SlideShare une entreprise Scribd logo
1  sur  59
Télécharger pour lire hors ligne
1/51
Introduction Our method Summary
Style-aware robust color transfer
H. Hristova O. Le Meur R. Cozot K. Bouatouch
IRISA - University of Rennes 1
Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
2/51
Introduction Our method Summary
Outline
1 Introduction
Context
Objective
Contributions
2 Our method
Algorithm
Evaluation
Results
3 Summary
Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
3/51
Introduction Our method Summary
Context
Outline
1 Introduction
Context
Objective
Contributions
2 Our method
Algorithm
Evaluation
Results
3 Summary
Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
4/51
Introduction Our method Summary
Context
Color transfer domain
Objective of color transfer
Color transfer aims at modifying the look of an input image
considering the illumination and the color palette of a reference
image (e.g., considering statistical characteristics of the light and
color distributions, histograms, gradients, etc.).
Input Our result Reference
Transformation
f(µ, Σ, φ, ...)
light, colors light, colors
Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
5/51
Introduction Our method Summary
Context
State-of-the-art global methods
 [Reinhard et al., 2001]
 Linear mapping
 L
Diagonal covariance matrix
 Gaussian distribution
 [Pitie et al., 2007]
 Linear mapping as a solution to Monge-Kantorovich
optimization problem
 CIE Lab
 Non-diagonal covariance matrix
 Gaussian distribution
Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
6/51
Introduction Our method Summary
Context
State-of-the-art local methods
 [Tai et al., 2005]
 Linear mapping: [Reinhard et al., 2001]
 L
3D image clustering
 Cluster mapping: maps the closest clusters in terms of their
luminance channel values
 Gaussian distribution (cluster-wise)
 [Bonneel et al., 2013]
 Linear mapping: [Pitie et al., 2007]
 CIE Lab
 Image clustering in terms of the luminance channel
 Cluster mapping: shadows to shadows, midtones to midtones,
highlights to highlights
 Gaussian distribution (cluster-wise)
Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
7/51
Introduction Our method Summary
Context
Limitations
Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
7/51
Introduction Our method Summary
Context
Limitations
Style inconsistency
Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
7/51
Introduction Our method Summary
Context
Limitations
Style inconsistency
InputimageReferenceimage[Reinhardetal.2001]
Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
8/51
Introduction Our method Summary
Context
Limitations
Style inconsistency
Gaussian distribution
Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
8/51
Introduction Our method Summary
Context
Limitations
Style inconsistency
Gaussian distribution
Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
9/51
Introduction Our method Summary
Context
Limitations
Style inconsistency
Gaussian distribution
Clustering on the same
color space components
for input/reference images
Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
9/51
Introduction Our method Summary
Context
Limitations
Style inconsistency
Gaussian distribution
Clustering on the same
color space components
for input/reference images
Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
10/51
Introduction Our method Summary
Context
Limitations
Style inconsistency
Gaussian distribution
Clustering on the same
color space components
for input/reference images
Over-saturation or
lack of contrast
Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
10/51
Introduction Our method Summary
Context
Limitations
Style inconsistency
Gaussian distribution
Clustering on the same
color space components
for input/reference images
Over-saturation or
lack of contrast
[Pitie et al., 2007]
[Reinhard et al., 2001]
Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
11/51
Introduction Our method Summary
Context
Limitations
Style inconsistency
Gaussian distribution
Clustering on the same
color space components
for input/reference images
Over-saturation or
lack of contrast
Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
12/51
Introduction Our method Summary
Objective
Outline
1 Introduction
Context
Objective
Contributions
2 Our method
Algorithm
Evaluation
Results
3 Summary
Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
13/51
Introduction Our method Summary
Objective
Our objective
Transferring the light and color features of a reference image to an
input image with respect to the reference style features. Obtaining
a naturally looking image which style features are as close as
possible to those of the reference style.
Style notion in our context
In our method, style in images is characterized by two features:
color and light.
Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
14/51
Introduction Our method Summary
Objective
Example
Input Reference
Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
15/51
Introduction Our method Summary
Objective
Example
Input Reference
[Pitieetal.,2007]
Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
16/51
Introduction Our method Summary
Objective
Example
Input Reference
[Pitieetal.,2007][Bonneeletal.,2013]
Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
17/51
Introduction Our method Summary
Objective
Example
Input Reference
[Pitieetal.,2007][Bonneeletal.,2013]
Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
18/51
Introduction Our method Summary
Contributions
Outline
1 Introduction
Context
Objective
Contributions
2 Our method
Algorithm
Evaluation
Results
3 Summary
Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
19/51
Introduction Our method Summary
Contributions
 Classi
cation of the input and reference images
 Light-based style images
 Colors-based style images
Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
19/51
Introduction Our method Summary
Contributions
 Classi
cation of the input and reference images
 Light-based style images
 Colors-based style images
 Two ways of clustering:
 Luminance channel
 Luminance-Hue distributions
Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
19/51
Introduction Our method Summary
Contributions
 Classi
cation of the input and reference images
 Light-based style images
 Colors-based style images
 Two ways of clustering:
 Luminance channel
 Luminance-Hue distributions
 Four mapping policies: Light to Light, Light to Colors, Colors
to Light, Colors to Colors
Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
19/51
Introduction Our method Summary
Contributions
 Classi
cation of the input and reference images
 Light-based style images
 Colors-based style images
 Two ways of clustering:
 Luminance channel
 Luminance-Hue distributions
 Four mapping policies: Light to Light, Light to Colors, Colors
to Light, Colors to Colors
 Evaluation of the results
 Subjective user study
 Objective metrics
Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
20/51
Introduction Our method Summary
Algorithm
Outline
1 Introduction
Context
Objective
Contributions
2 Our method
Algorithm
Evaluation
Results
3 Summary
Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
21/51
Introduction Our method Summary
Algorithm
Framework
light, colors
light, colors
Input
image
Reference
image
Classification
Clustering
Clustering
Chromatic
adaptation
Color
transfer
Mergingprocess
Mapping
policies
Input
clusters
Set of corresponding
clusters
Final
image
Reference
clusters
Classification
Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
22/51
Introduction Our method Summary
Algorithm
Automatic image classi
cation system
Colors-based style images
Images which color information is sucient enough to well-de
ne
at least two dierent and signi
cant colors.
Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
23/51
Introduction Our method Summary
Algorithm
Automatic image classi
cation system
Light-based style images
Images which are not classi
ed as colors-based style images are
classi
ed as light-based style images. Their light features are more
meaningful than their color features.
Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
24/51
Introduction Our method Summary
Algorithm
Framework
light, colors
light, colors
Input
image
Reference
image
Classification
Clustering
Clustering
Chromatic
adaptation
Color
transfer Mergingprocess
Mapping
policies
Input
clusters
Set of corresponding
clusters
Final
image
Reference
clusters
Classification
Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
25/51
Introduction Our method Summary
Algorithm
Clustering: Gaussian mixture models
Light-based style image Colors-based style image
Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
26/51
Introduction Our method Summary
Algorithm
Framework
light, colors
light, colors
Input
image
Reference
image
Classification
Clustering
Clustering
Chromatic
adaptation
Color
transfer Mergingprocess
Mapping
policies
Input
clusters
Set of corresponding
clusters
Final
image
Reference
clusters
Classification
Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
27/51
Introduction Our method Summary
Algorithm
Pseudo code algorithm
for k = 1; : : : ; N do
if Light to Colors then
ILab := FindDarkestCluster()
JLab := FindColdestCluster()
end if
if Colors to Light then
ILab := FindColdestCluster()
JLab := FindDarkestCluster()
end if
if Light to Light then
ILab := FindDarkestCluster()
JLab := FindDarkestCluster()
end if
if Colors to Colors then
[ILab, JLab] := FindMinDistPair()
end if
OLab := PerformTranspOnAB(ILab, JLab)
Exclude ILch
Exclude JLch
end for
Ofinal
rgb := CATLocal(Orgb; Jrgb)
 Darkest cluster - the cluster
which centroid has the minimum
luminance value
 Coldest cluster - the cluster
which centroid has the
maximum hue value
Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
28/51
Introduction Our method Summary
Algorithm
Mapping policies
for k = 1; : : : ; N do
if Light to Colors then
ILab := FindDarkestCluster()
JLab := FindColdestCluster()
end if
if Colors to Light then
ILab := FindColdestCluster()
JLab := FindDarkestCluster()
end if
if Light to Light then
ILab := FindDarkestCluster()
JLab := FindDarkestCluster()
end if
if Colors to Colors then
[ILab, JLab] := FindMinDistPair()
end if
OLab := PerformTranspOnAB(ILab, JLab)
Exclude ILch
Exclude JLch
end for
Ofinal
rgb := CATLocal(Orgb; Jrgb)
 Darkest cluster - the cluster
which centroid has the minimum
luminance value
 Coldest cluster - the cluster
which centroid has the
maximum hue value
 Light to Colors
 Input light-based style
image
 Reference colors-based
style image
Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
29/51
Introduction Our method Summary
Algorithm
Mapping policies
for k = 1; : : : ; N do
if Light to Colors then
ILab := FindDarkestCluster()
JLab := FindColdestCluster()
end if
if Colors to Light then
ILab := FindColdestCluster()
JLab := FindDarkestCluster()
end if
if Light to Light then
ILab := FindDarkestCluster()
JLab := FindDarkestCluster()
end if
if Colors to Colors then
[ILab, JLab] := FindMinDistPair()
end if
OLab := PerformTranspOnAB(ILab, JLab)
Exclude ILch
Exclude JLch
end for
Ofinal
rgb := CATLocal(Orgb; Jrgb)
 Darkest cluster - the cluster
which centroid has the minimum
luminance value
 Coldest cluster - the cluster
which centroid has the
maximum hue value
 Colors to Light
 Input colors-based style
image
 Reference light-based style
image
Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
30/51
Introduction Our method Summary
Algorithm
Mapping policies
for k = 1; : : : ; N do
if Light to Colors then
ILab := FindDarkestCluster()
JLab := FindColdestCluster()
end if
if Colors to Light then
ILab := FindColdestCluster()
JLab := FindDarkestCluster()
end if
if Light to Light then
ILab := FindDarkestCluster()
JLab := FindDarkestCluster()
end if
if Colors to Colors then
[ILab, JLab] := FindMinDistPair()
end if
OLab := PerformTranspOnAB(ILab, JLab)
Exclude ILch
Exclude JLch
end for
Ofinal
rgb := CATLocal(Orgb; Jrgb)
 Darkest cluster - the cluster
which centroid has the minimum
luminance value
 Coldest cluster - the cluster
which centroid has the
maximum hue value
 Light to Light
 Input light-based style
image
 Reference light-based style
image
Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
31/51
Introduction Our method Summary
Algorithm
Mapping policies
for k = 1; : : : ; N do
if Light to Colors then
ILab := FindDarkestCluster()
JLab := FindColdestCluster()
end if
if Colors to Light then
ILab := FindColdestCluster()
JLab := FindDarkestCluster()
end if
if Light to Light then
ILab := FindDarkestCluster()
JLab := FindDarkestCluster()
end if
if Colors to Colors then
[ILab, JLab] := FindMinDistPair()
end if
OLab = PerformTranspOnAB(ILab, JLab)
Exclude ILch
Exclude JLch
end for
Ofinal
rgb := CATLocal(Orgb; Jrgb)
 Darkest cluster - the cluster
which centroid has the minimum
luminance value
 Coldest cluster - the cluster
which centroid has the
maximum hue value
 Colors to Colors
 Input colors-based style
image
 Reference colors-based
style image
Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
32/51
Introduction Our method Summary
Algorithm
Color transformation
for k = 1; : : : ; N do
if Light to Colors then
ILab := FindDarkestCluster()
JLab := FindColdestCluster()
end if
if Colors to Light then
ILab := FindColdestCluster()
JLab := FindDarkestCluster()
end if
if Light to Light then
ILab := FindDarkestCluster()
JLab := FindDarkestCluster()
end if
if Colors to Colors then
[ILab, JLab] := FindMinDistPair()
end if
OLab := PerformTranspOnAB(ILab, JLab)
Exclude ILch
Exclude JLch
end for
Ofinal
rgb := CATLocal(Orgb; Jrgb)
 Color transformation between
each two corresponding clusters
 Carried out on the a and b
channels of CIE Lab
 Closed-form solution: solution to
Monge-Kantorovich's
optimization problem
 Non-diagonal covariance matrix
between the channels of the
color space
Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
33/51
Introduction Our method Summary
Algorithm
Color transformation
for k = 1; : : : ; N do
if Light to Colors then
ILab := FindDarkestCluster()
JLab := FindColdestCluster()
end if
if Colors to Light then
ILab := FindColdestCluster()
JLab := FindDarkestCluster()
end if
if Light to Light then
ILab := FindDarkestCluster()
JLab := FindDarkestCluster()
end if
if Colors to Colors then
[ILab, JLab] := FindMinDistPair()
end if
OLab := PerformTranspOnAB(ILab, JLab)
Exclude ILch
Exclude JLch
end for
Ofinal
rgb := CATLocal(Orgb; Jrgb)
 Color transformation between
each two corresponding clusters
 Carried out on the a and b
channels of CIE Lab
 Closed-form solution: solution to
Monge-Kantorovich optimization
problem
 Non-diagonal covariance matrix
between the channels of the
color space
Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
34/51
Introduction Our method Summary
Algorithm
Chromatic adaptation
for k = 1; : : : ; N do
if Light to Colors then
ILab := FindDarkestCluster()
JLab := FindColdestCluster()
end if
if Colors to Light then
ILab := FindColdestCluster()
JLab := FindDarkestCluster()
end if
if Light to Light then
ILab := FindDarkestCluster()
JLab := FindDarkestCluster()
end if
if Colors to Colors then
[ILab, JLab] := FindMinDistPair()
end if
OLab := PerformTranspOnAB(ILab, JLab)
Exclude ILch
Exclude JLch
end for
Ofinal
rgb := CATLocal(Orgb; Jrgb)
 Adapting pixel-wisely the colors
of the output to the reference
illuminant
 Input illuminant: white image
obtained by performing Gaussian
low-pass
lter
 Reference illuminant estimation:
Gray World assumption
[FSDP14, HCWxW06]
 Local CAT algorithm [KJF07]
 Avoids undesired color
saturation, prevents the result
from becoming 
at and reduces
false colors in the result
Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
35/51
Introduction Our method Summary
Evaluation
Outline
1 Introduction
Context
Objective
Contributions
2 Our method
Algorithm
Evaluation
Results
3 Summary
Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
36/51
Introduction Our method Summary
Evaluation
Subjective evaluation
 15 users
 Results from 4
state-of-the-arts
 Results from our
method
 Style match
evaluation
 Aesthetic
pleasingness
evaluation
 5-point scale
Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
37/51
Introduction Our method Summary
Evaluation
Subjective evaluation: the analysis
Ours Pitie Reinhard Bonneel Tai
2345
Ours Pitie Reinhard Bonneel Tai
Stylescore
*
*
***
***
Ours Pitie Reinhard Bonneel Tai
12345
Ours Pitie Reinhard Bonneel TaiAestheticsscore
**
***
*
 Box-and-Whisker plots
 Paired T-tests
 Correlation between the two scores
Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
38/51
Introduction Our method Summary
Evaluation
Objective evaluation
SSIM
It measures the degree of artifacts in the result. It is applied
between the input image and the result.
S(x; y) = f (c(x; y); s(x; y)) (1)
The luminance component is removed from the computation of the
metrics leaving the structural and contrast components.
Bhattacharya coecient
Measures the distance between the result/reference histograms
[ATR98] of the components of CIE Lab color space.
Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch

Contenu connexe

En vedette (10)

Leadership at IBM - Report on Pat O'Sullivan
Leadership at IBM - Report on Pat O'SullivanLeadership at IBM - Report on Pat O'Sullivan
Leadership at IBM - Report on Pat O'Sullivan
 
4
44
4
 
Sonia Ramirez III-2
Sonia Ramirez III-2 Sonia Ramirez III-2
Sonia Ramirez III-2
 
Make the Most of Your Business Travels: Things to do in Dallas, TX
Make the Most of Your Business Travels: Things to do in Dallas, TXMake the Most of Your Business Travels: Things to do in Dallas, TX
Make the Most of Your Business Travels: Things to do in Dallas, TX
 
E-safety Impero slides Mar2015
E-safety Impero slides Mar2015E-safety Impero slides Mar2015
E-safety Impero slides Mar2015
 
SAP consulting results
SAP consulting resultsSAP consulting results
SAP consulting results
 
Dockercon EU 2015 Recap
Dockercon EU 2015 RecapDockercon EU 2015 Recap
Dockercon EU 2015 Recap
 
Kyriazis Athanasios Thesis
Kyriazis Athanasios ThesisKyriazis Athanasios Thesis
Kyriazis Athanasios Thesis
 
Hijrah Nabi
Hijrah NabiHijrah Nabi
Hijrah Nabi
 
William blake ppt
William blake pptWilliam blake ppt
William blake ppt
 

Plus de Olivier Le Meur

Plus de Olivier Le Meur (7)

Guided tour of visual attention
Guided tour of visual attentionGuided tour of visual attention
Guided tour of visual attention
 
Your gaze betrays your age
Your gaze betrays your ageYour gaze betrays your age
Your gaze betrays your age
 
Saccadic model of eye movements for free-viewing condition
Saccadic model of eye movements for free-viewing conditionSaccadic model of eye movements for free-viewing condition
Saccadic model of eye movements for free-viewing condition
 
Examplar-based inpainting
Examplar-based inpaintingExamplar-based inpainting
Examplar-based inpainting
 
Methods for comparing scanpaths and saliency maps: strengths and weaknesses
Methods for comparing scanpaths and saliency maps: strengths and weaknessesMethods for comparing scanpaths and saliency maps: strengths and weaknesses
Methods for comparing scanpaths and saliency maps: strengths and weaknesses
 
Inter-observers congruency and memorability
Inter-observers congruency and memorabilityInter-observers congruency and memorability
Inter-observers congruency and memorability
 
Visual attention: models and performance
Visual attention: models and performanceVisual attention: models and performance
Visual attention: models and performance
 

Dernier

Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Victor Rentea
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
WSO2
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(☎️+971_581248768%)**%*]'#abortion pills for sale in dubai@
 

Dernier (20)

Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Six Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal OntologySix Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal Ontology
 
WSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering DevelopersWSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering Developers
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectors
 
Understanding the FAA Part 107 License ..
Understanding the FAA Part 107 License ..Understanding the FAA Part 107 License ..
Understanding the FAA Part 107 License ..
 
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot ModelMcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
Platformless Horizons for Digital Adaptability
Platformless Horizons for Digital AdaptabilityPlatformless Horizons for Digital Adaptability
Platformless Horizons for Digital Adaptability
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 

Style-aware robust color transfer

  • 1. 1/51 Introduction Our method Summary Style-aware robust color transfer H. Hristova O. Le Meur R. Cozot K. Bouatouch IRISA - University of Rennes 1 Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 2. 2/51 Introduction Our method Summary Outline 1 Introduction Context Objective Contributions 2 Our method Algorithm Evaluation Results 3 Summary Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 3. 3/51 Introduction Our method Summary Context Outline 1 Introduction Context Objective Contributions 2 Our method Algorithm Evaluation Results 3 Summary Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 4. 4/51 Introduction Our method Summary Context Color transfer domain Objective of color transfer Color transfer aims at modifying the look of an input image considering the illumination and the color palette of a reference image (e.g., considering statistical characteristics of the light and color distributions, histograms, gradients, etc.). Input Our result Reference Transformation f(µ, Σ, φ, ...) light, colors light, colors Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 5. 5/51 Introduction Our method Summary Context State-of-the-art global methods [Reinhard et al., 2001] Linear mapping L
  • 6. Diagonal covariance matrix Gaussian distribution [Pitie et al., 2007] Linear mapping as a solution to Monge-Kantorovich optimization problem CIE Lab Non-diagonal covariance matrix Gaussian distribution Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 7. 6/51 Introduction Our method Summary Context State-of-the-art local methods [Tai et al., 2005] Linear mapping: [Reinhard et al., 2001] L
  • 8. 3D image clustering Cluster mapping: maps the closest clusters in terms of their luminance channel values Gaussian distribution (cluster-wise) [Bonneel et al., 2013] Linear mapping: [Pitie et al., 2007] CIE Lab Image clustering in terms of the luminance channel Cluster mapping: shadows to shadows, midtones to midtones, highlights to highlights Gaussian distribution (cluster-wise) Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 9. 7/51 Introduction Our method Summary Context Limitations Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 10. 7/51 Introduction Our method Summary Context Limitations Style inconsistency Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 11. 7/51 Introduction Our method Summary Context Limitations Style inconsistency InputimageReferenceimage[Reinhardetal.2001] Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 12. 8/51 Introduction Our method Summary Context Limitations Style inconsistency Gaussian distribution Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 13. 8/51 Introduction Our method Summary Context Limitations Style inconsistency Gaussian distribution Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 14. 9/51 Introduction Our method Summary Context Limitations Style inconsistency Gaussian distribution Clustering on the same color space components for input/reference images Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 15. 9/51 Introduction Our method Summary Context Limitations Style inconsistency Gaussian distribution Clustering on the same color space components for input/reference images Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 16. 10/51 Introduction Our method Summary Context Limitations Style inconsistency Gaussian distribution Clustering on the same color space components for input/reference images Over-saturation or lack of contrast Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 17. 10/51 Introduction Our method Summary Context Limitations Style inconsistency Gaussian distribution Clustering on the same color space components for input/reference images Over-saturation or lack of contrast [Pitie et al., 2007] [Reinhard et al., 2001] Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 18. 11/51 Introduction Our method Summary Context Limitations Style inconsistency Gaussian distribution Clustering on the same color space components for input/reference images Over-saturation or lack of contrast Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 19. 12/51 Introduction Our method Summary Objective Outline 1 Introduction Context Objective Contributions 2 Our method Algorithm Evaluation Results 3 Summary Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 20. 13/51 Introduction Our method Summary Objective Our objective Transferring the light and color features of a reference image to an input image with respect to the reference style features. Obtaining a naturally looking image which style features are as close as possible to those of the reference style. Style notion in our context In our method, style in images is characterized by two features: color and light. Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 21. 14/51 Introduction Our method Summary Objective Example Input Reference Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 22. 15/51 Introduction Our method Summary Objective Example Input Reference [Pitieetal.,2007] Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 23. 16/51 Introduction Our method Summary Objective Example Input Reference [Pitieetal.,2007][Bonneeletal.,2013] Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 24. 17/51 Introduction Our method Summary Objective Example Input Reference [Pitieetal.,2007][Bonneeletal.,2013] Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 25. 18/51 Introduction Our method Summary Contributions Outline 1 Introduction Context Objective Contributions 2 Our method Algorithm Evaluation Results 3 Summary Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 26. 19/51 Introduction Our method Summary Contributions Classi
  • 27. cation of the input and reference images Light-based style images Colors-based style images Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 28. 19/51 Introduction Our method Summary Contributions Classi
  • 29. cation of the input and reference images Light-based style images Colors-based style images Two ways of clustering: Luminance channel Luminance-Hue distributions Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 30. 19/51 Introduction Our method Summary Contributions Classi
  • 31. cation of the input and reference images Light-based style images Colors-based style images Two ways of clustering: Luminance channel Luminance-Hue distributions Four mapping policies: Light to Light, Light to Colors, Colors to Light, Colors to Colors Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 32. 19/51 Introduction Our method Summary Contributions Classi
  • 33. cation of the input and reference images Light-based style images Colors-based style images Two ways of clustering: Luminance channel Luminance-Hue distributions Four mapping policies: Light to Light, Light to Colors, Colors to Light, Colors to Colors Evaluation of the results Subjective user study Objective metrics Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 34. 20/51 Introduction Our method Summary Algorithm Outline 1 Introduction Context Objective Contributions 2 Our method Algorithm Evaluation Results 3 Summary Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 35. 21/51 Introduction Our method Summary Algorithm Framework light, colors light, colors Input image Reference image Classification Clustering Clustering Chromatic adaptation Color transfer Mergingprocess Mapping policies Input clusters Set of corresponding clusters Final image Reference clusters Classification Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 36. 22/51 Introduction Our method Summary Algorithm Automatic image classi
  • 37. cation system Colors-based style images Images which color information is sucient enough to well-de
  • 38. ne at least two dierent and signi
  • 39. cant colors. Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 40. 23/51 Introduction Our method Summary Algorithm Automatic image classi
  • 41. cation system Light-based style images Images which are not classi
  • 42. ed as colors-based style images are classi
  • 43. ed as light-based style images. Their light features are more meaningful than their color features. Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 44. 24/51 Introduction Our method Summary Algorithm Framework light, colors light, colors Input image Reference image Classification Clustering Clustering Chromatic adaptation Color transfer Mergingprocess Mapping policies Input clusters Set of corresponding clusters Final image Reference clusters Classification Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 45. 25/51 Introduction Our method Summary Algorithm Clustering: Gaussian mixture models Light-based style image Colors-based style image Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 46. 26/51 Introduction Our method Summary Algorithm Framework light, colors light, colors Input image Reference image Classification Clustering Clustering Chromatic adaptation Color transfer Mergingprocess Mapping policies Input clusters Set of corresponding clusters Final image Reference clusters Classification Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 47. 27/51 Introduction Our method Summary Algorithm Pseudo code algorithm for k = 1; : : : ; N do if Light to Colors then ILab := FindDarkestCluster() JLab := FindColdestCluster() end if if Colors to Light then ILab := FindColdestCluster() JLab := FindDarkestCluster() end if if Light to Light then ILab := FindDarkestCluster() JLab := FindDarkestCluster() end if if Colors to Colors then [ILab, JLab] := FindMinDistPair() end if OLab := PerformTranspOnAB(ILab, JLab) Exclude ILch Exclude JLch end for Ofinal rgb := CATLocal(Orgb; Jrgb) Darkest cluster - the cluster which centroid has the minimum luminance value Coldest cluster - the cluster which centroid has the maximum hue value Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 48. 28/51 Introduction Our method Summary Algorithm Mapping policies for k = 1; : : : ; N do if Light to Colors then ILab := FindDarkestCluster() JLab := FindColdestCluster() end if if Colors to Light then ILab := FindColdestCluster() JLab := FindDarkestCluster() end if if Light to Light then ILab := FindDarkestCluster() JLab := FindDarkestCluster() end if if Colors to Colors then [ILab, JLab] := FindMinDistPair() end if OLab := PerformTranspOnAB(ILab, JLab) Exclude ILch Exclude JLch end for Ofinal rgb := CATLocal(Orgb; Jrgb) Darkest cluster - the cluster which centroid has the minimum luminance value Coldest cluster - the cluster which centroid has the maximum hue value Light to Colors Input light-based style image Reference colors-based style image Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 49. 29/51 Introduction Our method Summary Algorithm Mapping policies for k = 1; : : : ; N do if Light to Colors then ILab := FindDarkestCluster() JLab := FindColdestCluster() end if if Colors to Light then ILab := FindColdestCluster() JLab := FindDarkestCluster() end if if Light to Light then ILab := FindDarkestCluster() JLab := FindDarkestCluster() end if if Colors to Colors then [ILab, JLab] := FindMinDistPair() end if OLab := PerformTranspOnAB(ILab, JLab) Exclude ILch Exclude JLch end for Ofinal rgb := CATLocal(Orgb; Jrgb) Darkest cluster - the cluster which centroid has the minimum luminance value Coldest cluster - the cluster which centroid has the maximum hue value Colors to Light Input colors-based style image Reference light-based style image Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 50. 30/51 Introduction Our method Summary Algorithm Mapping policies for k = 1; : : : ; N do if Light to Colors then ILab := FindDarkestCluster() JLab := FindColdestCluster() end if if Colors to Light then ILab := FindColdestCluster() JLab := FindDarkestCluster() end if if Light to Light then ILab := FindDarkestCluster() JLab := FindDarkestCluster() end if if Colors to Colors then [ILab, JLab] := FindMinDistPair() end if OLab := PerformTranspOnAB(ILab, JLab) Exclude ILch Exclude JLch end for Ofinal rgb := CATLocal(Orgb; Jrgb) Darkest cluster - the cluster which centroid has the minimum luminance value Coldest cluster - the cluster which centroid has the maximum hue value Light to Light Input light-based style image Reference light-based style image Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 51. 31/51 Introduction Our method Summary Algorithm Mapping policies for k = 1; : : : ; N do if Light to Colors then ILab := FindDarkestCluster() JLab := FindColdestCluster() end if if Colors to Light then ILab := FindColdestCluster() JLab := FindDarkestCluster() end if if Light to Light then ILab := FindDarkestCluster() JLab := FindDarkestCluster() end if if Colors to Colors then [ILab, JLab] := FindMinDistPair() end if OLab = PerformTranspOnAB(ILab, JLab) Exclude ILch Exclude JLch end for Ofinal rgb := CATLocal(Orgb; Jrgb) Darkest cluster - the cluster which centroid has the minimum luminance value Coldest cluster - the cluster which centroid has the maximum hue value Colors to Colors Input colors-based style image Reference colors-based style image Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 52. 32/51 Introduction Our method Summary Algorithm Color transformation for k = 1; : : : ; N do if Light to Colors then ILab := FindDarkestCluster() JLab := FindColdestCluster() end if if Colors to Light then ILab := FindColdestCluster() JLab := FindDarkestCluster() end if if Light to Light then ILab := FindDarkestCluster() JLab := FindDarkestCluster() end if if Colors to Colors then [ILab, JLab] := FindMinDistPair() end if OLab := PerformTranspOnAB(ILab, JLab) Exclude ILch Exclude JLch end for Ofinal rgb := CATLocal(Orgb; Jrgb) Color transformation between each two corresponding clusters Carried out on the a and b channels of CIE Lab Closed-form solution: solution to Monge-Kantorovich's optimization problem Non-diagonal covariance matrix between the channels of the color space Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 53. 33/51 Introduction Our method Summary Algorithm Color transformation for k = 1; : : : ; N do if Light to Colors then ILab := FindDarkestCluster() JLab := FindColdestCluster() end if if Colors to Light then ILab := FindColdestCluster() JLab := FindDarkestCluster() end if if Light to Light then ILab := FindDarkestCluster() JLab := FindDarkestCluster() end if if Colors to Colors then [ILab, JLab] := FindMinDistPair() end if OLab := PerformTranspOnAB(ILab, JLab) Exclude ILch Exclude JLch end for Ofinal rgb := CATLocal(Orgb; Jrgb) Color transformation between each two corresponding clusters Carried out on the a and b channels of CIE Lab Closed-form solution: solution to Monge-Kantorovich optimization problem Non-diagonal covariance matrix between the channels of the color space Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 54. 34/51 Introduction Our method Summary Algorithm Chromatic adaptation for k = 1; : : : ; N do if Light to Colors then ILab := FindDarkestCluster() JLab := FindColdestCluster() end if if Colors to Light then ILab := FindColdestCluster() JLab := FindDarkestCluster() end if if Light to Light then ILab := FindDarkestCluster() JLab := FindDarkestCluster() end if if Colors to Colors then [ILab, JLab] := FindMinDistPair() end if OLab := PerformTranspOnAB(ILab, JLab) Exclude ILch Exclude JLch end for Ofinal rgb := CATLocal(Orgb; Jrgb) Adapting pixel-wisely the colors of the output to the reference illuminant Input illuminant: white image obtained by performing Gaussian low-pass
  • 55. lter Reference illuminant estimation: Gray World assumption [FSDP14, HCWxW06] Local CAT algorithm [KJF07] Avoids undesired color saturation, prevents the result from becoming at and reduces false colors in the result Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 56. 35/51 Introduction Our method Summary Evaluation Outline 1 Introduction Context Objective Contributions 2 Our method Algorithm Evaluation Results 3 Summary Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 57. 36/51 Introduction Our method Summary Evaluation Subjective evaluation 15 users Results from 4 state-of-the-arts Results from our method Style match evaluation Aesthetic pleasingness evaluation 5-point scale Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 58. 37/51 Introduction Our method Summary Evaluation Subjective evaluation: the analysis Ours Pitie Reinhard Bonneel Tai 2345 Ours Pitie Reinhard Bonneel Tai Stylescore * * *** *** Ours Pitie Reinhard Bonneel Tai 12345 Ours Pitie Reinhard Bonneel TaiAestheticsscore ** *** * Box-and-Whisker plots Paired T-tests Correlation between the two scores Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 59. 38/51 Introduction Our method Summary Evaluation Objective evaluation SSIM It measures the degree of artifacts in the result. It is applied between the input image and the result. S(x; y) = f (c(x; y); s(x; y)) (1) The luminance component is removed from the computation of the metrics leaving the structural and contrast components. Bhattacharya coecient Measures the distance between the result/reference histograms [ATR98] of the components of CIE Lab color space. Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 60. 39/51 Introduction Our method Summary Evaluation Objective evaluation: the analysis (a) Our method (b) Pitié et al. (c) Bonneel at al.(d) Reinhard et al. (e) Tai et al. SSIM Bhattacharya 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1 2 3 4 5 6 7 8 9 x 10 −3 SSIM Bhattacharya 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1 2 3 4 5 6 7 x 10 −3 SSIM Bhattacharya 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1 2 3 4 5 6 7 x 10 −3 SSIM Bhattacharya 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1 2 3 4 5 6 7 x 10 −3 SSIM Bhattacharya 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 x 10 −3 Joint distribution of SSIM and Bhattacharya coecient Paired T-tests (SSIM, Bhattacharya) = (1, 1): optimal for the pair Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 61. 40/51 Introduction Our method Summary Results Outline 1 Introduction Context Objective Contributions 2 Our method Algorithm Evaluation Results 3 Summary Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 62. 41/51 Introduction Our method Summary Results Results: Light to Colors Result Input image Reference image Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 63. 42/51 Introduction Our method Summary Results Results: Colors to Light Input image Reference image Result Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 64. 43/51 Introduction Our method Summary Results Results: Light to Light Result Input image Reference image Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 65. 44/51 Introduction Our method Summary Results Results: Colors to Colors Result Input image Reference image Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 66. 45/51 Introduction Our method Summary Results Results: classical example Result Input image Reference image Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 67. 46/51 Introduction Our method Summary Summary New method for style transfer for a wide class of image pairs Automatic image classi
  • 68. cation Four mappings policies Subjective and objective evaluations Future work Enriching the image feature space Finding a connection between the subjective user study and the objective evaluation Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 69. 47/51 Introduction Our method Summary Thank you for your attention! More results and information on http: // people. irisa. fr/ Hristina. Hristova Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 70. 48/51 Appendix References References I Aherne F. J., Thacker N. A., Rockett P. I.: The bhattacharyya metric as an absolute similarity measure for frequency coded data. Kybernetika 34, 4 (1998), 363{368. Bonneel N., Sunkavalli K., Paris S., Pfister H.: Example-based video color grading. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2013) 32, 4 (2013), 2. Frigo O., Sabater N., Demoulin V., Pierre H.: Optimal transportation for example-guided color transfer. 12th Asian Conference on Computer Vision (ACCV) (2014). Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 71. 49/51 Appendix References References II Huo J., Chang Y., Wang J., xia Wei X.: Robust automatic white balance algorithm using gray color points in images. IEEE Trans. Consumer Electronics 52, 2 (2006), 541{546. URL: http://dblp.uni-trier.de/db/journals/tce/ tce52.html#HuoCWW06. Kuang J., Johnson G. M., Fairchild M. D.: icam06: A re
  • 72. ned image appearance model for hdr image rendering. Journal of Visual Communication and Image Representation 18, 5 (2007), 406{414. Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 73. 50/51 Appendix References References III Pitie F., Kokaram A. C., Dahyot R.: Automated colour grading using colour distribution transfer. Computer Vision and Image Understanding 107, 1 (2007), 123{137. Reinhard E., Ashikhmin M., Gooch B., Shirley P.: Color transfer between images. Computer Graphics and Applications, IEEE 21, 5 (2001), 34{41. Shih Y., Paris S., Durand F., Freeman W. T.: Data-driven hallucination of dierent times of day from a single outdoor photo. ACM Transactions on Graphics (TOG) 32, 6 (2013), 200. Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch
  • 74. 51/51 Appendix References References IV Tai Y.-W., Jia J., Tang C.-K.: Local color transfer via probabilistic segmentation by expectation-maximization. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on (2005), vol. 1, IEEE, pp. 747{754. Style-aware robust color transfer H. Hristova, O. Le Meur, R. Cozot, K. Bouatouch