a 1-1  = a 0 but we also know that this equals 1 Any term raised to the power 0 equals 1 and conversely 1 can be thought as any term to the power 0 What does 1/a 2  give us? 1    a 2  = a 0    a 2  = a 0-2  = a -2   When reciprocating a power of a term we change the sign of the index  1/a n  = a -n Algebraic Methods 1
Addition and Subtraction Consider the equation: 6 + 8  = 14 We know that 3 x 2 4 x 2 7 x 2 i.e. three lots of something plus four lots of something equals seven lots of something or 3a + 4a = 7a Take care – it does not equal 7a 2 Same with subtraction: 10 a pples  – 4 a pples  = 6 a pples Note addition and subtraction only work if the letter is the same. 5 apples plus 6 oranges does not equal 11 ? Algebraic Methods 1
Number lines -8 -7 -6 -5 -4 -3 -2 -1  0 +1 +2 +3 +4 +5 +6 +7 +8  Notes Positive numbers are to the right of zero Negative numbers are to the left of zero So 5a – 7a means start at 5 and move 7 to the left. The only sign that can be omitted in front of a term is a positive sign The only sign that can be omitted between two terms is a multiplication sign. Only similar terms can be added or subtracted  2a 2 b + 3ab 2  cannot be performed. Subtraction Addition
Simplify Algebraic Methods 1
B O D M A S This indicate the order in which mathematical operations must be carried out in order to generate the correct answer: B rackets O rder (power) D ivision M ultiplication A ddition S ubtraction What is the answer to the equation: 7 + 2 x 4  Most calculators have BODMAS built in so if we want 7 added onto 2 then multiplied by 4 we must use brackets. is it  36 or 15?
Brackets in algebra Brackets allow us to treat whatever is inside as a single quantity. i.e. 4a – (2a + 7b) means that 2a + 7b as a whole is  subtracted from 4a. 5(5x – 2y) means that 5x – 2y is all multiplied  by 5 Consider 3(4 + 1) – 2(2 + 4) 3 x 5 – 2 x 6 = 15 – 12  = 3  12 + 3 – 4 + 8  = 19  12 + 3 – 4 – 8 = 3  Algebraic Methods 1
Rules for the removal of simple brackets Every term inside the bracket must be multiplied by the quantity outside the bracket. If the sign in front of the bracket is positive the signs inside the bracket remain unchanged. (no sign is assumed to be positive. If the sign in front of the bracket is negative the signs inside the bracket are changed. 1.  3(a+b) + 4(5a+b) 2.  3(a-b) + 4(2a+b) 3.  6(a+2b-c) + (a-b+c) 4.  2(3a-4b) – (a+b) + 2(a+b) 5.  3(a-2b+3c) – 2(b+4c) 6.  -4(a-3b) – 3(-3a-b) 7.  2p(q+r) – p(3q-2r) 8.  11a(2b+c) – 3a(3b-2c) 9.  a(a+b-c) – b(a-b+c) 10. a(b+c) – b(c+a) + c(a+b) Algebraic Methods 1
Solution to simple equations If we have an equation with one unknown quantity then it is possible to determine the unknown quantity. e.g. 9 = 3 + 2x x is the unknown quantity. To determine its value we need to rearrange the equation so that we have x = Process: 9 = 3 + 2x subtract 3 from each side. 6 = 2x divide each sides by 2 3 = x answer x = 3  e.g. 4x -3 = x + 18 Process 4x -3 = x + 18 add 3 to each side 4x = x + 21 subtract x from each side 3x = 21 divide each side by 3 x = 7 answer x = 7
Solution to simple equations Always aim to make the unknown a positive quantity: e.g. 5 – 2x = x +7 Process 5 – 2x = x +7 add 2x to each side 5 = 3x + 7 subtract 7 from each side -2 = 3x divide each side by 3 -2/3 = x Answer x = -2/3 Examples 1.  4a = a + 9 2.  4x – 3 = 2x +3 3.  a – 3 = 2a – 14 4.  7x + 1 = 1 + 6x 5.  7(a – 5) = 3(4 – a) Algebraic Methods 1
Solution to equations involving fractions Useful steps – any compound numerator or denominator should be placed in brackets and any number not written as a fraction should be made into a fraction. e.g. We now multiply through by the lowest common denominator. (5 x 2 x 1 = 10) 2 5 6x + 4 - 5x – 20 = 40 combine like terms x - 16 = 40 add 16 to each side x = 56 Answer  Algebraic Methods 1
Solution to equations involving fractions Lowest Common Denominator  (LCD) is the lowest number that a series of numbers can be divided by and still give a whole number. e.g. the numbers 2, 3, 4, 6 when multiplied gives 144 144/2 = 72 144/3 = 48 144/4 = 36 144/6 = 24 But there is a lower number which also is fine and this is 12 12/2 = 6 12/3 = 4 12/4 = 3 12/6 = 2 To determine this lowest value we write down the factors of each number. 2 = 2  3 = 3  4 = 2 x 2  6 = 3 x 2 Leaving us 2 x 2 x 3 = 12 Algebraic Methods 1
Solution to equations involving fractions e.g. LCD = 12 2 4 3 6 12 – 2x - 10 = 8x +28 - 3x + 30 combine like terms 2 – 2x = 5x + 58 add 2x to each side 2 = 7x + 58 subtract 58 from each side -56 = 7x divide each side by 7 -8 = x Answer x = -8 Algebraic Methods 1
Solution to equations involving fractions If we have a single fraction equal to a another single fraction then we can cross multiply: 5 x 5a = 3 x 2  25a = 6 Examples:
Transposition of Formulae In the formula: P = I 2 R P  is said to be the subject of the formula. We may know I and P and need to work out R – to do this we must make R the subject of the formula. The process of altering the formula is called transposition. The best way of seeing who this is achieved is by looking at examples. e.g. e.g. H = I 2 RT (make R the subject) Algebraic Methods 1
Transposition of Formulae If we have quotients then we do the following: e.g. e.g. Algebraic Methods 1
Transposition of Formulae If we have plus or minus signs then we do the following: e.g. T = t + 273 (make t the subject) subtract 273 from both sides  T – 273 = t  t = T - 273 e.g. Algebraic Methods 1
Transposition of Formulae If we have brackets then we do the following: e.g. e.g.
Transposition of Formulae e.g. e.g.
Examples
Transposition of Formulae If we have roots and/or powers then we do the following:  e.g. e.g.
Examples Algebraic Methods 1
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Algebraic Methods 1

Contenu connexe

Plus de School of Design Engineering Fashion & Technology (DEFT), University of Wales, Newport

Plus de School of Design Engineering Fashion & Technology (DEFT), University of Wales, Newport (10)

Decoders student
Decoders studentDecoders student
Decoders student
 
Number codes students
Number codes studentsNumber codes students
Number codes students
 
Logic gates
Logic gatesLogic gates
Logic gates
 
Design considerations
Design considerationsDesign considerations
Design considerations
 
Number bases
Number basesNumber bases
Number bases
 
Sequential Logic
Sequential LogicSequential Logic
Sequential Logic
 
Logic Equation Simplification
Logic Equation SimplificationLogic Equation Simplification
Logic Equation Simplification
 
Stabilised Power Supplies
Stabilised Power SuppliesStabilised Power Supplies
Stabilised Power Supplies
 
Amplifier Compensation
Amplifier CompensationAmplifier Compensation
Amplifier Compensation
 
Counter And Sequencer Design- Student
Counter And Sequencer Design- StudentCounter And Sequencer Design- Student
Counter And Sequencer Design- Student
 

Dernier

Dernier (20)

Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Philosophy of china and it's charactistics
Philosophy of china and it's charactisticsPhilosophy of china and it's charactistics
Philosophy of china and it's charactistics
 
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxExploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxOn_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
 
Basic Intentional Injuries Health Education
Basic Intentional Injuries Health EducationBasic Intentional Injuries Health Education
Basic Intentional Injuries Health Education
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
latest AZ-104 Exam Questions and Answers
latest AZ-104 Exam Questions and Answerslatest AZ-104 Exam Questions and Answers
latest AZ-104 Exam Questions and Answers
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 

Algebraic Methods 1

  • 1. Algebraic Methods 1 Mathematics 1 Level 4 © University of Wales Newport 2009 This work is licensed under a Creative Commons Attribution 2.0 License .
  • 2.
  • 3. Mathematical Syntax The area of a rectangle is given by: Area = Length x Breath Area = L x B or L.B or LB When two symbols are written next to each other then this implies that they are multiplied. This is not true for numbers 23 is not 2 x 3. Also a shorthand for 2 x 2 x 2 x 2 x 2 is 2 5 And a x a x a x a x a x a is a 6 We must also be aware that 2a is not the same as a 2 One is a + a the other is a x a Algebraic Methods 1
  • 4. Indices We can now look at what happens when we combine expressions which have indices: e.g. a 4 x a 3 = (a x a x a x a) x (a x a x a) (a x a x a x a) x (a x a x a) = a x a x a x a x a x a x a = a 7 When multiplying powers of the same letter we add the indices a n x a m = a n+m e.g. When dividing powers of the same letter we subtract the indices a n  a m = a n-m Algebraic Methods 1
  • 5.
  • 6. Common error What does 2a 2 mean? Does it mean 2 x a x a or 2a x 2a It means the first one! If we wanted the second one we would write it as (2a) 2 So the indices only effect the adjacent letter unless a bracket is used. e.g. 1. (2a) 3 2. (3ab) 2 3. (ab) 3 x (a 2 b) 2 simplify these expressions Algebraic Methods 1
  • 7. Powers Roots and Reciprocals What does (a 2 ) 3 give us? (a x a) x (a x a) x (a x a) = a x a x a x a x a x a = a 6 When raising a power of a term to a new power we multiply the indices (a n ) m = a nxm What does √a 8 give us? a x a x a x a x a x a x a x a = (a x a x a x a) x (a x a x a x a) = (a x a x a x a) 2 When rooting a power of a term we divide the indices √ (a n ) = a n  m m Algebraic Methods 1
  • 8. Powers Roots and Reciprocals What does a  a give us? a 1  a 1 = a 1-1 = a 0 but we also know that this equals 1 Any term raised to the power 0 equals 1 and conversely 1 can be thought as any term to the power 0 What does 1/a 2 give us? 1  a 2 = a 0  a 2 = a 0-2 = a -2 When reciprocating a power of a term we change the sign of the index 1/a n = a -n Algebraic Methods 1
  • 9. Addition and Subtraction Consider the equation: 6 + 8 = 14 We know that 3 x 2 4 x 2 7 x 2 i.e. three lots of something plus four lots of something equals seven lots of something or 3a + 4a = 7a Take care – it does not equal 7a 2 Same with subtraction: 10 a pples – 4 a pples = 6 a pples Note addition and subtraction only work if the letter is the same. 5 apples plus 6 oranges does not equal 11 ? Algebraic Methods 1
  • 10. Number lines -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8 Notes Positive numbers are to the right of zero Negative numbers are to the left of zero So 5a – 7a means start at 5 and move 7 to the left. The only sign that can be omitted in front of a term is a positive sign The only sign that can be omitted between two terms is a multiplication sign. Only similar terms can be added or subtracted 2a 2 b + 3ab 2 cannot be performed. Subtraction Addition
  • 12. B O D M A S This indicate the order in which mathematical operations must be carried out in order to generate the correct answer: B rackets O rder (power) D ivision M ultiplication A ddition S ubtraction What is the answer to the equation: 7 + 2 x 4 Most calculators have BODMAS built in so if we want 7 added onto 2 then multiplied by 4 we must use brackets. is it 36 or 15?
  • 13. Brackets in algebra Brackets allow us to treat whatever is inside as a single quantity. i.e. 4a – (2a + 7b) means that 2a + 7b as a whole is subtracted from 4a. 5(5x – 2y) means that 5x – 2y is all multiplied by 5 Consider 3(4 + 1) – 2(2 + 4) 3 x 5 – 2 x 6 = 15 – 12 = 3  12 + 3 – 4 + 8 = 19  12 + 3 – 4 – 8 = 3  Algebraic Methods 1
  • 14. Rules for the removal of simple brackets Every term inside the bracket must be multiplied by the quantity outside the bracket. If the sign in front of the bracket is positive the signs inside the bracket remain unchanged. (no sign is assumed to be positive. If the sign in front of the bracket is negative the signs inside the bracket are changed. 1. 3(a+b) + 4(5a+b) 2. 3(a-b) + 4(2a+b) 3. 6(a+2b-c) + (a-b+c) 4. 2(3a-4b) – (a+b) + 2(a+b) 5. 3(a-2b+3c) – 2(b+4c) 6. -4(a-3b) – 3(-3a-b) 7. 2p(q+r) – p(3q-2r) 8. 11a(2b+c) – 3a(3b-2c) 9. a(a+b-c) – b(a-b+c) 10. a(b+c) – b(c+a) + c(a+b) Algebraic Methods 1
  • 15. Solution to simple equations If we have an equation with one unknown quantity then it is possible to determine the unknown quantity. e.g. 9 = 3 + 2x x is the unknown quantity. To determine its value we need to rearrange the equation so that we have x = Process: 9 = 3 + 2x subtract 3 from each side. 6 = 2x divide each sides by 2 3 = x answer x = 3 e.g. 4x -3 = x + 18 Process 4x -3 = x + 18 add 3 to each side 4x = x + 21 subtract x from each side 3x = 21 divide each side by 3 x = 7 answer x = 7
  • 16. Solution to simple equations Always aim to make the unknown a positive quantity: e.g. 5 – 2x = x +7 Process 5 – 2x = x +7 add 2x to each side 5 = 3x + 7 subtract 7 from each side -2 = 3x divide each side by 3 -2/3 = x Answer x = -2/3 Examples 1. 4a = a + 9 2. 4x – 3 = 2x +3 3. a – 3 = 2a – 14 4. 7x + 1 = 1 + 6x 5. 7(a – 5) = 3(4 – a) Algebraic Methods 1
  • 17. Solution to equations involving fractions Useful steps – any compound numerator or denominator should be placed in brackets and any number not written as a fraction should be made into a fraction. e.g. We now multiply through by the lowest common denominator. (5 x 2 x 1 = 10) 2 5 6x + 4 - 5x – 20 = 40 combine like terms x - 16 = 40 add 16 to each side x = 56 Answer Algebraic Methods 1
  • 18. Solution to equations involving fractions Lowest Common Denominator (LCD) is the lowest number that a series of numbers can be divided by and still give a whole number. e.g. the numbers 2, 3, 4, 6 when multiplied gives 144 144/2 = 72 144/3 = 48 144/4 = 36 144/6 = 24 But there is a lower number which also is fine and this is 12 12/2 = 6 12/3 = 4 12/4 = 3 12/6 = 2 To determine this lowest value we write down the factors of each number. 2 = 2 3 = 3 4 = 2 x 2 6 = 3 x 2 Leaving us 2 x 2 x 3 = 12 Algebraic Methods 1
  • 19. Solution to equations involving fractions e.g. LCD = 12 2 4 3 6 12 – 2x - 10 = 8x +28 - 3x + 30 combine like terms 2 – 2x = 5x + 58 add 2x to each side 2 = 7x + 58 subtract 58 from each side -56 = 7x divide each side by 7 -8 = x Answer x = -8 Algebraic Methods 1
  • 20. Solution to equations involving fractions If we have a single fraction equal to a another single fraction then we can cross multiply: 5 x 5a = 3 x 2 25a = 6 Examples:
  • 21. Transposition of Formulae In the formula: P = I 2 R P is said to be the subject of the formula. We may know I and P and need to work out R – to do this we must make R the subject of the formula. The process of altering the formula is called transposition. The best way of seeing who this is achieved is by looking at examples. e.g. e.g. H = I 2 RT (make R the subject) Algebraic Methods 1
  • 22. Transposition of Formulae If we have quotients then we do the following: e.g. e.g. Algebraic Methods 1
  • 23. Transposition of Formulae If we have plus or minus signs then we do the following: e.g. T = t + 273 (make t the subject) subtract 273 from both sides T – 273 = t t = T - 273 e.g. Algebraic Methods 1
  • 24. Transposition of Formulae If we have brackets then we do the following: e.g. e.g.
  • 27. Transposition of Formulae If we have roots and/or powers then we do the following: e.g. e.g.
  • 29.