SlideShare une entreprise Scribd logo
1  sur  34
maov/mlvm/enero de 2010
Metabolismo de Glúcidos
Miguel Ángel Ordorica Vargas & María de la Luz Velázquez Monroy
Introducción
El estudio del metabolismo de Glúcidos se inició en 1897 cuando Eduard Buchner descubrió que
la fermentación alcohólica se puede efectuar en extractos de levadura libres de células, dando así
inicio al desarrollo de la Bioquímica moderna. Como fue el primero que se estudio, se conocen
muchos detalles acerca del metabolismo de Glúcidos. En el curso, únicamente estudiaremos al-
gunas de las vías metabólicas en las cuales los Glucidos participan como almacén y fuente de
energía.
Digestión y Transporte
La dieta humana contiene muchos tipos de Glúcidos desde monosacáridos como la Fructosa de la
fruta y la miel, hasta polímeros como Almidón y Glucógeno. La digestión de Glúcidos se inicia
desde la boca por acción de la enzima Amilasa Salival, que actúa sobre Almidón y Glucógeno li-
berando principalmente el disacárido Maltosa. La acción de esta enzima termina cuando el ali-
mento llega al estómago, pues su pH óptimo es neutro. En el estómago los polisacáridos se de-
gradan poco por acción del ácido clorhídrico secretado y pasan casi intactos al intestino delgado.
La digestión intestinal de Glúcidos depende de enzimas pancreáticas de las cuales la más impor-
tante es la -Amilasa, que tiene la misma acción que la salival, liberando Maltosa, la cual es de-
gradad a Glucosa por la Maltasa. Otros disacáridos son hidrolizados por enzimas específicas co-
mo la Sacarasa, Lactasa y Trehalasa.
Los monosacáridos que se producen en la digestión, son absorbidos por las células intestinales y
liberados a la circulación en la vena porta para llegar al Hígado y otros tejidos, que los pueden
utilizar como fuentes de energía, almacenarlos o transformarlos en ácidos grasos o aminoácidos.
Metabolismo del Glucógeno
El Glucógeno es la forma de almacenamiento de energía de los Glúcidos en los animales. Se al-
macena en todos los tejidos. En el músculo constituye la reserva de respuesta rápida al aumento
en las necesidades de energía. La reserva hepática de Glucógeno sirve para mantener la glicemia
normal.
Glucogenogénesis. Síntesis de Glucógeno.
La forma más común de síntesis de Glucógeno depende de la en-
zima Glucógeno Sintasa y consiste en la adición de moléculas de
Glucosa a los extremos de los gránulos ya existentes. La síntesis
de novo de Glucógeno depende de la Glucogenina, una enzima que
se autoglicosila, formado un oligosacárido que sirve de aceptor pa-
ra la Glucógeno Sintasa.
Figura 1. Estructura del
Glucógeno
Metabolismo de Glúcidos
maov/mlvm/2
Glucogenina (EC 2.4.1.186)
Esta enzima cataliza dos tipos de transferencia. En la primera, se transfiere una molécula de Glu-
cosa, de UDP-Glucosa al OH de un residuo de Tirosina de la misma proteína. Después transfiere
la Glucosa al Carbono 4 de la molécula en el extremo no reductor de la cadena en crecimiento.
Repitiendo la segunda reacción varias veces, se forma un oligosacárido lineal que sirve como
aceptor inicial para la formación de un gránulo de Glucógeno, quedando la molécula de Glucoge-
nina en el centro del gránulo. (G en la Figura 1)
Glucocinasa (EC 2.7.1.2)
La Glucocinasa cataliza la “activación” de la Glucosa, mediante la transferencia del fosfato  de
una molécula de ATP al grupo OH del Carbono 2. La fosforilación impide que la Glucosa salga
de la célula porque el grupo fosfato es iónico y porque el transportador de la membrana celular no
reconoce la Glucosa-6-Fosfato que se forma. Actualmente, la Glucocinasa se clasifica como una
de las isoenzimas de la Hexocinasa, la número IV.
O
OH
OH
OH
CH2
OH
OH
O
OH
OH
OH
CH2
O P
O
O
OOH
ATP ADP
Mg2+
Glucosa Glucosa-6-fosfato
La enzima es específica de Glucosa pero tiene afinidad baja por ella (KM= 10 mM) y no es in-
hibida por su producto la Glucosa-6-fosfato. Estas características la hacen ideal para participar en
la síntesis de Glucógeno. Primero únicamente puede fosforilar la Glucosa, que es el precursor del
Glucóceno. Debido a su baja afinidad, su actividad será más importante en los periodos de alta
concentración de Glucosa, como después de las comidas. En cambio, la concentración de Gluco-
sa en condiciones de glicemia normal (~150 M), es menor que el KM de enzima por lo que no se
captará la Glucosa de la sangre. Además, al no ser inhibida por su producto, puede seguir fosfori-
lando Glucosa aún cuando se ha acumulado Glucosa-6-fosfato. Además, la actividad de Glucoci-
nasa aumenta por acción de Insulina, favoreciendo la captura de Glucosa cuando la concentración
de esta es alta.
La actividad de Glucocinasa es mayor en Hígado, Pulmón y Riñón, y esta ausente de tejido mus-
cular, cardíaco y adiposo. Aunque la Glucosa-6-fosfato es un intermediario común a muchas vías
del metabolismo de Glúcidos, se considera que la sintetizada por Glucocinasa, participa princi-
palmente en la Glucogenogénesis porque la enzima está activa en condiciones que favorecen este
proceso.
Fosfoglucomutasa (EC 5.4.2.2)
Esta es la enzima que dirige la Glucosa-6-fosfato hacia la síntesis de Glucógeno. La enzima se
clasificaba como Tranferasa, porque el carbono que cede y el que recibe el fosfato, no son equi-
Metabolismo de Glúcidos
maov/mlvm/3
valentes, sin embargo una revisión actualizada de su mecanismo obligó a reclasificarla como
Isomerasa. El OH del Carbono 6 es un alcohol primario mientras que el OH del Carbono 1 es par-
te del hemiacetal interno que le da forma piranosa a la Glucosa. La enzima prefiere utilizar el
anómero  de la Glucosa y para ser activa debe estar fosforilada.
O
OH
OH
OH
CH2
OH
O P O
O
O O
OH
OH
OH
CH2
OH
O P O
O
O
Glucosa-6-fosfato Glucosa-1-fosfato
En el primer paso de la reacción, la enzima cede su fosfato al OH del Carbono 1 para formar
Glucosa-1,6-bisfosfato, intermediario que permanece unido a la enzima. Después, se vuelve a
fosforilar la enzima, pero ahora tomando el fosfato del Carbono 6.
La reacción tiene G°’ casi cero y por lo tanto, su dirección es determinada por la relación entre
las concentraciones de producto y reactivo. Cuando se absorbe Glucosa después de los alimentos,
aumenta la concentración de Glucosa-6-fosfato y la reacción se desplaza hacia la formación de
Glucosa-1-fosfato. Por el contrario, cuando se degrada el Glucógeno, aumenta la concentración
de Glucosa-1-fosfato y la reacción se desplaza hacia la formación de Glucosa-6-fosfato.
UDP-Glucosa Pirofosforilasa (EC 2.7.7.9)
Mediante la transferencia de la Glucosa-1-fosfato al fosfato  del Uridintrifosfato (UTP) liberan-
do pirofosfato, la enzima forma un compuesto de alta energía de hidrólisis, con una potencial ele-
vado de transferencia de Glucosa. Además de ser el donador directo de Glucosa para la síntesis
de Glucógeno, la UDP-Glucosa también participa en el metabolismo de Galactosa, la síntesis de
ác. Glucurónicoy reacciones de biotransformación de fármacos
O
OH
OH
OH
CH2OH
O P O
O
O
O
OH
OH
OH
CH2OH
O UDP
UTP PPi
Mg2+
Glucosa-1-fosfato UDP-Glucosa
La transferencia es endergónica pero la hidrólisis del pirofosfato liberado, la hace exergónica y
prácticamente irreversible.
Glucógeno Sintasa (EC 2.4.1.11)
Esta es la enzima que sintetiza la cadena de Glucosas mediante la transferencia de la Glucosa del
UDP, al Carbono 4 del extremo no reductor de la cadena de Glucógeno formando un enlace gli-
cosídico (1-4) El sustrato mínimo es una tetramaltosa.
Metabolismo de Glúcidos
maov/mlvm/4
O
OH
OH
OH
CH2OH
O
O
OH
OH
CH2OH
O
O
OH
OH
CH2OH
O
O
OH
OH
OH
CH2OH
O
O
OH
OH
CH2OH
O
O
OH
OH
CH2OH
O
O
OH
OH
CH2OH
O
O
OH
OH
OH
CH2OH
O UDP
UDP
Glucógeno(n) Glucógeno(n+1)
UDP-Glucosa
La enzima existe en dos formas denominadas I y D. La forma I no tiene fosfato y es activa; cuan-
do se fosforila la enzima, se convierte en la forma D que no es activa, pero es activada por Gluco-
sa-6-fosfato. La conversión I  D es estimulada por AMP cíclico a través de la activación en
cascada de enzimas Proteín Cinasas.
Enzima Ramificante (EC 2.4.1.18)
Forma las ramificaciones moviendo una cadena de tres o cuatro Glucosas desde el extremo no re-
ductor, dos o tres Glucosas hacia el interior de la cadena.
O
OH
OH
OH
CH2OH
O
O
OH
OH
CH2
OH
O
O
OH
OH
CH2OH
O
O
OH
OH
CH2OH
O
O
OH
OH
CH2OH
O
O
OH
OH
CH2OH
O
O
OH
OH
OH
CH2OH
O
O
OH
OH
CH2OH
O
O
OH
OH
CH2
OH
O
O
OH
OH
OH
CH2OH
O
O
OH
OH
CH2OH
O
O
OH
OH
CH2
O
Glucógeno lineal
Glucógeno ramificado
Rompe enlaces (1-4) y forma (1-6) en cada punto de ramificación. La ausencia de esta enzima
provoca algunas de las patologías conocidas como Glucogenosis, que se enlistan en la Tabla 1,
que son poco frecuentes pero graves.
La molécula de Glucógeno crece hacia el extremo no reductor y la creación de ramificaciones
permite que aumente la velocidad de crecimiento de la molécula. Cada Glucosa que se incorpora
al Glucógeno gasta 2 moléculas de alta energía, un ATP y un UTP, pero la segunda se recupera
durante la degradación, por lo tanto, el almacenamiento de una molécula de Glucosa en el Glucó-
geno consume sólo una molécula de ATP.
Metabolismo de Glúcidos
maov/mlvm/5
Glucogenolísis. Degradación del Glucógeno
Glucógeno Fosforilasa (EC 2.4.1.1)
La enzima actúa sobre el extremo no reductor del Glucógeno rompiendo enlaces (1-4) mediante
la introducción de un fosfato inorgánico, liberando Glucosa-1-fosfato. No puede romper ningún
otro tipo de enlace.
Existe en dos formas denominadas a y b. La forma b no tiene fosfato y es inactiva, pero es acti-
vada por AMP e inhibida por ATP y Glucosa-6-fosfato. La forma a tiene fosfato y es activa. La
conversión b  a es estimulada por AMP cíclico.
O
OH
OH
OH
CH2OH
O
O
OH
OH
CH2OH
O
O
OH
OH
OH
CH2OH
O
O
OH
OH
CH2OH
O
O
OH
OH
CH2
OH
O
O
OH
OH
CH2
OH
O
O
OH
OH
CH2
OH
O
O
OH
OH
CH2OH
O
O
OH
OH
CH2OH
O
O
OH
OH
CH2
O
O
OH
OH
OH
CH2
OH
O
O
OH
OH
CH2
OH
O
OH
O
OH
OH
CH2
OH
O
O
OH
OH
CH2OH
O
O
OH
OH
CH2OH
O
O
OH
OH
CH2OH
O
O
OH
OH
CH2
OH
O
O
OH
OH
CH2
OH
O
O
OH
OH
CH2
O
O
OH
OH
OH
CH2OH
O P O
O
O
Pi
Glucógeno (n)
Glucógeno (n-1)
Glucosa-1-fosfato
La actividad de Glucógeno Fosforilasa provoca un aumento en la concentración de Glucosa-1-
fosfato que por acción de la Fosfoglucomutasa, se convierte en Glucosa-6-fosfato, para que pue-
da entrar a la vía de la Glicólisis.
Glucosa-6 Fosfatasa (EC 3.1.3.9)
En las células que pueden liberar Glucosa a la sangre, Hígado, Pulmón y Riñón, la Glucosa-6-
fosfatasa se encarga de hidrolizar el enlace éster del fosfato en 6, la desfosforilación permite que
la Glucosa libre salga de la célula.
Metabolismo de Glúcidos
maov/mlvm/6
O
OH
OH
OH
CH2
OH
OH
O
OH
OH
OH
CH2
O P
O
O
OOH
H2O Pi
Glucosa-6-fosfato Glucosa
Oligosacárido Transferasa (EC 2.4.1.25)
La actividad de Oligosacárido transferasa es necesaria para eliminar las ramificaciones porque la
Glucógeno fosforilasa únicamente puede romper enlaces (1-4). Esta enzima transfiere un oligo-
sacárido del Carbono 4 del extremo no reductor de la ramificación al Carbono 4 de extremo no
reductor de la cadena principal.
O
OH
OH
OH
CH2OH
O
O
OH
OH
CH2OH
O
O
OH
OH
CH2
OH
O
O
OH
OH
OH
CH2
OH
O
O
OH
OH
CH2
OH
O
O
OH
OH
CH2
O
O
OH
OH
OH
CH2
OH
O
O
OH
OH
CH2
OH
O
O
OH
OH
CH2
OH
OOH
O
OH
OH
CH2
OH
O
O
OH
OH
CH2
OH
O
O
OH
OH
CH2
O
Glucógeno ramificado
Ramificación mínima
Únicamente rompe y forma enlaces (1-4) y por lo tanto, no puede eliminar la primera molécula
de Glucosa de la ramificación, que está unida con un enlace (1-6). La eliminación de la ramifi-
cación disminuye la velocidad de metabolismo de Glucógeno.
Enzima Desramificante (EC 3.2.1.68)
Es una (1-6) Glucosidasa que hidroliza el enlace (1-6) que deja la Oligosacárido transferasa en
la posición de la ramificación, liberándola como Glucosa simple.
Metabolismo de Glúcidos
maov/mlvm/7
O
OH
OH
OH
CH2
OH
O
O
OH
OH
CH2
OH
O O
O
OH
OH
CH2OH
OOH
O
OH
OH
CH2
OH
O
O
OH
OH
CH2
OH
O
O
OH
OH
CH2
O
O
OH
OH
OH
CH2
OH
O
O
OH
OH
CH2
OH
O O
O
OH
OH
CH2
OH
O
O
OH
OH
CH2
OH
O
O
OH
OH
CH2
OH
O
O
OH
OH
OH
CH2
OH
OH
H2O
Glucógeno Ramificado
Glucógeno Lineal
Glucosa
La ausencia de la Glicosidasa provoca otras de las formas de Glucogenosis, también raras y fata-
les, que se describen en la Tabla 1.
La fosforolísis del Glucógeno libera Glucosa-1-fosfato, que regresa a la vía principal de metabo-
lismo de Glúcidos; debido a ello se dice que el almacenamiento de Glucosa en forma de Glucó-
geno consume únicamente un ATP ya que el UTP consumido se regenera en la fosforolisis. Co-
mo el Glucógeno se sintetiza cuando hay energía y al momento de su degradación se libera Glu-
cosa fosforilada, en el balance de energía frecuentemente se olvida incluir el ATP consumido por
la Glucocinasa al inicio de la síntesis, lo cual no es correcto.
Regulación del metabolismo de Glucógeno
El metabolismo del Glucógeno tiene mecanismos de regulación, tanto endógenos como exóge-
nos. En condiciones normales, la síntesis de Glucógeno predomina sobre la degradación. Cuando
hay necesidad de energía, se activa la degradación y se detiene la síntesis.
El aumento en la concentración de Ca2+
, activa la degradación y además detiene la síntesis, am-
bos efectos los ejerce activando varias enzimas del grupo de las Proteín Cinasas, ya sea directa-
mente o a través de la interacción con Calmodulina, para que se fosforilen otras enzimas.
La adrenalina en Músculo e Hígado y el Glucagon en Hígado, activan la degradación y detienen
la síntesis fosforilando las enzimas Glucógeno sintasa y Glucógeno fosforilasa, mediante una cas-
cada de amplificación que depende del AMP cíclico como segundo mensajero. En el diagrama de
la página siguiente se presenta un resumen del mecanismo de regulación de estas enzimas..
Además del efecto de Adrenalina y Glucagon, la Insulina, también modifica el Metabolismo de
Glucógeno, estimulando la actividad de Glucocinasa y de Glucógeno Sintasa, por otros mecanis-
mos. Este efecto ayuda al almacenamiento de Glucosa en los tejidos.
Metabolismo de Glúcidos
maov/mlvm/8
Receptor
Adenilato
Ciclasa
Proteína
G
+
AMPC
Fosfodiesterasa
Glucógeno
Fosforilasa
b
Glucógeno
Fosforilasa
Cinasa P
Glucógeno
Fosforilasa
Cinasa
Glucógeno
Fosforilasa
a P
+
Proteín
Cinasa
+
+
Proteín
Cinasa +
+
P
Glucógeno
Sintetasa
D
Glucógeno
Sintetasa
I
Glucógeno
Sintetasa
Cinasa
+ + Calmodulina
Ca2+
+
+-
+
+
+
Adrenalina
o
Glucagon
ATP AMPC
ATP
ADP
ATP ADP
Glucosa-1-fosfatoGlucógenoUDP-Glucosa
UDP
Pi
ATP
ADP
Calmodulina
Ca2+
Ca2+
AMPGlucosa-6-fosfato, ATP
Glucosa-6-fosfato
AMP
Desordenes del Metabolismo del Glucógeno
En la Tabla 1, se enlistan desordenes del metabolismo de Glucógeno, junto con la enzima cuya
deficiencia en tejidos específicos, los provoca y los síntomas que genera. Todos estos desordenes
son raros porque son fatales y los individuos afectados no alcanzan la edad de reproducción.
Glicólisis
La Glicólisis es la vía principal de metabolismo de Glúcidos, es una vía metabólica muy antigua
pues se encuentra en el citoplasma de todas las células. Consiste en una secuencia de nueve reac-
ciones mediante la cual se convierte una molécula de Glucosa en dos moléculas de Piruvato. El
destino del Piruvato, depende de la célula y su estado metabólico.
Tradicionalmente y para facilitar su estudio, la Glicólisis se divide en dos fases. Primero, la “Fase
de las Hexosas”, se inicia con la Glucosa y termina con la Fructosa 1,6-bisfosfato, llamada así
porque todos los sustratos son hexosas. También se conoce como “Fase de gasto” ó “de inver-
sión” debido a que en ella se gasta ATP para activar las hexosas. Por último, también se llama
“Fase de convergencia”, porque los intermediarios de estas reacciones, también pueden pasar a
otras vías o ser producidos por otras vías metabólicas, como veremos más adelante.
La segunda etapa de la Glicólisis, que se inicia con el Gliceraldehído-3-fosfato y termina con el
Piruvato, ha sido mal denominada “Fase de las triosas”, pues aunque todos los sustratos tienen
tres carbonos, solo las primeras son triosas. También se le conoce como la “Fase de ganancia” ya
que en dos de sus reacciones se sintetiza ATP.
Metabolismo de Glúcidos
maov/mlvm/9
Tabla 1. Desordenes del metabolismo de Glucógeno
Tipo Nombre Deficiencia Síntomas
I von Gierke Glucosa-6-fosfatasa en Hígado, Ri-
ñón e Intestino
 Hipoglucemia
 Falta de desarrollo
 No responde a Glucagon
II Pompe (1-4) Glicosidasa ácida Lisosomal  Debilidad muscular
 Aumento de Glucógeno celular
 Muerte a edad temprana
III Cori (1-6) Glicosidasa  Aumento de Glucógeno celular
 No responde a Glucagon en ayuno
 Sí en periodo posprandial
 Muerte infantil
IV Anderson Enzima Ramificante  Hepatomegalia
 Debilidad muscular
 Cirrosis
 Muerte infantil
V McArdle Glucógeno fosforilasa Muscular  Acumulación de Glucógeno celular
 Dolor muscular y Calambres durante
el ejercicio
 Mioglobinuria
VI Her Glucógeno fosforilasa Hepática  Hepatomegalia
 Hipoglucemia leve
 No responde a Glucagon
VII Tarui Fosfofructocinasa-1 de Músculo y
Eritrocito
 Acumulación de Glucógeno celular
 Dolor muscular y Calambres durante
el ejercicio
 Anemia Hemolítica
VIII Glucógeno fosforilasa cinasa Hepá-
tica, Muscular y de Leucocitos
 Hepatomegalia
 Hipoglucemia leve
 No responde a Glucagon
Hexocinasa (EC 2.7.1.1)
La reacción de la Hexocinasa es igual a la descrita para la Glucocinasa (Isoenzima IV), pero hay
diferencias entre esta y el resto de las isoenzimas. Primero las Hexocinasas tienen mayor afinidad
por Glucosa (KM = 150 M) que la Glucocinasa (10 mM) y son menos selectivas pues además de
Glucosa, también pueden fosforilar Manosa (KM = 100 M) y Fructosa (KM = 150 mM).
O
OH
OH
OH
CH2
OH
OH
O
OH
OH
OH
CH2
O P
O
O
OOH
ATP ADP
Mg2+
Glucosa Glucosa-6-fosfato
Metabolismo de Glúcidos
maov/mlvm/10
Además, las isoenzimas I, II y III son inhibidas por ATP y Glucosa-6-fosfato y no son afectadas
por hormonas. Esta es la primera reacción irreversible de la Glicólisis, debido a que tiene un
cambio de energía libre muy negativo (ΔG°’ = - 16.7 kJ mol-1
)
Glucosafosfato Isomerasa (EC 5.3.1.9)
Esta enzima isomerasa, convierte la aldosa Glucosa, en la cetosa Fructosa, a través del interme-
diario de cadena abierta. La enzima actúa mejor sobre el anómero  de Glucosa y además tiene
actividad de amonerasa . Esta enzima dirige la Glucosa-6-fosfato hacia la Glicólisis, pero es
totalmente reversible y puede participar tanto en la Glicólisis como en la Gluconeogénesis.
O
OH
OH
OH
CH2
OH
O P O
O
O O
CH2
OH
OH
CH2OH
OHOPO
O
O
Glucosa-6-fosfato Fructosa-6-fosfato
Fosfofructocinasa (EC 2.7.1.11)
La Fosfofructocinasa, también conocida como Fosfofructocinasa 1 ó 6-fosfofrutosa-1-cinasa,
cataliza la segunda reacción irreversible de Glicólisis que consiste en transferir el fosfato del ATP
al OH de carbono 1 de la Fructosa-6-fosfato. Esta, es la principal enzima regulable de la vía.
ATP, Citrato y Acil-CoA son inhibidores alostéricos de la Fosfofructocinasa mientras que ADP y
Fructosa-6-Fosfato son activadores alostéricos. La Fosfofructocinasa de Hígado se inhibe por
AMP cíclico. La ausencia de Fosfofructocinasa en músculo, provoca calambres al inicio de la ac-
tividad física.
O
CH2
OH
OH
CH2
OH
OHOPO
O
O
O
CH2
OH
OH
CH2
OHOPO
O
O
O P O
O
O
ATP ADP
Mg2+
Fructosa-6-fosfato Fructosa-1,6-bisfosfato
Muchos autores consideran esta como la primera reacción de la Glicólisis ya que la Fructosa-6-
fosfato puede regresar a las otras vías de metabolismo, pero la Fructosa-1,6-bisfosfato no. Por
otro lado, la regulación de la actividad de esta enzima controla la velocidad total de la vía.
Aldolasa (EC 4.1.2.13)
Esta es la primera liasa de la vía. Cataliza el rompimiento reversible de la Fructosa-1,6-bisfosfato
en Gliceraldehído-3-fosfato y Dihidroxiacetonafosfato y es totalmente específica de su sustrato.
La reacción es totalmente reversible y participa tanto en Glicolisis y Gluconeogénesis. La reac-
ción inversa es una Condensación Aldólica (entre un aldehído y un alcohol), de ahí el nombre
Metabolismo de Glúcidos
maov/mlvm/11
de la enzima.
O
CH2
OH
OH
C
H2
OHOPO
O
O
O P O
O
O
CH2
3
C2
CH2
1
O
O P O
O
O
OH
CH
4
C
5
CH2
6
OH
O P O
O
O
O
H+
Fructosa-1,6-bisfosfato Dihidroxiacetona-
fosfato
Gliceraldehído-
3-fosfato
Esta es la última reacción de la “Fase de la Hexosas”. El Gliceraldehído-3-fosfato continúa la
Glicólisis, mientras que la Dihidroxiacetonafosfato puede servir como precursor para la síntesis
de Lípidos o convertirse en Gliceraldehído y continuar la Glicolísis.
Triosafosfato Isomerasa (EC 5.3.1.9)
La reacción es una isomerización aldosacetosa en la que se hace equivalentes los carbonos 1 -
6, 2 - 5, y 3 - 4 de Glucosa.
CH2
3
C2
CH2
1
O
O P O
O
O
OH CH
4
C
5
CH2
6
OH
O P O
O
O
O
H
Dihidroxiacetona-
fosfato
Gliceraldehído-
3-fosfato
Mediante esta reacción la Dihidroxiacetona también puede continuar en la Glicólisis, cuando su-
cede esto, el resto de las reacciones de la vía se llevan a cabo dos veces por cada Glucosa que en-
tra a la Glicolisis. Esta reacción también es la vía de entrada del Glicerol producido en la degra-
dación de Lípidos, el cual se oxida a Dihidroxiacetona.
Gliceraldehído-3-fosfato Deshidrogenasa (EC 1.2.1.12)
Esta es la única reacción de oxidorreducción de la Glicólisis. La energía liberada en la oxidación
del aldehído se conserva en dos formas, una parte como NADH y la otra en el enlace anhidro
mixto del bisfosfoglicerato, que es un compuesto de alta energía de hidrólisis.
CH
C
C
H2
OH
O P O
O
O
O
H
P O
O
O
C
C
CH2
OH
O P O
O
O
O
H
O
Gliceraldehído-
3-fosfato
NAD+ NADH
Pi
1,3-bisfosfo-
glicerato
La enzima es inhibida en forma competitiva por sus productos. La reacción es reversible y la en-
zima también participa en la Gluconeogénesis.
Metabolismo de Glúcidos
maov/mlvm/12
Fosfoglicerato Cinasa (EC 2.7.2.3)
Es la primera reacción de la Glicólisis en la que se gana ATP. Es una fosforilación a nivel de sus-
trato dependiente del 1,3-bisfosfoglicerato. Es la única reacción de Glicólisis catalizada por una
Cinasa, que es reversible.
P O
O
O
C
C
CH2
OH
O P O
O
O
O
H
O
C
C
CH2
OH
O P O
O
O
O
H
OADP ATP
Mg2+
1,3-bisfosfo-
glicerato
3-fosfoglicerato
En condiciones intracelulares la reacción está prácticamente en equilibrio ya que se libera energía
en la hidrólisis del 1,3-bisfosfoglicerato, pero la mayoría se conserva en el ATP. Como se meta-
bolizan dos moléculas de bisfosfoglicerato, se ganan 2 moléculas de ATP, equivalentes a las dos
empleadas en la fase de las hexosas.
Fosfoglicerato Mutasa (EC 5.4.2.1)
Es una reacción de isomerización de posición en la cual participa el 2,3-bisfosfoglicerato como
intermediario que permanece unido a la enzima.
C
C
CH2
OH
O P O
O
O
O
H
O
O P O
O
O
C
C
CH2
O
H
O
OH
3-fosfoglicerato 2-fosfoglicerato
La reacción está en equilibrio en condiciones intracelulares y por lo tanto la dirección depende de
la relación entre las concentraciones de producto y reactivo.
Enolasa (EC 4.2.1.11)
Esta enzima del grupo de las liasas, cataliza una reacción de deshidratación que aumenta la ener-
gía libre de hidrólisis del fosfato al convertir el alcohol del Carbono 2 en un enol atrapado en una
forma tautomérica poco favorable.
O P O
O
O
C
C
CH2
O
H
O
OH
O P O
O
O
C
C
CH2
O
O
2-fosfoglicerato
H2O
Fosfoenolpiruvato
La deshidratación también produce una óxido – reducción interna, el Carbono 2 se oxida al per-
Metabolismo de Glúcidos
maov/mlvm/13
der un átomo de Hidrógeno y el 3 se reduce por eliminación del OH. El Fosfoenolpiruvato es el
intermediario de Glicólisis con mayor energía libre de hidrólisis.
En las condiciones intracelulares, la reacción es reversible y puede participar también en la sínte-
sis de Glucosa.
Piruvato Cinasa (EC 2.7.1.40)
Esta es la segunda fosforilación a nivel de sustrato y última reacción de la Glicólisis. La hidrólisis
del Fosfoenolpiruvato libera suficiente energía para sintetizar dos moléculas ATP, pero como
únicamente tiene un fosfato para transferir, sólo se forma un ATP. El resto de la energía libre li-
berada, hace la reacción irreversible, tercera de este tipo en la Glicólisis, arrastrando con ella toda
la fase de las triosas.
La reacción procede en dos etapas, primero se transfiere el fosfato al ATP, formando el Enolpiru-
vato, que en forma espontánea se equilibra a la forma cetónica, que es más estable.
O P O
O
O
C
C
CH2
O
O
O
C
C
CH3
O
O
Fosfoenolpiruvato
ATPADP
Mg2+
Piruvato
La Piruvato Cinasa es activada por ADP, cuando hay necesidad de energía, y es inhibida por
ATP. En Hígado, es inhibida por fosforilación dependiente de AMP cíclico.
El Piruvato es el producto final de la Glicólisis. En diferentes organismos tiene destinos distintos
como la producción de etanol, ácido propiónico, ácido láctico, etc. Hasta este punto, la Glicólisis
tiene un rendimiento de 2 moléculas de Piruvato, ATP y NADH, por cada molécula de Glucosa.
El balance global de la Glicólisis como se ha descrito hasta aquí es:
Glucosa + 2ADP + 2Pi + 2NAD+
 2Piruvato + 2ATP + 2NADH + 2H+
+ 2H2O
Regulación hormonal de la Glicólisis
Además de la regulación endógena descrita para cada enzima, la Glicólisis también responde a
los estímulos hormonales, como se describe a continuación.
Fosfofructocinasa
El Glucagon detiene la síntesis y estimula la degradación de Glucógeno, para favorecer la libera-
ción de Glucosa a la Sangre y también inhibe la actividad de la Fosfofructocinasa. La inhibición
de Fosfofructocinasa hepática por Glucagon, evita que la Glucosa-6-fosfato se degrade en la Gli-
cólisis, facilitando su liberación. El mecanismo de regulación se resume en la figura siguiente.
Metabolismo de Glúcidos
maov/mlvm/14
Receptor
Adenilato
Ciclasa
Proteína
G
+
+
Proteín
Cinasa
+
+
P
Fructosa-2,
6-bisfosfa-
tasa
Fosfofructo-
cinasa-2
Protein-
cinasa
Inactiva P
Protein-
cinasa
Activa
ATP ADP
+
Fosfofructo-
cinasa-1
Glucagon
ATP
AMPC
ATP
ADP
Fructosa-6-P Fructosa-2,6-P
Fructosa-6-PFructosa-2,6-P
El efecto del Glucagon es mediado por una enzima que tiene dos actividades catalíticas, como 6-
fosfofructosa-2-cinasa o Fosfofructocinasa-2 (EC 2.7.1.105), responsable de la síntesis de Fructo-
sa-2,6-bisfosfato a partir de Fructosa-6-fosfato, y como Fructosa-2,6-bisfosfatasa (EC 3.1.3.46),
que degrada el compuesto de vuelta a Fructosa-6-fosfato. La Fructosa-2,6-bisfosfato es activador
alostérico potente de la Fosfofructocinasa-1. En condiciones normales, la Fosfoructocinasa-2 es
activa y mantiene la concentración elevada de Fructosa-2,6-bisfosfato la cual activa la Fosfofruc-
tocinasa-1. La presencia de Glucagon, provoca la activación de la Adenilato Ciclasa y el aumento
en la concentración de AMPC. El AMPC, es activador de Proteín Cinasas que fosforilan y modifi-
can la actividad de varias enzimas, entre ellas la Fosfofructocinasa-2. Al ser fosforilada, la Fosfo-
fructocinasa-2 se convierte en Fructosa-2,6-bisfosfatasa, este cambio de actividad elimina la
Fructosa-2,6-bisfosfato del citoplasma y con ello desactiva la Fosfofructocinasa-1 y detiene la
Glicólisis.
Piruvato Cinasa
La misma fosforilación que activa la degradación de
Glucógeno en el Hígado, inhibe la Piruvato Cinasa, en
estas condiciones el Fosfoenolpiruvato producido en la
Glicólisis, se puede usar en Gluconeogénesis, contribu-
yendo a la liberación hepática de Glucosa, inducida por
Glucagon.
Vías terminales de la Glicólisis
En los humanos, el Piruvato puede transformarse en
ácido Láctico, cuando el metabolismo es anaerobio, o
en Acetil-CoA, cuando es aerobio. La variación en las
condiciones, hace que en ocasiones se designe como
“Glicólisis anaerobia” a la terminación en Lactato y
“Glicólisis aerobia” a la que termina en Acetil-CoA.
Receptor
Adenilato
Ciclasa
Proteína
G
+
AMPC
Fosfodiesterasa
Proteín
Cinasa
+
+
P
Glucagon
ATP AMPC
AMP
ATP ADP
Piruvato
Cinasa
Activa
Piruvato
Cinasa
Inactiva
Metabolismo de Glúcidos
maov/mlvm/15
Terminación Anaerobia
Lactato Deshidrogenasa (EC 1.1.1.27)
Esta reacción, sirve para oxidar el NADH producido en la Glicólisis, en ausencia de Oxígeno.
O
C
C
CH3
O
O
H
C
C
CH3
O
O
OH
Piruvato
NAD+NADH
l-Lactato
El l-Lactato formado no sigue ninguna vía metabólica y es eliminado a la sangre. Cuando el
NADH se oxida en esta terminación, la Glicólisis rinde únicamente 2 moléculas de ATP por cada
Glucosa, ya que las dos moléculas de Lactato se liberan ha la sangre.
Glucosa + 2ADP + 2Pi  2Lactato + 2ATP + 2H2O
La Lactato Deshidrogenasa (LDH) es un tetrámero que existe en 5 formas isoenzimáticas, forma-
das a partir de dos tipos de subunidades, una que abunda en tejidos aeróbicos (tipo H) y otra de
tejido anaeróbico (tipo M). Las isoenzimas con predominio de subunidades tipo H tienen KM bajo
por Piruvato y también son inhibidas por él. En cambio, las isoenzimas con predominio de tipo M
tienen KM grande y no son inhibidas por Piruvato. La distribución de las isoenzimas es caracterís-
tica de cada tejido, H4 predomina en el tejido cardiaco y M4 en músculo estriado, por eso la LDH
es empleada en Diagnóstico Clínico.
Terminación Aeróbica
Cuando la célula necesita energía y la oxigenación es suficiente, el Piruvato producto de la Glicó-
lisis se puede convertir en Acetil-CoA por acción del Complejo de la Piruvato Deshidrogenasa.
Este complejo conecta la Glicólisis no oxidativa, con el Ciclo del ácido Cítrico que oxida la Ace-
til-CoA, para obtener el máximo rendimiento de energía de los Glúcidos que es alrededor de 38
ATP por molécula de Glucosa. El complejo se encuentra en la matriz mitocondrial, por lo tanto el
Piruvato de la Glicólisis debe atravesar la membrana mitocondrial interna; este proceso depende
de un transportador específico que utiliza el gradiente de protones como fuente de energía.
Complejo de la Piruvato Deshidorgenasa
La reacción global del complejo oculta su complejidad que
se pone de manifiesto cuando averiguamos que además de
NAD+
y CoA-SH, la reacción requiere TPP, Lipoato y
FAD como coenzimas.
El complejo está formado por cinco actividades enzimáti-
cas, que se describen a continuación.
O
C
C
CH3
O
O
C
CH3
S
O
CoA
Piruvato
NAD+ NADH
Acetil-CoA
CO2
CoA-SH
Metabolismo de Glúcidos
maov/mlvm/16
Piruvato Deshidrogenasa (EC 1.2.4.1)
Esta enzima tiene Pirofosfato de Tiamina (TPP) como grupo prostético. El Piruvato se une al TPP
y se descarboxila, convirtiendose en el radical Acetoil..
O P O P O
O
O
O
O
N
N
H
CH2
N
S
CH2
CH3
CH3
CH2
CH OH
CH3
Enzima
O
C
C
CH3
O
O
Piruvato
Acetoil-TPP
TPP-Enzima
CO
La enzima es activada por sustrato e inhibida por producto. También es activada por Ca2+
e Insu-
lina, e inhibida por ATP, y NADH. La regulación depende de enzimas cinasas y fosfatasas, que
también forman parte del complejo.
O P O P O
O
O
O
O
N
N
H
CH2
N
S
CH2
CH3
CH3
CH2
CH OH
CH3
Enzima
SSH
C
NH
O
C
CH3
O
Enzima
N
H
C
O
N
H
C
CH
O
OH
N
N
N
O
O P O P O
N
NH2
O
O
O
O
O OH
P
O
OO
CH2C
CH3
CH3
SCCH3
O
Acetoil-TPP
TPP-Enzima
Lipoamida-Enzima
Acetil-lipoamida
Dihidrolipoamida
CoA-SH
Acetil-CoA
Lipoato Acetil Transferasa (EC 2.3.1.12)
La enzima tiene como grupo prostético Ácido Lipóico, unido al grupo amino de un resto de Lisi-
Metabolismo de Glúcidos
maov/mlvm/17
na en forma de Lipoamida. Cataliza la transferencia del acetoilo a la Coenzima-A.
Durante la transferencia, la Lipoamida oxida el acetoilo a acetilo, reduciéndose a dihidrolipoami-
da que debe re – oxidarse para que el complejo siga funcionando.
Lipoamida Deshidrogenasa (EC 1.8.1.4)
La tercera enzima catalítica del complejo, requiere FAD como grupo prostético. Cataliza la oxi-
dación de la dihidrolipoamida, dependiente de FAD.
SHSH
C
NH
O
Enzima
S
C
NH
O
Enzima
S
FAD FADH2
NADH NAD+
Dihidrolipoamida Lipoamida
La oxidación del FADH2 depende de NAD+
, lo cual es raro, pues el NAD+
es más reductor que el
FAD y la reacción debía ser a la inversa, pero la oxidación rápida del NADH en la Cadena Respi-
ratoria, permite que la reacción se lleve a cabo en el sentido indicado.
Piruvato Deshidrogenasa Cinasa (EC 2.7.1.99)
Esta enzima participa en la regulación de la actividad del complejo. Fosforila e inactiva a la Piru-
vato Deshidrogenasa, evitando el consumo de Piruvato.
Piruvato
Deshidrogenasa
Activa
Piruvato
Deshidrogenasa
Fosfato
Inactiva
ATP ADP
La enzima es activada por ATP, Acetil-CoA y NADH e inhibida por Piruvato.
La activación de la Cinasa, provoca la inhibición del complejo por lo tanto, ATP, Acetil-CoA y
NADH, inhiben la transformación de Piruvato en Acetil-CoA, mientras que el Piruvato activa su
transformación.
Piruvato Deshidrogenasa Fosfatasa (EC 3.1.3.43)
Esta enzima cataliza la desfosforilación de la Piruvato Deshidrogenasa y con ello la activa.
Piruvato
Deshidrogenasa
Activa
Piruvato
Deshidrogenasa
Fosfato
Inactiva
H2O Pi
Metabolismo de Glúcidos
maov/mlvm/18
La fosfatasa es activada por Ca2+
e Insulina. En oposición a la enzima anterior, las sustancias que
activan la Fosfatasa, también activan al complejo, entonces, Ca2+
e Insulina activan la transfor-
mación de Piruvato en Acetil-CoA.
Muchos autores consideran que la síntesis de Acetil-CoA es una vía metabólica en si misma pues
cuenta con una enzima generadora de flujo, la Piruvato Deshidrogenasa y regulación indepen-
diente.
La conversión de Piruvato en Acetil-CoA añade 2 NADH al rendimiento de la Glicólisis quedan-
do como:
Glucosa + 2ADP + 2Pi + 4NAD+
 2 Acetil-CoA + 2 CO2 + 2ATP + 4NADH + 4H+
+ 2H2O
Vía de la Glicerolfosfato Deshidrogenasa
Para que los equivalentes reductores producidos en la Glicólisis se puedan oxidar en la termina-
ción aeróbica, deben entrar a la Mitocondria. Existen dos rutas de entrada, la Vía de la Glicerol-
fosfato Deshidrógenasa y la lanzadera del Malato-Aspartato
Glicerolfosfato Deshidrogenasa (NAD+
) (EC 1.1.1.8) y Glicerolfosfato Deshidrogenasa (Fla-
vina) (EC 1.1.99.5)
La Glicerolfosfato Deshidrogenasa, tiene dos isoenzimas, que dependen una de NAD+
y otra de
Flavina, que se encuentran en ambas caras de la membrana mitocondrial catalizando la intercon-
versión de Glicerolfosfato y Dihidroxiacetonafosfato, en la reacción siguiente.
CH2
C
CH2
O
O P O
O
O
OH CH2
CH
CH2 O P O
O
O
OH
OH
l-glicerolfosfatoDihidroxiacetonafosfato
Aceptor
reducido
Aceptor
oxidado
La enzima dependiente de NAD+
se encuentra en la cara externa de la membrana mitocondrial.
La enzima dependiente de Flavina está en la membrana mitocondrial interna y transfiere los
equivalentes reductores a la CoQ de cadena respiratoria a través de una Flavoproteína Des-
hidrogenasa (EC 1.5.5.1). El resultado de la acción conjunta de ambas enzimas es la conversión
del NADH citoplásmico en FADH2 mitocondrial.
Esta ruta de entrada de equivalentes reductores no es importante en los humanos. La reacción de-
pendiente de NAD+
es importante en la síntesis de lípidos pues produce Glicerolfosfato.
Al introducir los equivalentes reductores por esta vía, el NADH se convierte en FADH2, por lo
que el rendimiento máximo de energía por Glucosa disminuye a 36 ATP. Sin embargo, la impor-
tancia de esta vía en los humanos es discutible, y se considera que la entrada principal de los
equivalentes reductores del NADH a la mitocondria se efectúa a través de la Lanzadera Malato-
Aspartato.
Metabolismo de Glúcidos
maov/mlvm/19
Vía del Malato-Aspartato ó Lanzadera Malato-Aspartato
En la entrada de equivalentes reductores mediante la Lanzadera Malato-Aspartato, intervienen
dos enzimas y dos transportadores de la membrana mitocondrial.
CITOPLASMA MITOCONDRIA
L-Malato
Oxalacetato
Aspartato-Cetoglutarato
Glutamato
NADH
NAD+
L-Malato
Oxalacetato
Aspartato -Cetoglutarato
Glutamato
NADH
NAD+
Malato Deshidrogenasa (EC 1.1.1.37)
En el citoplasma, la reacción oxidaría el NADH, formando Malato el cual entra a la mitocondria
intercambiándose con -Cetoglutarato. Dentro de la mitocondria la reacción regenera el NADH,
formando Oxalacetato.
C
CH
CH2
C
OH
O
O
O
O
C
C
CH2
C
O
O
O
O
O
NAD+ NADH
L-Malato Oxalacetato
El Oxalacetato formado no sale como tal sino que es sustrato para la reacción siguiente.
Aspartato Aminotransferasa (EC 2.6.1.1)
La enzima depende de la coenzima Fos-
fato de Piridoxal (PLP). En la Mitocon-
dría la reacción transfiere el amino del
Glutamato al Oxalacetato transformán-
dolo en Aspartato, que sale al citoplasma
intercambiándose con Glutamato. En el
citoplasma, la reacción convierte el As-
partato en Oxalacetato, devolviendo el
amino del Aspartato al - Cetoglutarato.
El Oxalacetato nuevamente actúa como aceptor de los equivalentes reductores del NADH y vuel-
C
CH
CH2
C
NH3
+
O
O
O
O
C
C
CH2
C
O
O
O
O
O
C
CH
CH2
CH2
NH3
+
O
O
C O
O
C
C
CH2
CH2
O
O
C O
O
O
L-AspartatoOxalacetato L-Glutamato -Cetoglutarato
 PLP
Metabolismo de Glúcidos
maov/mlvm/20
ve a entrar a la mitocondria.
Funcionando de esta manera, la lanzadera introduce equivalentes reductores del citoplasma a la
mitocondria como NADH. Debido a que ambas reacciones son reversibles, la lanzadera puede
funcionar en ambos sentidos y por lo tanto, también puede sacar equivalentes reductores de la mi-
tocondria. La dirección preferente está determinada por la concentración de NAD reducido a am-
bos lados de la membrana mitocondrial. Algunos autores consideran que la reversibilidad de la
lanzadera la hace inapropiada para introducir equivalentes reductores a la mitocondria y por ello
prefieren considerar que la entrada es a través de la Glicerolfosfato Deshidrogenasa. Sin embar-
go, como ya se apuntó, la importancia relativa de esta vía en los humanos es materia de debate.
Por otro lado, aunque las vías metabólicas de la matriz mitocondrial producen muchos equivalen-
tes reductores, en condiciones normales, estos son consumidos rápidamente por la cadena respira-
toria y no se acumulan.
Derivación del Bisfosfoglicerato
En el eritrocito, el 2,3-bisfosfoglicerato actúa como modulador alostérico de la Hemoglobina,
disminuyendo su afinidad por el Oxígeno. Cuando los eritrocitos pasan por los pulmones, la pre-
sión parcial de Oxígeno es alta y la hemoglobina se satura, desplazando el bisfosfoglicerato. En la
circulación periférica, cuando la saturación disminuye, el bisfosfoglicerato se une a la hemoglo-
bina y disminuye la afinidad por el Oxígeno facilitando la liberación. Al regresar a los pulmones
el ciclo se repite. La concentración de bisfosfoglicerato está determinada por dos enzimas que
forman una derivación de la Glicólisis.
Bisfosfoglicetaro Mutasa (EC 5.4.2.4)
Al cambiar el fosfato del carboxilo 1 al alcohol en 2,
se pierde la contribución energética del enlace anhidro,
por lo que el 2,3 - bisfosfoglicerato no tiene energía de
hidrólisis suficiente para la síntesis de ATP.
Bisfosfoglicerato fosfatasa (EC 3.1.3.13)
Esta secuencia de reacciones desvía el fosfoglicerato de la
ruta de Glicólisis normal, y resulta en la pérdida de un en-
lace de alta energía, que no se aprovecha en síntesis de
ATP. A consecuencia de lo anterior, en el Eritrocito el
rendimiento de la Glicólisis es únicamente de 1 ATP.
P O
O
O
C
C
CH2
O
O
H
O
O P O
O
O
O P O
O
O
P O
O
O
C
C
CH2
OH
O
H
O
1,3-bisfosfoglicerato 2,3-bisfosfoglicerato
P O
O
O
C
C
CH2
O
O
H
O
O P O
O
O
O P O
O
O
C
C
CH2
OH
O
H
O
3-fosfoglicerato2,3-bisfosfoglicerato
Metabolismo de Glúcidos
maov/mlvm/21
Desordenes del metabolismo del 2,3-bisfosfoglicerato
Se ha descrito un desorden genético que consiste en la disminución de la actividad de la Hexoci-
nasa en Eritrocitos, que produce deficiencia de 2,3- bisfosfoglicerato. En estas condiciones la afi-
nidad de la Hemoglobina por el Oxígeno está aumentada, provocando hipoxia en los tejidos y es-
timulando la liberación de Eritropoyetina, en forma semejante a la adaptación a grandes alturas.
El aumento de Eritrocitos que resulta, puede provocar problemas de Hemodinámica.
También existe una condición generada por la deficiencia de Piruvato cinasa, que provoca la
acumulación de 2,3-bisfosfoglicerato, resultando en la disminución de la afinidad de la Hemo-
globina por el Oxígeno, que se libera en mayor cantidad en los tejidos y disminuye la liberación
de Eritropoyetina, lo cual puede causar anemia.
Gluconeogénesis o Síntesis de Glucosa
Todos los monosacáridos que necesita el organismo pueden sintetizarse a partir de Glucosa la
cual a su vez, se forma a partir de aminoácidos y otras sustancias que no son glúcidos, mediante
la ruta conocida como Gluconeogénesis. Esta vía es importante en casi todos los tejidos, pero en
especial en el Hígado donde sirve para mantener la Glicemia durante períodos de ayuno.
La Gluconeogénesis emplea las enzimas que catalizan reacciones reversibles de la Glicólisis y
únicamente sustituye las que catalizan reacciones irreversibles.
Cuando la célula tiene suficiente energía, para inhibir la conversión de Piruvato en Acetil-CoA,
este se convierte en el precursor de la Glucosa. Para iniciar la Gluconeogénesis, el Piruvato debe
convertirse en Fosfoenolpiruvato, pero como esta es una de las reacciones irreversibles de la Gli-
cólisis, en la Glucoenogénesis se sigue la secuencia reacciones siguiente.
Piruvato Carboxilasa (EC 6.4.1.1)
Esta enzima es mitocondrial y como casi todas las carboxilasas, usa Biotina como coenzima. El
Piruvato también se puede obtener de la oxidación del Lactato.
O
C
C
CH3
O
O C
C
CH2
O
O
O
C O
O
Oxalacetato
ATP ADP+Pi
Biotina, Mg2+
Piruvato
CO2
La Piruvato Carboxilasa es inhibida por ADP, por lo tanto, la Gluconeogénesis sólo proceder
cuando hay energía. Por otro lado, es activada por Acetil-CoA, lo cual es una señal de que esta
molécula no está entrando al ciclo del ácido Cítrico.
El Oxalacetato producido en la reacción se puede combinar con Acetil-CoA para formar Citrato.
Metabolismo de Glúcidos
maov/mlvm/22
Por lo anterior, se considera que la carboxilación del Piruvato, además de participar en la Gluco-
neogénesis también es una reacción anaplerótica del ciclo del ácido Cítrico.
Para participar en la Glicólisis, el Oxalacetato que se ha formado en la mitocondria, se debe
transportar al citoplasma, esto se logra mediante la lanzadera del Malato-Aspartato.
Fosfoenolpiruvato Carboxicinasa (EC 4.1.1.32)
La enzima se encuentra tanto en mitocondria como citoplasma. Es inhibida por GDP, lo que indi-
ca un nivel bajo de energía.
O P O
O
O
C
C
CH2
O
OC
C
CH2
O
O
O
C O
O
Fosfoenolpiruvato
GDPGTP
Oxalacetato
CO2
El Fosfoenolpiruvato se transforma en Fructosa-1,6-bisfosfato mediante la acción secuencial de
las enzimas Enolasa, Fosfoglicerato Mutasa, Fosfoglicerato Cinasa, Gliceraldehído-3-fosfato
Deshidrogenasa, Triosafosfato Isomerasa y Aldolasa. En este camino se gastan 2 moléculas de
ATP y dos de NADH, para formar las triosas que se deben condensar para formar la Fructosa-
1,6- bisfosfato. La siguiente enzima de Glicólisis, la Fosfofructocinasa cataliza otra reacción irre-
versible y debe ser sustituida en la Gluconeogénesis, por la enzima siguiente.
Fructosa bisfosfatasa (EC 3.1.3.11)
Es la principal enzima regulable de la Gluconeogénesis. Tiene inhibición “cruzada” con Fosfo-
fructocinasa. Es activada por ATP e inhibida por AMP y ADP.
O
CH2
OH
OH
CH2
OH
OHOPO
O
O
O
CH2
OH
OH
CH2
OHOPO
O
O
O P O
O
O
H2O Pi
Fructosa-6-fosfatoFructosa-1,6-bisfosfato
La Fructosa-6-fosfato producida en esta reacción es convertida en Glucosa-6-fosfato por la Glu-
cosa Fosfato Isomerasa.
En el Hígado, la Glucogenogénesis, al igual que la Glucogenolisis, sirve para liberar Glucosa a la
sangre, para ello se necesita la acción de la enzima Glucosa-6-fosfatasa mencionada al estudiar
esta última vía. En músculo, cerebro y corazón, la Gluconeogénesis se lleva a cabo a partir de
aminoácidos y sirve para generar los monosacáridos que requiere la célula, ya que estas carecen
de la fosfatasa y por ende no permiten la salida de Glucosa.
Metabolismo de Glúcidos
maov/mlvm/23
Vía de las Pentosas
También se conoce como la Vía Oxidativa Directa, Vía de la Hexosamonofosfato o Vía del ácido
Glucónico. Tiene tres funciones: (1) Producción de NADPH, necesario en las reacciones de sínte-
sis de ácidos grasos, colesterol, aminoácidos y desoxinucleótidos; (2) Producción de Ribosa para
síntesis de ácidos nucleicos y (3) Interconversión de monosacáridos, para permitir su entrada a la
Glicólisis.
La vía consta de dos fases, la primera oxidativa, que produce NADPH y la segunda no oxidativa,
que produce Ribosa e interconversión de monosacáridos.
En forma semejante a la Glicólisis, que tiene diferente terminación, dependiendo del tejido y el
estado metabólico de las células. Durante la síntesis de ácidos nucleicos se detendrá en Ribosa; si
se requieren equivalentes reductores, puede regresar a Fructosa-6-fosfato, o cuando se tiene mo-
nosacáridos poco comunes, se dirigirán estos hacia la Glicólisis.
La cantidad de Glucosa que pasa por la vía de las Pentosas también varía según el tejidos y el es-
tado metabólico de la células; en general es mayor en los tejidos que están realizando síntesis en
forma activa (Hígado, Tejido adiposo, Glándula mamaría, Glándulas suprarrenales), que en los
realizan menos síntesis (Músculo, Osteocito).
Glucosa-6-fosfato Deshidrogenasa (EC 1.1.1.49)
Esta enzima dirige la Glucosa-6-fosfato hacia la vía de las Pentosas. Prefiere el anómero . Es
inhibida por NADPH y Acil-CoA, ambos compuestos se acumulan cuando ya no hacen falta
equivalentes reductores para síntesis.
O
OH
OH
OH
CH2
OH
O P O
O
O O
OH
OH
OH
CH2
O P O
O
O
O
Glucosa-6-fosfato 6-fosfoglucono-5-lactona
NADP NADPH
Su ausencia produce crisis hemolíticas al consumir sustancias oxidantes, como fármacos anticoa-
gulantes. Los individuos heterocigóticos pera este carácter son resistentes al parásito que provoca
el paludismo (Plasmodium falciparum malarie)
6-Fosfoglucono-5-lactona hidrolasa ó Lactonasa (EC 3.1.1.31)
La reacción es espontánea, pero muy lenta, por eso se requiere la enzima.
Metabolismo de Glúcidos
maov/mlvm/24
O
OH
OH
OH
CH2
O P O
O
O
O
C
C
CH2
H OH
C
HOH
C
OHH
OHH
C
OO
O P O
O
O
6-fosfoglucono-5-lactona
H2O
6-Fosfogluconato
Aunque teóricamente es reversible, la siguiente reacción, es irreversible y desplaza toda la se-
cuencia hacia la derecha.
6-Fosfogluconato Deshidrogenasa (EC 1.1.1.44)
Primero se oxida el carbono 3 de fosfogluconato, produciendo un -cetoácido inestable. El inter-
mediario permanece unido a la enzima, hasta que se descarboxila para formar el producto. La
descarboxilación hace que la reacción total sea irreversible y además, hace la vía irreversible.
C
C
CH2
H OH
C
HOH
C
OHH
OHH
C
OO
O P O
O
O
C
C
CH2
H OH
C
HOH
C
O
OHH
C
OO
O P O
O
O
CH2
C
CH
CH
CH2
OH
OH
OH
O P O
O
O
O
CO2
6-Fosfogluconato 6-Fosfo-2-cetogluconato
Ribulosa-5-fosfato
NADP
NADPH
Con esta reacción, termina la fase oxidativa de la vía.
Pentosafosfato Isomerasa (EC 5.3.1.6)
Es una isomerización aldosacetosa en la que se produce toda la Ribosa necesaria para la sínte-
sis de ácidos nucleicos.
CH2
C
CH
CH
CH2
OH
OH
OH
O P O
O
O
O
CH
CH
CH
CH
CH2
O
OH
OH
O P O
O
O
OH
Ribulosa-5-fosfato Ribosa-5-fosfato
Metabolismo de Glúcidos
maov/mlvm/25
Pentosafosfato Epimerasa (EC 5.1.3.1)
La epimerización de la Ribosa se necesita cuando hay que regresar los carbonos a la Glucosa a la
Glicólisis.
CH2
C
CH
CH
CH2
OH
OH
OH
O P O
O
O
O
CH2
C
CH
CH
CH2
OH
OH
O P O
O
O
O
OH
Ribulosa-5-fosfato Xilulosa-5-fosfato
Transcetolasa (EC 2.2.1.1)
La enzima transfiere dos átomos de carbono. El donador siempre es una cetosa y el aceptor una
aldosa. El carbono donador debe tener configuración L, y el carbono aldehídico aceptor adquiere
esta configuración.
CH
CH
CH
CH
CH2
O
OH
OH
O P O
O
O
OH
CH2
C
CH
CH
CH2
OH
OH
O P O
O
O
O
OH
CH2
C
OH
O
CH
CH
CH
CH
CH2
OH
OH
O P O
O
O
OH
OH
CH
CH
CH2
OH
O P O
O
O
O
Xilulosa-
5-fosfato
+
Sedoheptulosa-
7-fosfato
Gliceraldehído-
3-fosfato
+
Ribosa-
5-fosfato
La enzima puede usar varios sustratos y requiere TPP como coenzima.
Transaldolasa (EC 2.2.1.2)
Transfiere tres átomos de carbono. El donador siempre es una cetosa y el aceptor una aldosa. El
carbono donador debe tener configuración D, y el carbono aldehídico aceptor adquiere esta con-
figuración. La reacción regenera una hexosa.
Metabolismo de Glúcidos
maov/mlvm/26
CH2
C
OH
O
CH
CH
CH
CH
CH2
OH
OH
O P O
O
O
OH
OH
CH
CH
CH2
OH
O P O
O
O
O
CH
CH
CH
CH2
OH
OH
O P O
O
O
O
CH2
C
OH
O
CHOH
CH
CH
CH2
OH
O P O
O
O
OH
Sedoheptulosa-
7-fosfato
Gliceraldehído-
3-fosfato
+
Eritrosa-
4-fosfato
Fructosa-
6-fosfato
+
Transcetolasa (EC 2.2.1.1)
Con esta reacción, los carbonos de la Eritrosa se convierten en un intermediario de Glicólisis.
CH
CH
CH
CH2
OH
OH
O P O
O
O
O
CH2
C
OH
O
CHOH
CH
CH
CH2
OH
O P O
O
O
OH
CH2
C
CH
CH
CH2
OH
OH
O P O
O
O
O
OH CH
CH
CH2
OH
O P O
O
O
O
Eritrosa-
4-fosfato
Fructosa-
6-fosfato
Xilulosa-
5-fosfato
+
Gliceraldehido-
3-fosfato
+
Cuando la célula requiere equivalentes reductores el Gliceraldehído-3-fosfato también puede
convertirse en Fructosa mediante las reacciones de la Gluconeogénesis: Triosafosfato Isomerasa,
para convertir el Gliceraldehído en Dihidroxiacetona; Aldolasa para condensar ambas triosas y
formar Fructosa-1,6-bisfosfato, y Fructosa bisfosfato Fosfatasa para formar Fructosa-6-fosfato.
Metabolismo de otros Monosacáridos
Aunque la Glucosa es con mucho el monosacárido más importante en el metabolismo, en la dieta
normal se ingieren otros monosacáridos que también deben ser metabolizados, los más importan-
tes son Fructosa, proveniente de la degradación del azúcar de mesa, Sacarosa y de las frutas; Ga-
lactosa, que se obtiene a partir del azúcar de la lecha, la Lactosa; y Manosa, que forma parte de
los glúcidos digeribles de varios vegetales.
Metabolismo de Manosa
Hexocinasa (EC 2.7.1.1)
Es la misma enzima que fosforila Glucosa. Tiene mayor afinidad por Manosa (KM = 100 M)
que por Glucosa (KM= 150 M).
Metabolismo de Glúcidos
maov/mlvm/27
O
OH
OH
CH2
OH
OH
OH
O
OH
OH
CH2
O P
O
O
OOH
OH
ATP ADP
Mg2+
Manosa Manosa-6-fosfato
Manosa Fosfato Isomerasa (EC 5.3.1.8)
Interconvierte específicamente Manosa y Fructosa. Prefiere actuar sobre el anómero  de Mano-
sa, pero tiene actividad de amonerasa 
O
OH
OH
CH2
OH
O P O
O
O
OH
O
CH2
OH
OH
CH2
OH
OHOPO
O
O
Manosa-6-fosfato Fructosa-6-fosfato
Con estas dos enzimas la Manosa se incorpora a la vía de la Glicólisis. El problema principal que
presenta el metabolismo de Manosa, es la competencia por la Hexocinasa que mantiene con la
Glucosa. El KM, favorece a la Manosa que tiene más afinidad, pero la concentración favorece a la
Glucosa que está siempre en mayor cantidad.
Metabolismo de Fructosa
En teoría, la Fructosa puede seguir dos caminos para entrar a la Glicólisis. El primero es a través
de la Hexocinasa, que la convierte directamente en Fructosa-6-fosfato.
O
CH2
OH
OH
CH2OH
OHOPO
O
O
O
CH2
OH
OH
CH2OH
OHOH
Fructosa-6-fosfatoFructosa
Sin embargo, como la afinidad por Fructosa (KM = 0.15 M) es 1000 veces menor que por Glucosa
(KM= 150 M), y la concentración de esta también es mayor, esta ruta de entrada de Fructosa al
metabolismo es poco importante, excepto en tejido adiposos, y por tal motivo, la Fructosa tiene
una vía metabólica propia que se lleva a cabo, casi exclusivamente, en el citoplasma de las célu-
las Hepáticas.
Metabolismo de Glúcidos
maov/mlvm/28
Fructocinasa (EC 2.7.1.3)
Es una enzima hepática, específica de Fructosa, que cataliza la fosforilación en el carbono 1 para
formar Fructosa-1-fosfato.
O
CH2
OH
OH
CH2
OHOH
O P O
O
O
O
CH2
OH
OH
CH2
OH
OHOH
Fructosa-1-fosfatoFructosa
ATP ADP
Su ausencia provoca un estado asintomático denominado “Fructosuria Esencial”, porque no se
puede absorber la Fructosa de la sangre y la mayor parte debe eliminarse por orina.
La Fructosa-1-fosfato que se produce no ese sustrato para la Aldoalsa 1 de la Glicólisis y por tan-
to se necesita otra enzima específica para el metabolismo de Fructosa.
Fructosa-1-fosfato Aldolasa, Aldolasa B ó Aldolasa 2. (EC 4.1.2.13)
Cataliza el mismo tipo de reacción que la Aldolasa 1, pero es específica de Fructosa-1-fosfato,
formado Dihidroxiacetonafosfato a partir de los carbonos 1 a 3 de Fructosa y Gliceraldehído del 4
al 6.
O
CH2
OH
OH
C
H2
OHOH
O P O
O
O
CH2
3
C2
CH2
1
O
O P O
O
O
OH
CH
4
C
5
CH2
6
OH
OH
O
H+
Fructosa-1-fosfato Dihidroxiacetona-
fosfato
Gliceraldehído
Su ausencia provoca “Intolerancia a la Fructosa”, por acumulación en tejido hepático de Fructo-
sa-1-fosfato que inhibe la Glicólisis y la Gluconeogénesis provocando hipoglicemia severa, lo
cual que resulta en Vómito, Ictericia, Hepatomegalia y desarrollo pobre.
La Dihidroxiacetonafosfato puede entrar directamente a la Glicólisis pero el Gliceraldehído no
porque carece del fosfato necesario.
Triosa Cinasa (EC 2.7.1.28)
Convierte el Gliceraldehído en Gliceraldehído-3-
fosfato, para que pueda entrar a la Glicólisis.
Esta vía de entrada de Fructosa a Glicólisis, evita la
reacción de la Fosfofructocinasa, que es el punto prin-
cipal de regulación, por lo tanto, la ingesta aumentada
CH
C
C
H2
OH
OH
O
H
CH
C
C
H2
OH
O P O
O
O
O
H
Gliceraldehído
ATP ADP
Gliceraldehído-
3-fosfato
Metabolismo de Glúcidos
maov/mlvm/29
de Fructosa, como durante la aplicación de sueros fructosados, puede provocar estados de Hiper-
glicemia que deben ser considerados en el tratamiento de pacientes diabéticos.
Metabolismo de Galactosa
La Galactosa no es sustrato de ninguna de las cinasas de otros monosacáridos y por lo tanto tam-
bién presenta una vía metabólica propia, que se realiza principalmente en el Hígado.
Galactocinasa (EC 2.7.1.6)
Esta enzima es específica de Galactosa a la que fosforila en el carbono 1. Su actividad no respon-
de a hormonas.
O
OH
CH2
OH
OH
OH
OH O
OH
CH2
OH
OH O P
O
O
O
OHATP ADP
Mg2+
Galactosa Galactosa-1-fosfato
Galactosa-1-fosfato Uridiltransferasa (EC 2.7.7.12)
Transfiere el UDP de la Glucosa a la Galactosa. La UDP-Galactosa puede seguir varios destinos,
entre ellos, la Glicólisis.
O
OH
OH
CH2
OH
O P
OH
O
O
O
O
OH
OH
OH
CH2
OH
O UDP
O
OH
OH
OH
CH2
OH
O P O
O
O
O
OH
OH
CH2
OH
O UDP
OH
+ +
UDP-Glucosa Galactosa-1-fosfato Glucosa-1-fosfato UDP-Galactosa
La ausencia de la enzima provoca la “Galactosemia”, que causa Desnutrición, Hepatomegalia,
Retraso mental, Ictericia, Cataratas, Vómito y Muerte.
La Galactosemia es uno de los desordenes congénitos del metabolismo más comunes. En algunos
países alcaza una frecuencia de 1 en 30 000.
UDP-Glucosa-4-Epimerasa (EC 5.1.3.2)
Isomeriza la UDP-Galactosa a UDP-Glucosa. La conversión
a UDP-Glucosa permite que la Galactosa se incorpore al
metabolismo general de Glúcidos.
O
OH
OH
OH
CH2
OH
O UDP
O
OH
OH
CH2
OH
O UDP
OH
UDP-GlucosaUDP-Galactosa
Metabolismo de Glúcidos
maov/mlvm/30
UDP-Galactosa Pirofosforilasa (EC 2.7.7.10)
En algunos individuos puede aparece esta enzima en la adolescencia. Permite emplear la Galacto-
sa sin que pase por la Uridil transferasa.
O
OH
OH
CH2OH
O P O
O
O
OH O
OH
OH
CH2OH
O UDP
OH
UTP PPi
Mg2+
Galactosa-1-fosfato UDP-Galactosa
Otras vías metabólicas relacionadas con los Glúcidos
Algunos derivados de monosacáridos y otras moléculas, siguen rutas metabólicas que se relacio-
nan con los Glúcidos, entre los más importantes están el ácido Glucurónico y el Etanol.
Metabolismo del ácido Glucurónico
Este derivado de Glucosa es componente de varios polisacáridos estructurales y también se utiliza
en reacciones de biotransformación de fármacos. Cuando se degradan los mucopolisacáridos es-
tructurales, el ácido Glucurónico liberado debe metabolizarse o eliminarse, para evitar patologías.
UDP-Glucosa-6-Deshidrogenasa (EC 1.1.1.22)
Esta es la enzima que sintetiza el ácido Glucurónico para que se incorpore a polisacáridos estruc-
turales.
O
OH
OH
OH
COO-
O UDP
O
OH
OH
OH
CH2
OH
O UDP
2NAD+ 2NADH
H2O
UDP-Glucosa UDP-Glucuronato
UDP-Glucuronato Transferasa (EC 2.4.1.17)
Esta enzima transfiere el Glucuronato a radicales OH de diversos receptores. Su actividad es im-
portante en el metabolismo de fármacos, esteroides y porfirinas, y para la síntesis de mucopolisa-
cáridos.
Β-Glucuronidasa (EC 3.2.1.31)
Hidroliza el enlace glicosídico entre el glucuronato y el aglicon, produciendo el Glucuronato li-
bre, que puede ser eliminado en orina, o degradarse por acción de las enzimas siguientes.
Metabolismo de Glúcidos
maov/mlvm/31
Glucuronato Reductasa (EC 1.1.1.19)
Al reducir el carbono 1 de aldehído a alcohol, el carbono 6 se vuelve más importante. Por lo tan-
to, se invierte la numeración de los carbonos y entonces el penúltimo carbono es L.
O
OH
OH
COO-
OHOH
CH2
CH
CH
CH
CH
C
OH
OH
OH
OH
OH
O
O
NADPH NADP+
D-Glucuronato
L-Gulonato
L-Gulonato Deshidrogenasa (EC 1.1.1.45)
Se produce un 3-cetoácido inestable.
CH2
CH
CH
CH
CH
C
OH
OH
OH
OH
OH
O
O
CH2
CH
CH
C
CH
OH
OH
OH
O
OH
CO
O
NADHNAD+
L-Gulonato 3-ceto-L-Gulonato
L-Dehidrogulonato Descarboxilasa (EC 4.1.1.34)
La eliminación de CO2, hace la reacción irreversible.
CH2
CH
CH
C
CH
C
OH
OH
OH
O
OH
O
O
CH2
CH
CH
C
CH2
OH
OH
OH
O
OH
L-Cetogulonato L-Xilulosa
CO2
L-Xilulosa Reductasa (EC 1.1.1.10)
Oxido-reductasa dependiente de NADPH. Su ausencia produce “Pentosuria Esencial”, asintomá-
tica.
Metabolismo de Glúcidos
maov/mlvm/32
C
C
CH2
HOH
C
H OH
CH2
O
OH
OH
C
C
CH2
HOH
C
H OH
CH2
OH
OH
OH
H
NADPH NADP+
L-Xilulosa Xilitol
D-Xilitol Desihdrogenasa (EC 1.1.1.9)
Depende de NAD+
. Oxida el carbono simétrico que fue reducido, invirtiendo la numeración de
los carbonos y regresando a la familia D.
C
C
CH2
O
C
H
CH2
OH
OH
H
OH
OH
C
C
CH2
HOH
C
H OH
CH2
OH
OH
OH
H
NADHNAD+
D-XilulosaXilitol
Junto con la reducción anterior, interconvierte los enantiómeros de la Xilulosa.
Xilulosa Cinasa (EC 2.7.1.17)
La Xilulosa-5-fosfato puede entrar a la fase no oxidativa de la vía de las pentosas, transformarse
en Ribosa, Fructosa o Gliceraldehído y pasar al metabolismo general de Glúcidos.
C
C
CH2
OH
C
OH
CH2
OH
OH
O
H
H
C
C
CH2
OH
C
OH
CH2
O
OH
O
H
H
P O
O
O
ADPATP
D-Xilulosa
D-Xilulosa-
5-fosfato
Mg2+
Casi todos los organismos, con excepción de primates y cobayos, pueden sintetizar la vitamina C
(Ácido ascórbico) a partir del ácido L-Gulónico, comenzando con una reacción de ciclización es-
pontánea.
Metabolismo de Glúcidos
maov/mlvm/33
CH2
CH
CH
CH
CH
C
OH
OH
OH
OH
OH
O
O
CH2
CH
CH
CH
CH
C
OH
OH
O
OH
OH
O
L-Gulonato L-Gulono-
4-lactona
H2O
L-Gulonolactona Oxidasa (EC 1.1.3.8)
Los animales que no pueden sintetizar vitamina C, carecen de esta enzima.
CH2
CH
CH
CH
CH
C
OH
OH
O
OH
OH
O
CH2
CH
CH
C
C
C
OH
OH
O
OH
OH
O
L-Gulono-
4-lactona
FADH2
Ac. Ascórbico
FAD
Metabolismo del Etanol
La síntesis de Etanol la efectúan únicamente las levaduras y aunque los humanos no son capaces
de producirlo, el estudio de su metabolismo es digno de atención a causa de su elevado consumo.
Piruvato Descarboxilasa. (EC 4.1.1.1)
La enzima requiere Pirofosfato de Tiamina (TPP) y está ausente en los organismos superiores.
CH3
C
C O
O
O
CH3
CH
O
Piruvato Acetaldehído
CO2
TPP
La descarboxilación hace la reacción irreversible.
Alcohol Deshidrogenasa (EC 1.1.1.1)
La enzima de levadura es diferente de la de mamíferos.
CH3
CH
O
CH3
C O
ONADH
Acetaldehído
NAD+
Etanol
Metabolismo de Glúcidos
maov/mlvm/34
El etanol es un componente importante de la dieta de los humanos, aunque el propósito del con-
sumo no es nutricional, es una magnifica fuente de energía.
Alcohol Deshidrogenasa (EC 1.1.1.1)
Esta enzima es muy rápida, aunque se encuentra en poca cantidad, es inducible. Tiene propieda-
des y especificidad diferente a la de levadura.
CH3
CH2 OH
CH3
CH
O
Etanol
NADH
Acetaldehído
NAD+
El acetaldehído formado es citotóxico.
Aldehído Deshidrogenasa (EC 1.2.1.3)
Esta es una enzima más lenta que la anterior, por lo que el consumo de grandes cantidades de
Etanol puede llevar a la acumulación de acetaldehído hasta niveles tóxicos. El acetaldehído acu-
mulado produce el síndrome del “día siguiente”.
CH3
CH
O
CH3
C O
ONADH
Acetaldehído
NAD+
Acetato
Acetil-CoA Sintetasa (EC 6.2.1.1)
Esta reacción es irreversible y hace que toda la vía lo sea. El Acetil-CoA, sirve como fuente de
energía, si se oxida en el ciclo de Krebs. Si no se usa como fuente de energía, se guarda en forma
de ácidos grasos.
CH3
C S
O
CoA
CH3
C O
O
ADPATP
Acetil-CoAAcetato CoA-SH
H2O
Las vías metabólicas que mostramos aquí, son las más interesantes, pero en realidad son sólo una
pequeña parte de todo el metabolismo de Glúcidos.

Contenu connexe

Tendances (20)

glucogenolisis
glucogenolisisglucogenolisis
glucogenolisis
 
Glucogenolisis
Glucogenolisis Glucogenolisis
Glucogenolisis
 
Rutas del metabolismo carbohidratos
Rutas del metabolismo carbohidratosRutas del metabolismo carbohidratos
Rutas del metabolismo carbohidratos
 
Glucolisis
GlucolisisGlucolisis
Glucolisis
 
Ruta metabólica de la lactosa.
Ruta metabólica de la lactosa.Ruta metabólica de la lactosa.
Ruta metabólica de la lactosa.
 
Metabolismo lípidos
Metabolismo lípidosMetabolismo lípidos
Metabolismo lípidos
 
Ciclo de cori
Ciclo de coriCiclo de cori
Ciclo de cori
 
Metabolismo de Nucleotidos
Metabolismo de Nucleotidos Metabolismo de Nucleotidos
Metabolismo de Nucleotidos
 
Glucogenolisis
GlucogenolisisGlucogenolisis
Glucogenolisis
 
La vía de la pentosa fosfato
La vía de la pentosa fosfatoLa vía de la pentosa fosfato
La vía de la pentosa fosfato
 
Glucolisis
GlucolisisGlucolisis
Glucolisis
 
Glándulas morfologia
Glándulas morfologiaGlándulas morfologia
Glándulas morfologia
 
Metabolismo de las proteinas
Metabolismo de las proteinasMetabolismo de las proteinas
Metabolismo de las proteinas
 
18. transporte de electrones y fosforilacion oxidativa
18. transporte de electrones y fosforilacion oxidativa18. transporte de electrones y fosforilacion oxidativa
18. transporte de electrones y fosforilacion oxidativa
 
GLUCONEOGÉNESIS
GLUCONEOGÉNESISGLUCONEOGÉNESIS
GLUCONEOGÉNESIS
 
Introducción al metabolismo celular
Introducción al metabolismo celularIntroducción al metabolismo celular
Introducción al metabolismo celular
 
El ciclo de cori
El ciclo de coriEl ciclo de cori
El ciclo de cori
 
Enzimas: Mecanismo de Acción
Enzimas: Mecanismo de AcciónEnzimas: Mecanismo de Acción
Enzimas: Mecanismo de Acción
 
Histología del sistema urinario
Histología del sistema urinarioHistología del sistema urinario
Histología del sistema urinario
 
Aminoácidos glucogénicos, cetogénicos y ciclo de la urea
Aminoácidos glucogénicos, cetogénicos y ciclo de la ureaAminoácidos glucogénicos, cetogénicos y ciclo de la urea
Aminoácidos glucogénicos, cetogénicos y ciclo de la urea
 

En vedette

En vedette (20)

Metabolismo de los Glúcidos
Metabolismo de los GlúcidosMetabolismo de los Glúcidos
Metabolismo de los Glúcidos
 
Errores del Metabolismo de la Fructosa
Errores del Metabolismo de la FructosaErrores del Metabolismo de la Fructosa
Errores del Metabolismo de la Fructosa
 
Glucólisis 2012
Glucólisis 2012Glucólisis 2012
Glucólisis 2012
 
Pentosas fosfato
Pentosas fosfatoPentosas fosfato
Pentosas fosfato
 
Fructosuria esencial e intolerancia a la fructosa
Fructosuria esencial e intolerancia a la fructosaFructosuria esencial e intolerancia a la fructosa
Fructosuria esencial e intolerancia a la fructosa
 
Metabolismo de glucidos 2014 unlam
Metabolismo de glucidos 2014 unlamMetabolismo de glucidos 2014 unlam
Metabolismo de glucidos 2014 unlam
 
Metabolismo de Proteínas
Metabolismo de ProteínasMetabolismo de Proteínas
Metabolismo de Proteínas
 
Metabolismo de proteinas
Metabolismo de proteinasMetabolismo de proteinas
Metabolismo de proteinas
 
Metabolismo de proteínas
Metabolismo de proteínas Metabolismo de proteínas
Metabolismo de proteínas
 
Hígado
HígadoHígado
Hígado
 
Metabolismo de las proteinas
Metabolismo de las proteinasMetabolismo de las proteinas
Metabolismo de las proteinas
 
Metabolismo de proteínas
Metabolismo de proteínasMetabolismo de proteínas
Metabolismo de proteínas
 
Metabolismo de glucidos
Metabolismo  de glucidosMetabolismo  de glucidos
Metabolismo de glucidos
 
Tema 11 12 catabolismo
Tema 11 12 catabolismoTema 11 12 catabolismo
Tema 11 12 catabolismo
 
Metabolismo de lipidos
Metabolismo de lipidosMetabolismo de lipidos
Metabolismo de lipidos
 
BioquíMica1
BioquíMica1BioquíMica1
BioquíMica1
 
Metabolismo de los compuestos nitrogenados
Metabolismo de los compuestos nitrogenadosMetabolismo de los compuestos nitrogenados
Metabolismo de los compuestos nitrogenados
 
Gluconeogenesis
GluconeogenesisGluconeogenesis
Gluconeogenesis
 
Vías de las pentosas fosfato
Vías de las pentosas fosfatoVías de las pentosas fosfato
Vías de las pentosas fosfato
 
Reconocimiento de carbohidratos
Reconocimiento de carbohidratosReconocimiento de carbohidratos
Reconocimiento de carbohidratos
 

Similaire à Metabolismo de los Glúcidos.

Morfofisiología Humana 3 semana 1 (continuación)
Morfofisiología Humana 3 semana 1 (continuación)Morfofisiología Humana 3 semana 1 (continuación)
Morfofisiología Humana 3 semana 1 (continuación)Abraham Rodriguez
 
Metabolismo del Glucógeno, discusión de laboratorio
Metabolismo del Glucógeno, discusión de laboratorioMetabolismo del Glucógeno, discusión de laboratorio
Metabolismo del Glucógeno, discusión de laboratoriotupapirico1645
 
Caminos metabolicos de los carbohidratos
Caminos metabolicos de los carbohidratosCaminos metabolicos de los carbohidratos
Caminos metabolicos de los carbohidratosOmaar Asslek
 
Gluconeogénesis
Gluconeogénesis  Gluconeogénesis
Gluconeogénesis primelia
 
Metabolismo de carbohidratos.pdf
Metabolismo de carbohidratos.pdfMetabolismo de carbohidratos.pdf
Metabolismo de carbohidratos.pdfAnnissaSalgado
 
Expo,, gluconeogenesis y control de la glucosa en la sangre
Expo,, gluconeogenesis y control de la glucosa en la sangreExpo,, gluconeogenesis y control de la glucosa en la sangre
Expo,, gluconeogenesis y control de la glucosa en la sangreLiliana Tineo Chasquero
 
carbohiadratos, glocogenesis.pdf
carbohiadratos, glocogenesis.pdfcarbohiadratos, glocogenesis.pdf
carbohiadratos, glocogenesis.pdfJessMendoza71
 
Metabolismo de Carbohidratos expo 1 PAIVAa.pptx
Metabolismo de Carbohidratos expo 1 PAIVAa.pptxMetabolismo de Carbohidratos expo 1 PAIVAa.pptx
Metabolismo de Carbohidratos expo 1 PAIVAa.pptxAlbertoRamos523784
 
METABOLISMO DE CARBOHIDRATOS.docx
METABOLISMO DE CARBOHIDRATOS.docxMETABOLISMO DE CARBOHIDRATOS.docx
METABOLISMO DE CARBOHIDRATOS.docxGERARDOPEARANDAVERA
 
7 metabolismo de los cho (carbohidratos)-veterinaria
7 metabolismo de los cho (carbohidratos)-veterinaria7 metabolismo de los cho (carbohidratos)-veterinaria
7 metabolismo de los cho (carbohidratos)-veterinariaJavier Israel Soliz Campos
 
METABOLISMO DE LOS GLUCIDOS.pdf
METABOLISMO DE LOS GLUCIDOS.pdfMETABOLISMO DE LOS GLUCIDOS.pdf
METABOLISMO DE LOS GLUCIDOS.pdfGabriel Montes
 
Clase 14 Glucogenolisis Y Glucogenogenesis
Clase 14 Glucogenolisis Y GlucogenogenesisClase 14 Glucogenolisis Y Glucogenogenesis
Clase 14 Glucogenolisis Y Glucogenogenesistecnologia medica
 

Similaire à Metabolismo de los Glúcidos. (20)

Morfofisiología Humana 3 semana 1 (continuación)
Morfofisiología Humana 3 semana 1 (continuación)Morfofisiología Humana 3 semana 1 (continuación)
Morfofisiología Humana 3 semana 1 (continuación)
 
Metabolismo del Glucógeno, discusión de laboratorio
Metabolismo del Glucógeno, discusión de laboratorioMetabolismo del Glucógeno, discusión de laboratorio
Metabolismo del Glucógeno, discusión de laboratorio
 
Caminos metabolicos de los carbohidratos
Caminos metabolicos de los carbohidratosCaminos metabolicos de los carbohidratos
Caminos metabolicos de los carbohidratos
 
Metabolimo de carbohidratos
Metabolimo de carbohidratosMetabolimo de carbohidratos
Metabolimo de carbohidratos
 
Gluconeogénesis
Gluconeogénesis  Gluconeogénesis
Gluconeogénesis
 
Metabolismo de carbohidratos.pdf
Metabolismo de carbohidratos.pdfMetabolismo de carbohidratos.pdf
Metabolismo de carbohidratos.pdf
 
Metabolismo de los carbohidratos
Metabolismo de los carbohidratosMetabolismo de los carbohidratos
Metabolismo de los carbohidratos
 
Expo,, gluconeogenesis y control de la glucosa en la sangre
Expo,, gluconeogenesis y control de la glucosa en la sangreExpo,, gluconeogenesis y control de la glucosa en la sangre
Expo,, gluconeogenesis y control de la glucosa en la sangre
 
carbohiadratos, glocogenesis.pdf
carbohiadratos, glocogenesis.pdfcarbohiadratos, glocogenesis.pdf
carbohiadratos, glocogenesis.pdf
 
CARBOHIDRATOS
CARBOHIDRATOSCARBOHIDRATOS
CARBOHIDRATOS
 
Metabolismo de Carbohidratos expo 1 PAIVAa.pptx
Metabolismo de Carbohidratos expo 1 PAIVAa.pptxMetabolismo de Carbohidratos expo 1 PAIVAa.pptx
Metabolismo de Carbohidratos expo 1 PAIVAa.pptx
 
METABOLISMO DE CARBOHIDRATOS.docx
METABOLISMO DE CARBOHIDRATOS.docxMETABOLISMO DE CARBOHIDRATOS.docx
METABOLISMO DE CARBOHIDRATOS.docx
 
Glucolisis
Glucolisis Glucolisis
Glucolisis
 
PRODUCCIÓN DE ATP
PRODUCCIÓN DE ATPPRODUCCIÓN DE ATP
PRODUCCIÓN DE ATP
 
7 metabolismo de los cho (carbohidratos)-veterinaria
7 metabolismo de los cho (carbohidratos)-veterinaria7 metabolismo de los cho (carbohidratos)-veterinaria
7 metabolismo de los cho (carbohidratos)-veterinaria
 
Bioquimica
BioquimicaBioquimica
Bioquimica
 
glucolisis y pentosas fosfato
glucolisis y pentosas fosfatoglucolisis y pentosas fosfato
glucolisis y pentosas fosfato
 
Glucógeno
GlucógenoGlucógeno
Glucógeno
 
METABOLISMO DE LOS GLUCIDOS.pdf
METABOLISMO DE LOS GLUCIDOS.pdfMETABOLISMO DE LOS GLUCIDOS.pdf
METABOLISMO DE LOS GLUCIDOS.pdf
 
Clase 14 Glucogenolisis Y Glucogenogenesis
Clase 14 Glucogenolisis Y GlucogenogenesisClase 14 Glucogenolisis Y Glucogenogenesis
Clase 14 Glucogenolisis Y Glucogenogenesis
 

Plus de Oswaldo A. Garibay

Agentes que inciden en la salud de los trabajadores
Agentes que inciden en la salud de los trabajadoresAgentes que inciden en la salud de los trabajadores
Agentes que inciden en la salud de los trabajadoresOswaldo A. Garibay
 
Conceptos básicos en medicina del trabajo
 Conceptos básicos en medicina del trabajo Conceptos básicos en medicina del trabajo
Conceptos básicos en medicina del trabajoOswaldo A. Garibay
 
Marco juridico nacional e internacional
Marco juridico nacional e internacionalMarco juridico nacional e internacional
Marco juridico nacional e internacionalOswaldo A. Garibay
 
Historia de la medicina del trabajo
Historia de la medicina del trabajoHistoria de la medicina del trabajo
Historia de la medicina del trabajoOswaldo A. Garibay
 
Signos Vitales y Somatometría
Signos Vitales y SomatometríaSignos Vitales y Somatometría
Signos Vitales y SomatometríaOswaldo A. Garibay
 
Signos y Síntomas del Aparato Respiratorio
Signos y Síntomas del Aparato RespiratorioSignos y Síntomas del Aparato Respiratorio
Signos y Síntomas del Aparato RespiratorioOswaldo A. Garibay
 
Laboratorio y gabinete en Enfermedades del Sistema Nervioso Central
Laboratorio y gabinete en Enfermedades del Sistema Nervioso CentralLaboratorio y gabinete en Enfermedades del Sistema Nervioso Central
Laboratorio y gabinete en Enfermedades del Sistema Nervioso CentralOswaldo A. Garibay
 
Interrogatorio y Motivos de Consulta Musculo Esqueletico
Interrogatorio y Motivos de Consulta Musculo EsqueleticoInterrogatorio y Motivos de Consulta Musculo Esqueletico
Interrogatorio y Motivos de Consulta Musculo EsqueleticoOswaldo A. Garibay
 
Exploración Genitales Femeninos
Exploración Genitales FemeninosExploración Genitales Femeninos
Exploración Genitales FemeninosOswaldo A. Garibay
 
Examen fisico y motivos de consulta muscular
Examen fisico y motivos de consulta muscularExamen fisico y motivos de consulta muscular
Examen fisico y motivos de consulta muscularOswaldo A. Garibay
 

Plus de Oswaldo A. Garibay (20)

Climaterio y Menopausia
Climaterio y MenopausiaClimaterio y Menopausia
Climaterio y Menopausia
 
Agentes que inciden en la salud de los trabajadores
Agentes que inciden en la salud de los trabajadoresAgentes que inciden en la salud de los trabajadores
Agentes que inciden en la salud de los trabajadores
 
Historia clinica laboral
Historia clinica laboralHistoria clinica laboral
Historia clinica laboral
 
Enfermedades de trabajo
Enfermedades de trabajoEnfermedades de trabajo
Enfermedades de trabajo
 
Accidentes de trabajo
Accidentes de trabajoAccidentes de trabajo
Accidentes de trabajo
 
Higiene industrial
Higiene industrialHigiene industrial
Higiene industrial
 
Conceptos básicos en medicina del trabajo
 Conceptos básicos en medicina del trabajo Conceptos básicos en medicina del trabajo
Conceptos básicos en medicina del trabajo
 
Marco juridico nacional e internacional
Marco juridico nacional e internacionalMarco juridico nacional e internacional
Marco juridico nacional e internacional
 
Que es la seguridad social
Que es la seguridad socialQue es la seguridad social
Que es la seguridad social
 
Historia de la medicina del trabajo
Historia de la medicina del trabajoHistoria de la medicina del trabajo
Historia de la medicina del trabajo
 
Signos Vitales y Somatometría
Signos Vitales y SomatometríaSignos Vitales y Somatometría
Signos Vitales y Somatometría
 
Síndromes Cardiovasculares
Síndromes CardiovascularesSíndromes Cardiovasculares
Síndromes Cardiovasculares
 
Signos y Síntomas del Aparato Respiratorio
Signos y Síntomas del Aparato RespiratorioSignos y Síntomas del Aparato Respiratorio
Signos y Síntomas del Aparato Respiratorio
 
Sistema Linfático
Sistema LinfáticoSistema Linfático
Sistema Linfático
 
Laboratorio y gabinete en Enfermedades del Sistema Nervioso Central
Laboratorio y gabinete en Enfermedades del Sistema Nervioso CentralLaboratorio y gabinete en Enfermedades del Sistema Nervioso Central
Laboratorio y gabinete en Enfermedades del Sistema Nervioso Central
 
Interrogatorio y Motivos de Consulta Musculo Esqueletico
Interrogatorio y Motivos de Consulta Musculo EsqueleticoInterrogatorio y Motivos de Consulta Musculo Esqueletico
Interrogatorio y Motivos de Consulta Musculo Esqueletico
 
Interrogatorio de cuello
Interrogatorio de cuelloInterrogatorio de cuello
Interrogatorio de cuello
 
Exploración Genitales Femeninos
Exploración Genitales FemeninosExploración Genitales Femeninos
Exploración Genitales Femeninos
 
Semiología: Dermis
Semiología: DermisSemiología: Dermis
Semiología: Dermis
 
Examen fisico y motivos de consulta muscular
Examen fisico y motivos de consulta muscularExamen fisico y motivos de consulta muscular
Examen fisico y motivos de consulta muscular
 

Dernier

11-incisiones-y-cierre-de-pared-abdominal.ppt
11-incisiones-y-cierre-de-pared-abdominal.ppt11-incisiones-y-cierre-de-pared-abdominal.ppt
11-incisiones-y-cierre-de-pared-abdominal.pptyuhelipm
 
Dedo con deformidad en ojal o “boutonnière”
Dedo con deformidad en ojal o “boutonnière”Dedo con deformidad en ojal o “boutonnière”
Dedo con deformidad en ojal o “boutonnière”AdyPunkiss1
 
ACRONIMO TIMERS TRATAMIENTO DE HERIDAS AVANZADAS
ACRONIMO TIMERS TRATAMIENTO DE HERIDAS AVANZADASACRONIMO TIMERS TRATAMIENTO DE HERIDAS AVANZADAS
ACRONIMO TIMERS TRATAMIENTO DE HERIDAS AVANZADASjuanjosenajerasanche
 
1. HISTORIA DE LA FISIOTERAPIA EN EL MUNDO.pptx
1. HISTORIA DE LA FISIOTERAPIA EN EL MUNDO.pptx1. HISTORIA DE LA FISIOTERAPIA EN EL MUNDO.pptx
1. HISTORIA DE LA FISIOTERAPIA EN EL MUNDO.pptxSarayAcua2
 
Clase 15 Artrologia mmii 1 de 3 (Cintura Pelvica y Cadera) 2024.pdf
Clase 15 Artrologia mmii 1 de 3 (Cintura Pelvica y Cadera) 2024.pdfClase 15 Artrologia mmii 1 de 3 (Cintura Pelvica y Cadera) 2024.pdf
Clase 15 Artrologia mmii 1 de 3 (Cintura Pelvica y Cadera) 2024.pdfgarrotamara01
 
Flashcard Anatomía del Craneo: Neurocráneo y Vicerocráneo.
Flashcard Anatomía del Craneo: Neurocráneo y Vicerocráneo.Flashcard Anatomía del Craneo: Neurocráneo y Vicerocráneo.
Flashcard Anatomía del Craneo: Neurocráneo y Vicerocráneo.sczearielalejandroce
 
Anticoncepcion actualización 2024 según la OMS
Anticoncepcion actualización 2024 según la OMSAnticoncepcion actualización 2024 según la OMS
Anticoncepcion actualización 2024 según la OMSferblan28071
 
Histologia del sistema respiratorio y sus funciones
Histologia del sistema respiratorio y sus funcionesHistologia del sistema respiratorio y sus funciones
Histologia del sistema respiratorio y sus funcionesCarlosVazquez410328
 
terminologia obstetrica de la mujer materna
terminologia obstetrica de la mujer maternaterminologia obstetrica de la mujer materna
terminologia obstetrica de la mujer maternaanny545237
 
10. Protocolo de atencion a victimas de violencia sexual.pptx
10. Protocolo de atencion a victimas de violencia sexual.pptx10. Protocolo de atencion a victimas de violencia sexual.pptx
10. Protocolo de atencion a victimas de violencia sexual.pptxKatherineReyes36006
 
Cuadro comparativo de las biomoléculas.pptx
Cuadro comparativo de las biomoléculas.pptxCuadro comparativo de las biomoléculas.pptx
Cuadro comparativo de las biomoléculas.pptx23638100
 
Cuadro-comparativo-Aparato-Reproductor-Masculino-y-Femenino.pptx
Cuadro-comparativo-Aparato-Reproductor-Masculino-y-Femenino.pptxCuadro-comparativo-Aparato-Reproductor-Masculino-y-Femenino.pptx
Cuadro-comparativo-Aparato-Reproductor-Masculino-y-Femenino.pptxguadalupedejesusrios
 
1 mapa mental acerca del virus VIH o sida
1 mapa mental acerca del virus VIH o sida1 mapa mental acerca del virus VIH o sida
1 mapa mental acerca del virus VIH o sidagsandovalariana
 
infografía seminario.pdf.................
infografía seminario.pdf.................infografía seminario.pdf.................
infografía seminario.pdf.................ScarletMedina4
 
Historia Clínica y Consentimiento Informado en Odontología
Historia Clínica y Consentimiento Informado en OdontologíaHistoria Clínica y Consentimiento Informado en Odontología
Historia Clínica y Consentimiento Informado en OdontologíaJorge Enrique Manrique-Chávez
 
asma bronquial- nuevo enfoque GINA y GEMA
asma bronquial- nuevo enfoque  GINA y GEMAasma bronquial- nuevo enfoque  GINA y GEMA
asma bronquial- nuevo enfoque GINA y GEMAPatriciaCorrea174655
 
SEGUNDA Y TERCERA SEMANA DEL DESARROLLO EMBRIONARIO.pptx
SEGUNDA  Y  TERCERA  SEMANA  DEL  DESARROLLO  EMBRIONARIO.pptxSEGUNDA  Y  TERCERA  SEMANA  DEL  DESARROLLO  EMBRIONARIO.pptx
SEGUNDA Y TERCERA SEMANA DEL DESARROLLO EMBRIONARIO.pptxArian753404
 
Psorinum y sus usos en la homeopatía y la dermatología
Psorinum y sus usos en la homeopatía y la dermatologíaPsorinum y sus usos en la homeopatía y la dermatología
Psorinum y sus usos en la homeopatía y la dermatologíaFelixGutirrez3
 
Microorganismos presentes en los cereales
Microorganismos presentes en los cerealesMicroorganismos presentes en los cereales
Microorganismos presentes en los cerealesgrupogetsemani9
 
DETERMINISMO DEL TRABAJO DE PARTO-1.pptx
DETERMINISMO DEL TRABAJO DE PARTO-1.pptxDETERMINISMO DEL TRABAJO DE PARTO-1.pptx
DETERMINISMO DEL TRABAJO DE PARTO-1.pptxfiorellaanayaserrano
 

Dernier (20)

11-incisiones-y-cierre-de-pared-abdominal.ppt
11-incisiones-y-cierre-de-pared-abdominal.ppt11-incisiones-y-cierre-de-pared-abdominal.ppt
11-incisiones-y-cierre-de-pared-abdominal.ppt
 
Dedo con deformidad en ojal o “boutonnière”
Dedo con deformidad en ojal o “boutonnière”Dedo con deformidad en ojal o “boutonnière”
Dedo con deformidad en ojal o “boutonnière”
 
ACRONIMO TIMERS TRATAMIENTO DE HERIDAS AVANZADAS
ACRONIMO TIMERS TRATAMIENTO DE HERIDAS AVANZADASACRONIMO TIMERS TRATAMIENTO DE HERIDAS AVANZADAS
ACRONIMO TIMERS TRATAMIENTO DE HERIDAS AVANZADAS
 
1. HISTORIA DE LA FISIOTERAPIA EN EL MUNDO.pptx
1. HISTORIA DE LA FISIOTERAPIA EN EL MUNDO.pptx1. HISTORIA DE LA FISIOTERAPIA EN EL MUNDO.pptx
1. HISTORIA DE LA FISIOTERAPIA EN EL MUNDO.pptx
 
Clase 15 Artrologia mmii 1 de 3 (Cintura Pelvica y Cadera) 2024.pdf
Clase 15 Artrologia mmii 1 de 3 (Cintura Pelvica y Cadera) 2024.pdfClase 15 Artrologia mmii 1 de 3 (Cintura Pelvica y Cadera) 2024.pdf
Clase 15 Artrologia mmii 1 de 3 (Cintura Pelvica y Cadera) 2024.pdf
 
Flashcard Anatomía del Craneo: Neurocráneo y Vicerocráneo.
Flashcard Anatomía del Craneo: Neurocráneo y Vicerocráneo.Flashcard Anatomía del Craneo: Neurocráneo y Vicerocráneo.
Flashcard Anatomía del Craneo: Neurocráneo y Vicerocráneo.
 
Anticoncepcion actualización 2024 según la OMS
Anticoncepcion actualización 2024 según la OMSAnticoncepcion actualización 2024 según la OMS
Anticoncepcion actualización 2024 según la OMS
 
Histologia del sistema respiratorio y sus funciones
Histologia del sistema respiratorio y sus funcionesHistologia del sistema respiratorio y sus funciones
Histologia del sistema respiratorio y sus funciones
 
terminologia obstetrica de la mujer materna
terminologia obstetrica de la mujer maternaterminologia obstetrica de la mujer materna
terminologia obstetrica de la mujer materna
 
10. Protocolo de atencion a victimas de violencia sexual.pptx
10. Protocolo de atencion a victimas de violencia sexual.pptx10. Protocolo de atencion a victimas de violencia sexual.pptx
10. Protocolo de atencion a victimas de violencia sexual.pptx
 
Cuadro comparativo de las biomoléculas.pptx
Cuadro comparativo de las biomoléculas.pptxCuadro comparativo de las biomoléculas.pptx
Cuadro comparativo de las biomoléculas.pptx
 
Cuadro-comparativo-Aparato-Reproductor-Masculino-y-Femenino.pptx
Cuadro-comparativo-Aparato-Reproductor-Masculino-y-Femenino.pptxCuadro-comparativo-Aparato-Reproductor-Masculino-y-Femenino.pptx
Cuadro-comparativo-Aparato-Reproductor-Masculino-y-Femenino.pptx
 
1 mapa mental acerca del virus VIH o sida
1 mapa mental acerca del virus VIH o sida1 mapa mental acerca del virus VIH o sida
1 mapa mental acerca del virus VIH o sida
 
infografía seminario.pdf.................
infografía seminario.pdf.................infografía seminario.pdf.................
infografía seminario.pdf.................
 
Historia Clínica y Consentimiento Informado en Odontología
Historia Clínica y Consentimiento Informado en OdontologíaHistoria Clínica y Consentimiento Informado en Odontología
Historia Clínica y Consentimiento Informado en Odontología
 
asma bronquial- nuevo enfoque GINA y GEMA
asma bronquial- nuevo enfoque  GINA y GEMAasma bronquial- nuevo enfoque  GINA y GEMA
asma bronquial- nuevo enfoque GINA y GEMA
 
SEGUNDA Y TERCERA SEMANA DEL DESARROLLO EMBRIONARIO.pptx
SEGUNDA  Y  TERCERA  SEMANA  DEL  DESARROLLO  EMBRIONARIO.pptxSEGUNDA  Y  TERCERA  SEMANA  DEL  DESARROLLO  EMBRIONARIO.pptx
SEGUNDA Y TERCERA SEMANA DEL DESARROLLO EMBRIONARIO.pptx
 
Psorinum y sus usos en la homeopatía y la dermatología
Psorinum y sus usos en la homeopatía y la dermatologíaPsorinum y sus usos en la homeopatía y la dermatología
Psorinum y sus usos en la homeopatía y la dermatología
 
Microorganismos presentes en los cereales
Microorganismos presentes en los cerealesMicroorganismos presentes en los cereales
Microorganismos presentes en los cereales
 
DETERMINISMO DEL TRABAJO DE PARTO-1.pptx
DETERMINISMO DEL TRABAJO DE PARTO-1.pptxDETERMINISMO DEL TRABAJO DE PARTO-1.pptx
DETERMINISMO DEL TRABAJO DE PARTO-1.pptx
 

Metabolismo de los Glúcidos.

  • 1. maov/mlvm/enero de 2010 Metabolismo de Glúcidos Miguel Ángel Ordorica Vargas & María de la Luz Velázquez Monroy Introducción El estudio del metabolismo de Glúcidos se inició en 1897 cuando Eduard Buchner descubrió que la fermentación alcohólica se puede efectuar en extractos de levadura libres de células, dando así inicio al desarrollo de la Bioquímica moderna. Como fue el primero que se estudio, se conocen muchos detalles acerca del metabolismo de Glúcidos. En el curso, únicamente estudiaremos al- gunas de las vías metabólicas en las cuales los Glucidos participan como almacén y fuente de energía. Digestión y Transporte La dieta humana contiene muchos tipos de Glúcidos desde monosacáridos como la Fructosa de la fruta y la miel, hasta polímeros como Almidón y Glucógeno. La digestión de Glúcidos se inicia desde la boca por acción de la enzima Amilasa Salival, que actúa sobre Almidón y Glucógeno li- berando principalmente el disacárido Maltosa. La acción de esta enzima termina cuando el ali- mento llega al estómago, pues su pH óptimo es neutro. En el estómago los polisacáridos se de- gradan poco por acción del ácido clorhídrico secretado y pasan casi intactos al intestino delgado. La digestión intestinal de Glúcidos depende de enzimas pancreáticas de las cuales la más impor- tante es la -Amilasa, que tiene la misma acción que la salival, liberando Maltosa, la cual es de- gradad a Glucosa por la Maltasa. Otros disacáridos son hidrolizados por enzimas específicas co- mo la Sacarasa, Lactasa y Trehalasa. Los monosacáridos que se producen en la digestión, son absorbidos por las células intestinales y liberados a la circulación en la vena porta para llegar al Hígado y otros tejidos, que los pueden utilizar como fuentes de energía, almacenarlos o transformarlos en ácidos grasos o aminoácidos. Metabolismo del Glucógeno El Glucógeno es la forma de almacenamiento de energía de los Glúcidos en los animales. Se al- macena en todos los tejidos. En el músculo constituye la reserva de respuesta rápida al aumento en las necesidades de energía. La reserva hepática de Glucógeno sirve para mantener la glicemia normal. Glucogenogénesis. Síntesis de Glucógeno. La forma más común de síntesis de Glucógeno depende de la en- zima Glucógeno Sintasa y consiste en la adición de moléculas de Glucosa a los extremos de los gránulos ya existentes. La síntesis de novo de Glucógeno depende de la Glucogenina, una enzima que se autoglicosila, formado un oligosacárido que sirve de aceptor pa- ra la Glucógeno Sintasa. Figura 1. Estructura del Glucógeno
  • 2. Metabolismo de Glúcidos maov/mlvm/2 Glucogenina (EC 2.4.1.186) Esta enzima cataliza dos tipos de transferencia. En la primera, se transfiere una molécula de Glu- cosa, de UDP-Glucosa al OH de un residuo de Tirosina de la misma proteína. Después transfiere la Glucosa al Carbono 4 de la molécula en el extremo no reductor de la cadena en crecimiento. Repitiendo la segunda reacción varias veces, se forma un oligosacárido lineal que sirve como aceptor inicial para la formación de un gránulo de Glucógeno, quedando la molécula de Glucoge- nina en el centro del gránulo. (G en la Figura 1) Glucocinasa (EC 2.7.1.2) La Glucocinasa cataliza la “activación” de la Glucosa, mediante la transferencia del fosfato  de una molécula de ATP al grupo OH del Carbono 2. La fosforilación impide que la Glucosa salga de la célula porque el grupo fosfato es iónico y porque el transportador de la membrana celular no reconoce la Glucosa-6-Fosfato que se forma. Actualmente, la Glucocinasa se clasifica como una de las isoenzimas de la Hexocinasa, la número IV. O OH OH OH CH2 OH OH O OH OH OH CH2 O P O O OOH ATP ADP Mg2+ Glucosa Glucosa-6-fosfato La enzima es específica de Glucosa pero tiene afinidad baja por ella (KM= 10 mM) y no es in- hibida por su producto la Glucosa-6-fosfato. Estas características la hacen ideal para participar en la síntesis de Glucógeno. Primero únicamente puede fosforilar la Glucosa, que es el precursor del Glucóceno. Debido a su baja afinidad, su actividad será más importante en los periodos de alta concentración de Glucosa, como después de las comidas. En cambio, la concentración de Gluco- sa en condiciones de glicemia normal (~150 M), es menor que el KM de enzima por lo que no se captará la Glucosa de la sangre. Además, al no ser inhibida por su producto, puede seguir fosfori- lando Glucosa aún cuando se ha acumulado Glucosa-6-fosfato. Además, la actividad de Glucoci- nasa aumenta por acción de Insulina, favoreciendo la captura de Glucosa cuando la concentración de esta es alta. La actividad de Glucocinasa es mayor en Hígado, Pulmón y Riñón, y esta ausente de tejido mus- cular, cardíaco y adiposo. Aunque la Glucosa-6-fosfato es un intermediario común a muchas vías del metabolismo de Glúcidos, se considera que la sintetizada por Glucocinasa, participa princi- palmente en la Glucogenogénesis porque la enzima está activa en condiciones que favorecen este proceso. Fosfoglucomutasa (EC 5.4.2.2) Esta es la enzima que dirige la Glucosa-6-fosfato hacia la síntesis de Glucógeno. La enzima se clasificaba como Tranferasa, porque el carbono que cede y el que recibe el fosfato, no son equi-
  • 3. Metabolismo de Glúcidos maov/mlvm/3 valentes, sin embargo una revisión actualizada de su mecanismo obligó a reclasificarla como Isomerasa. El OH del Carbono 6 es un alcohol primario mientras que el OH del Carbono 1 es par- te del hemiacetal interno que le da forma piranosa a la Glucosa. La enzima prefiere utilizar el anómero  de la Glucosa y para ser activa debe estar fosforilada. O OH OH OH CH2 OH O P O O O O OH OH OH CH2 OH O P O O O Glucosa-6-fosfato Glucosa-1-fosfato En el primer paso de la reacción, la enzima cede su fosfato al OH del Carbono 1 para formar Glucosa-1,6-bisfosfato, intermediario que permanece unido a la enzima. Después, se vuelve a fosforilar la enzima, pero ahora tomando el fosfato del Carbono 6. La reacción tiene G°’ casi cero y por lo tanto, su dirección es determinada por la relación entre las concentraciones de producto y reactivo. Cuando se absorbe Glucosa después de los alimentos, aumenta la concentración de Glucosa-6-fosfato y la reacción se desplaza hacia la formación de Glucosa-1-fosfato. Por el contrario, cuando se degrada el Glucógeno, aumenta la concentración de Glucosa-1-fosfato y la reacción se desplaza hacia la formación de Glucosa-6-fosfato. UDP-Glucosa Pirofosforilasa (EC 2.7.7.9) Mediante la transferencia de la Glucosa-1-fosfato al fosfato  del Uridintrifosfato (UTP) liberan- do pirofosfato, la enzima forma un compuesto de alta energía de hidrólisis, con una potencial ele- vado de transferencia de Glucosa. Además de ser el donador directo de Glucosa para la síntesis de Glucógeno, la UDP-Glucosa también participa en el metabolismo de Galactosa, la síntesis de ác. Glucurónicoy reacciones de biotransformación de fármacos O OH OH OH CH2OH O P O O O O OH OH OH CH2OH O UDP UTP PPi Mg2+ Glucosa-1-fosfato UDP-Glucosa La transferencia es endergónica pero la hidrólisis del pirofosfato liberado, la hace exergónica y prácticamente irreversible. Glucógeno Sintasa (EC 2.4.1.11) Esta es la enzima que sintetiza la cadena de Glucosas mediante la transferencia de la Glucosa del UDP, al Carbono 4 del extremo no reductor de la cadena de Glucógeno formando un enlace gli- cosídico (1-4) El sustrato mínimo es una tetramaltosa.
  • 4. Metabolismo de Glúcidos maov/mlvm/4 O OH OH OH CH2OH O O OH OH CH2OH O O OH OH CH2OH O O OH OH OH CH2OH O O OH OH CH2OH O O OH OH CH2OH O O OH OH CH2OH O O OH OH OH CH2OH O UDP UDP Glucógeno(n) Glucógeno(n+1) UDP-Glucosa La enzima existe en dos formas denominadas I y D. La forma I no tiene fosfato y es activa; cuan- do se fosforila la enzima, se convierte en la forma D que no es activa, pero es activada por Gluco- sa-6-fosfato. La conversión I  D es estimulada por AMP cíclico a través de la activación en cascada de enzimas Proteín Cinasas. Enzima Ramificante (EC 2.4.1.18) Forma las ramificaciones moviendo una cadena de tres o cuatro Glucosas desde el extremo no re- ductor, dos o tres Glucosas hacia el interior de la cadena. O OH OH OH CH2OH O O OH OH CH2 OH O O OH OH CH2OH O O OH OH CH2OH O O OH OH CH2OH O O OH OH CH2OH O O OH OH OH CH2OH O O OH OH CH2OH O O OH OH CH2 OH O O OH OH OH CH2OH O O OH OH CH2OH O O OH OH CH2 O Glucógeno lineal Glucógeno ramificado Rompe enlaces (1-4) y forma (1-6) en cada punto de ramificación. La ausencia de esta enzima provoca algunas de las patologías conocidas como Glucogenosis, que se enlistan en la Tabla 1, que son poco frecuentes pero graves. La molécula de Glucógeno crece hacia el extremo no reductor y la creación de ramificaciones permite que aumente la velocidad de crecimiento de la molécula. Cada Glucosa que se incorpora al Glucógeno gasta 2 moléculas de alta energía, un ATP y un UTP, pero la segunda se recupera durante la degradación, por lo tanto, el almacenamiento de una molécula de Glucosa en el Glucó- geno consume sólo una molécula de ATP.
  • 5. Metabolismo de Glúcidos maov/mlvm/5 Glucogenolísis. Degradación del Glucógeno Glucógeno Fosforilasa (EC 2.4.1.1) La enzima actúa sobre el extremo no reductor del Glucógeno rompiendo enlaces (1-4) mediante la introducción de un fosfato inorgánico, liberando Glucosa-1-fosfato. No puede romper ningún otro tipo de enlace. Existe en dos formas denominadas a y b. La forma b no tiene fosfato y es inactiva, pero es acti- vada por AMP e inhibida por ATP y Glucosa-6-fosfato. La forma a tiene fosfato y es activa. La conversión b  a es estimulada por AMP cíclico. O OH OH OH CH2OH O O OH OH CH2OH O O OH OH OH CH2OH O O OH OH CH2OH O O OH OH CH2 OH O O OH OH CH2 OH O O OH OH CH2 OH O O OH OH CH2OH O O OH OH CH2OH O O OH OH CH2 O O OH OH OH CH2 OH O O OH OH CH2 OH O OH O OH OH CH2 OH O O OH OH CH2OH O O OH OH CH2OH O O OH OH CH2OH O O OH OH CH2 OH O O OH OH CH2 OH O O OH OH CH2 O O OH OH OH CH2OH O P O O O Pi Glucógeno (n) Glucógeno (n-1) Glucosa-1-fosfato La actividad de Glucógeno Fosforilasa provoca un aumento en la concentración de Glucosa-1- fosfato que por acción de la Fosfoglucomutasa, se convierte en Glucosa-6-fosfato, para que pue- da entrar a la vía de la Glicólisis. Glucosa-6 Fosfatasa (EC 3.1.3.9) En las células que pueden liberar Glucosa a la sangre, Hígado, Pulmón y Riñón, la Glucosa-6- fosfatasa se encarga de hidrolizar el enlace éster del fosfato en 6, la desfosforilación permite que la Glucosa libre salga de la célula.
  • 6. Metabolismo de Glúcidos maov/mlvm/6 O OH OH OH CH2 OH OH O OH OH OH CH2 O P O O OOH H2O Pi Glucosa-6-fosfato Glucosa Oligosacárido Transferasa (EC 2.4.1.25) La actividad de Oligosacárido transferasa es necesaria para eliminar las ramificaciones porque la Glucógeno fosforilasa únicamente puede romper enlaces (1-4). Esta enzima transfiere un oligo- sacárido del Carbono 4 del extremo no reductor de la ramificación al Carbono 4 de extremo no reductor de la cadena principal. O OH OH OH CH2OH O O OH OH CH2OH O O OH OH CH2 OH O O OH OH OH CH2 OH O O OH OH CH2 OH O O OH OH CH2 O O OH OH OH CH2 OH O O OH OH CH2 OH O O OH OH CH2 OH OOH O OH OH CH2 OH O O OH OH CH2 OH O O OH OH CH2 O Glucógeno ramificado Ramificación mínima Únicamente rompe y forma enlaces (1-4) y por lo tanto, no puede eliminar la primera molécula de Glucosa de la ramificación, que está unida con un enlace (1-6). La eliminación de la ramifi- cación disminuye la velocidad de metabolismo de Glucógeno. Enzima Desramificante (EC 3.2.1.68) Es una (1-6) Glucosidasa que hidroliza el enlace (1-6) que deja la Oligosacárido transferasa en la posición de la ramificación, liberándola como Glucosa simple.
  • 7. Metabolismo de Glúcidos maov/mlvm/7 O OH OH OH CH2 OH O O OH OH CH2 OH O O O OH OH CH2OH OOH O OH OH CH2 OH O O OH OH CH2 OH O O OH OH CH2 O O OH OH OH CH2 OH O O OH OH CH2 OH O O O OH OH CH2 OH O O OH OH CH2 OH O O OH OH CH2 OH O O OH OH OH CH2 OH OH H2O Glucógeno Ramificado Glucógeno Lineal Glucosa La ausencia de la Glicosidasa provoca otras de las formas de Glucogenosis, también raras y fata- les, que se describen en la Tabla 1. La fosforolísis del Glucógeno libera Glucosa-1-fosfato, que regresa a la vía principal de metabo- lismo de Glúcidos; debido a ello se dice que el almacenamiento de Glucosa en forma de Glucó- geno consume únicamente un ATP ya que el UTP consumido se regenera en la fosforolisis. Co- mo el Glucógeno se sintetiza cuando hay energía y al momento de su degradación se libera Glu- cosa fosforilada, en el balance de energía frecuentemente se olvida incluir el ATP consumido por la Glucocinasa al inicio de la síntesis, lo cual no es correcto. Regulación del metabolismo de Glucógeno El metabolismo del Glucógeno tiene mecanismos de regulación, tanto endógenos como exóge- nos. En condiciones normales, la síntesis de Glucógeno predomina sobre la degradación. Cuando hay necesidad de energía, se activa la degradación y se detiene la síntesis. El aumento en la concentración de Ca2+ , activa la degradación y además detiene la síntesis, am- bos efectos los ejerce activando varias enzimas del grupo de las Proteín Cinasas, ya sea directa- mente o a través de la interacción con Calmodulina, para que se fosforilen otras enzimas. La adrenalina en Músculo e Hígado y el Glucagon en Hígado, activan la degradación y detienen la síntesis fosforilando las enzimas Glucógeno sintasa y Glucógeno fosforilasa, mediante una cas- cada de amplificación que depende del AMP cíclico como segundo mensajero. En el diagrama de la página siguiente se presenta un resumen del mecanismo de regulación de estas enzimas.. Además del efecto de Adrenalina y Glucagon, la Insulina, también modifica el Metabolismo de Glucógeno, estimulando la actividad de Glucocinasa y de Glucógeno Sintasa, por otros mecanis- mos. Este efecto ayuda al almacenamiento de Glucosa en los tejidos.
  • 8. Metabolismo de Glúcidos maov/mlvm/8 Receptor Adenilato Ciclasa Proteína G + AMPC Fosfodiesterasa Glucógeno Fosforilasa b Glucógeno Fosforilasa Cinasa P Glucógeno Fosforilasa Cinasa Glucógeno Fosforilasa a P + Proteín Cinasa + + Proteín Cinasa + + P Glucógeno Sintetasa D Glucógeno Sintetasa I Glucógeno Sintetasa Cinasa + + Calmodulina Ca2+ + +- + + + Adrenalina o Glucagon ATP AMPC ATP ADP ATP ADP Glucosa-1-fosfatoGlucógenoUDP-Glucosa UDP Pi ATP ADP Calmodulina Ca2+ Ca2+ AMPGlucosa-6-fosfato, ATP Glucosa-6-fosfato AMP Desordenes del Metabolismo del Glucógeno En la Tabla 1, se enlistan desordenes del metabolismo de Glucógeno, junto con la enzima cuya deficiencia en tejidos específicos, los provoca y los síntomas que genera. Todos estos desordenes son raros porque son fatales y los individuos afectados no alcanzan la edad de reproducción. Glicólisis La Glicólisis es la vía principal de metabolismo de Glúcidos, es una vía metabólica muy antigua pues se encuentra en el citoplasma de todas las células. Consiste en una secuencia de nueve reac- ciones mediante la cual se convierte una molécula de Glucosa en dos moléculas de Piruvato. El destino del Piruvato, depende de la célula y su estado metabólico. Tradicionalmente y para facilitar su estudio, la Glicólisis se divide en dos fases. Primero, la “Fase de las Hexosas”, se inicia con la Glucosa y termina con la Fructosa 1,6-bisfosfato, llamada así porque todos los sustratos son hexosas. También se conoce como “Fase de gasto” ó “de inver- sión” debido a que en ella se gasta ATP para activar las hexosas. Por último, también se llama “Fase de convergencia”, porque los intermediarios de estas reacciones, también pueden pasar a otras vías o ser producidos por otras vías metabólicas, como veremos más adelante. La segunda etapa de la Glicólisis, que se inicia con el Gliceraldehído-3-fosfato y termina con el Piruvato, ha sido mal denominada “Fase de las triosas”, pues aunque todos los sustratos tienen tres carbonos, solo las primeras son triosas. También se le conoce como la “Fase de ganancia” ya que en dos de sus reacciones se sintetiza ATP.
  • 9. Metabolismo de Glúcidos maov/mlvm/9 Tabla 1. Desordenes del metabolismo de Glucógeno Tipo Nombre Deficiencia Síntomas I von Gierke Glucosa-6-fosfatasa en Hígado, Ri- ñón e Intestino  Hipoglucemia  Falta de desarrollo  No responde a Glucagon II Pompe (1-4) Glicosidasa ácida Lisosomal  Debilidad muscular  Aumento de Glucógeno celular  Muerte a edad temprana III Cori (1-6) Glicosidasa  Aumento de Glucógeno celular  No responde a Glucagon en ayuno  Sí en periodo posprandial  Muerte infantil IV Anderson Enzima Ramificante  Hepatomegalia  Debilidad muscular  Cirrosis  Muerte infantil V McArdle Glucógeno fosforilasa Muscular  Acumulación de Glucógeno celular  Dolor muscular y Calambres durante el ejercicio  Mioglobinuria VI Her Glucógeno fosforilasa Hepática  Hepatomegalia  Hipoglucemia leve  No responde a Glucagon VII Tarui Fosfofructocinasa-1 de Músculo y Eritrocito  Acumulación de Glucógeno celular  Dolor muscular y Calambres durante el ejercicio  Anemia Hemolítica VIII Glucógeno fosforilasa cinasa Hepá- tica, Muscular y de Leucocitos  Hepatomegalia  Hipoglucemia leve  No responde a Glucagon Hexocinasa (EC 2.7.1.1) La reacción de la Hexocinasa es igual a la descrita para la Glucocinasa (Isoenzima IV), pero hay diferencias entre esta y el resto de las isoenzimas. Primero las Hexocinasas tienen mayor afinidad por Glucosa (KM = 150 M) que la Glucocinasa (10 mM) y son menos selectivas pues además de Glucosa, también pueden fosforilar Manosa (KM = 100 M) y Fructosa (KM = 150 mM). O OH OH OH CH2 OH OH O OH OH OH CH2 O P O O OOH ATP ADP Mg2+ Glucosa Glucosa-6-fosfato
  • 10. Metabolismo de Glúcidos maov/mlvm/10 Además, las isoenzimas I, II y III son inhibidas por ATP y Glucosa-6-fosfato y no son afectadas por hormonas. Esta es la primera reacción irreversible de la Glicólisis, debido a que tiene un cambio de energía libre muy negativo (ΔG°’ = - 16.7 kJ mol-1 ) Glucosafosfato Isomerasa (EC 5.3.1.9) Esta enzima isomerasa, convierte la aldosa Glucosa, en la cetosa Fructosa, a través del interme- diario de cadena abierta. La enzima actúa mejor sobre el anómero  de Glucosa y además tiene actividad de amonerasa . Esta enzima dirige la Glucosa-6-fosfato hacia la Glicólisis, pero es totalmente reversible y puede participar tanto en la Glicólisis como en la Gluconeogénesis. O OH OH OH CH2 OH O P O O O O CH2 OH OH CH2OH OHOPO O O Glucosa-6-fosfato Fructosa-6-fosfato Fosfofructocinasa (EC 2.7.1.11) La Fosfofructocinasa, también conocida como Fosfofructocinasa 1 ó 6-fosfofrutosa-1-cinasa, cataliza la segunda reacción irreversible de Glicólisis que consiste en transferir el fosfato del ATP al OH de carbono 1 de la Fructosa-6-fosfato. Esta, es la principal enzima regulable de la vía. ATP, Citrato y Acil-CoA son inhibidores alostéricos de la Fosfofructocinasa mientras que ADP y Fructosa-6-Fosfato son activadores alostéricos. La Fosfofructocinasa de Hígado se inhibe por AMP cíclico. La ausencia de Fosfofructocinasa en músculo, provoca calambres al inicio de la ac- tividad física. O CH2 OH OH CH2 OH OHOPO O O O CH2 OH OH CH2 OHOPO O O O P O O O ATP ADP Mg2+ Fructosa-6-fosfato Fructosa-1,6-bisfosfato Muchos autores consideran esta como la primera reacción de la Glicólisis ya que la Fructosa-6- fosfato puede regresar a las otras vías de metabolismo, pero la Fructosa-1,6-bisfosfato no. Por otro lado, la regulación de la actividad de esta enzima controla la velocidad total de la vía. Aldolasa (EC 4.1.2.13) Esta es la primera liasa de la vía. Cataliza el rompimiento reversible de la Fructosa-1,6-bisfosfato en Gliceraldehído-3-fosfato y Dihidroxiacetonafosfato y es totalmente específica de su sustrato. La reacción es totalmente reversible y participa tanto en Glicolisis y Gluconeogénesis. La reac- ción inversa es una Condensación Aldólica (entre un aldehído y un alcohol), de ahí el nombre
  • 11. Metabolismo de Glúcidos maov/mlvm/11 de la enzima. O CH2 OH OH C H2 OHOPO O O O P O O O CH2 3 C2 CH2 1 O O P O O O OH CH 4 C 5 CH2 6 OH O P O O O O H+ Fructosa-1,6-bisfosfato Dihidroxiacetona- fosfato Gliceraldehído- 3-fosfato Esta es la última reacción de la “Fase de la Hexosas”. El Gliceraldehído-3-fosfato continúa la Glicólisis, mientras que la Dihidroxiacetonafosfato puede servir como precursor para la síntesis de Lípidos o convertirse en Gliceraldehído y continuar la Glicolísis. Triosafosfato Isomerasa (EC 5.3.1.9) La reacción es una isomerización aldosacetosa en la que se hace equivalentes los carbonos 1 - 6, 2 - 5, y 3 - 4 de Glucosa. CH2 3 C2 CH2 1 O O P O O O OH CH 4 C 5 CH2 6 OH O P O O O O H Dihidroxiacetona- fosfato Gliceraldehído- 3-fosfato Mediante esta reacción la Dihidroxiacetona también puede continuar en la Glicólisis, cuando su- cede esto, el resto de las reacciones de la vía se llevan a cabo dos veces por cada Glucosa que en- tra a la Glicolisis. Esta reacción también es la vía de entrada del Glicerol producido en la degra- dación de Lípidos, el cual se oxida a Dihidroxiacetona. Gliceraldehído-3-fosfato Deshidrogenasa (EC 1.2.1.12) Esta es la única reacción de oxidorreducción de la Glicólisis. La energía liberada en la oxidación del aldehído se conserva en dos formas, una parte como NADH y la otra en el enlace anhidro mixto del bisfosfoglicerato, que es un compuesto de alta energía de hidrólisis. CH C C H2 OH O P O O O O H P O O O C C CH2 OH O P O O O O H O Gliceraldehído- 3-fosfato NAD+ NADH Pi 1,3-bisfosfo- glicerato La enzima es inhibida en forma competitiva por sus productos. La reacción es reversible y la en- zima también participa en la Gluconeogénesis.
  • 12. Metabolismo de Glúcidos maov/mlvm/12 Fosfoglicerato Cinasa (EC 2.7.2.3) Es la primera reacción de la Glicólisis en la que se gana ATP. Es una fosforilación a nivel de sus- trato dependiente del 1,3-bisfosfoglicerato. Es la única reacción de Glicólisis catalizada por una Cinasa, que es reversible. P O O O C C CH2 OH O P O O O O H O C C CH2 OH O P O O O O H OADP ATP Mg2+ 1,3-bisfosfo- glicerato 3-fosfoglicerato En condiciones intracelulares la reacción está prácticamente en equilibrio ya que se libera energía en la hidrólisis del 1,3-bisfosfoglicerato, pero la mayoría se conserva en el ATP. Como se meta- bolizan dos moléculas de bisfosfoglicerato, se ganan 2 moléculas de ATP, equivalentes a las dos empleadas en la fase de las hexosas. Fosfoglicerato Mutasa (EC 5.4.2.1) Es una reacción de isomerización de posición en la cual participa el 2,3-bisfosfoglicerato como intermediario que permanece unido a la enzima. C C CH2 OH O P O O O O H O O P O O O C C CH2 O H O OH 3-fosfoglicerato 2-fosfoglicerato La reacción está en equilibrio en condiciones intracelulares y por lo tanto la dirección depende de la relación entre las concentraciones de producto y reactivo. Enolasa (EC 4.2.1.11) Esta enzima del grupo de las liasas, cataliza una reacción de deshidratación que aumenta la ener- gía libre de hidrólisis del fosfato al convertir el alcohol del Carbono 2 en un enol atrapado en una forma tautomérica poco favorable. O P O O O C C CH2 O H O OH O P O O O C C CH2 O O 2-fosfoglicerato H2O Fosfoenolpiruvato La deshidratación también produce una óxido – reducción interna, el Carbono 2 se oxida al per-
  • 13. Metabolismo de Glúcidos maov/mlvm/13 der un átomo de Hidrógeno y el 3 se reduce por eliminación del OH. El Fosfoenolpiruvato es el intermediario de Glicólisis con mayor energía libre de hidrólisis. En las condiciones intracelulares, la reacción es reversible y puede participar también en la sínte- sis de Glucosa. Piruvato Cinasa (EC 2.7.1.40) Esta es la segunda fosforilación a nivel de sustrato y última reacción de la Glicólisis. La hidrólisis del Fosfoenolpiruvato libera suficiente energía para sintetizar dos moléculas ATP, pero como únicamente tiene un fosfato para transferir, sólo se forma un ATP. El resto de la energía libre li- berada, hace la reacción irreversible, tercera de este tipo en la Glicólisis, arrastrando con ella toda la fase de las triosas. La reacción procede en dos etapas, primero se transfiere el fosfato al ATP, formando el Enolpiru- vato, que en forma espontánea se equilibra a la forma cetónica, que es más estable. O P O O O C C CH2 O O O C C CH3 O O Fosfoenolpiruvato ATPADP Mg2+ Piruvato La Piruvato Cinasa es activada por ADP, cuando hay necesidad de energía, y es inhibida por ATP. En Hígado, es inhibida por fosforilación dependiente de AMP cíclico. El Piruvato es el producto final de la Glicólisis. En diferentes organismos tiene destinos distintos como la producción de etanol, ácido propiónico, ácido láctico, etc. Hasta este punto, la Glicólisis tiene un rendimiento de 2 moléculas de Piruvato, ATP y NADH, por cada molécula de Glucosa. El balance global de la Glicólisis como se ha descrito hasta aquí es: Glucosa + 2ADP + 2Pi + 2NAD+  2Piruvato + 2ATP + 2NADH + 2H+ + 2H2O Regulación hormonal de la Glicólisis Además de la regulación endógena descrita para cada enzima, la Glicólisis también responde a los estímulos hormonales, como se describe a continuación. Fosfofructocinasa El Glucagon detiene la síntesis y estimula la degradación de Glucógeno, para favorecer la libera- ción de Glucosa a la Sangre y también inhibe la actividad de la Fosfofructocinasa. La inhibición de Fosfofructocinasa hepática por Glucagon, evita que la Glucosa-6-fosfato se degrade en la Gli- cólisis, facilitando su liberación. El mecanismo de regulación se resume en la figura siguiente.
  • 14. Metabolismo de Glúcidos maov/mlvm/14 Receptor Adenilato Ciclasa Proteína G + + Proteín Cinasa + + P Fructosa-2, 6-bisfosfa- tasa Fosfofructo- cinasa-2 Protein- cinasa Inactiva P Protein- cinasa Activa ATP ADP + Fosfofructo- cinasa-1 Glucagon ATP AMPC ATP ADP Fructosa-6-P Fructosa-2,6-P Fructosa-6-PFructosa-2,6-P El efecto del Glucagon es mediado por una enzima que tiene dos actividades catalíticas, como 6- fosfofructosa-2-cinasa o Fosfofructocinasa-2 (EC 2.7.1.105), responsable de la síntesis de Fructo- sa-2,6-bisfosfato a partir de Fructosa-6-fosfato, y como Fructosa-2,6-bisfosfatasa (EC 3.1.3.46), que degrada el compuesto de vuelta a Fructosa-6-fosfato. La Fructosa-2,6-bisfosfato es activador alostérico potente de la Fosfofructocinasa-1. En condiciones normales, la Fosfoructocinasa-2 es activa y mantiene la concentración elevada de Fructosa-2,6-bisfosfato la cual activa la Fosfofruc- tocinasa-1. La presencia de Glucagon, provoca la activación de la Adenilato Ciclasa y el aumento en la concentración de AMPC. El AMPC, es activador de Proteín Cinasas que fosforilan y modifi- can la actividad de varias enzimas, entre ellas la Fosfofructocinasa-2. Al ser fosforilada, la Fosfo- fructocinasa-2 se convierte en Fructosa-2,6-bisfosfatasa, este cambio de actividad elimina la Fructosa-2,6-bisfosfato del citoplasma y con ello desactiva la Fosfofructocinasa-1 y detiene la Glicólisis. Piruvato Cinasa La misma fosforilación que activa la degradación de Glucógeno en el Hígado, inhibe la Piruvato Cinasa, en estas condiciones el Fosfoenolpiruvato producido en la Glicólisis, se puede usar en Gluconeogénesis, contribu- yendo a la liberación hepática de Glucosa, inducida por Glucagon. Vías terminales de la Glicólisis En los humanos, el Piruvato puede transformarse en ácido Láctico, cuando el metabolismo es anaerobio, o en Acetil-CoA, cuando es aerobio. La variación en las condiciones, hace que en ocasiones se designe como “Glicólisis anaerobia” a la terminación en Lactato y “Glicólisis aerobia” a la que termina en Acetil-CoA. Receptor Adenilato Ciclasa Proteína G + AMPC Fosfodiesterasa Proteín Cinasa + + P Glucagon ATP AMPC AMP ATP ADP Piruvato Cinasa Activa Piruvato Cinasa Inactiva
  • 15. Metabolismo de Glúcidos maov/mlvm/15 Terminación Anaerobia Lactato Deshidrogenasa (EC 1.1.1.27) Esta reacción, sirve para oxidar el NADH producido en la Glicólisis, en ausencia de Oxígeno. O C C CH3 O O H C C CH3 O O OH Piruvato NAD+NADH l-Lactato El l-Lactato formado no sigue ninguna vía metabólica y es eliminado a la sangre. Cuando el NADH se oxida en esta terminación, la Glicólisis rinde únicamente 2 moléculas de ATP por cada Glucosa, ya que las dos moléculas de Lactato se liberan ha la sangre. Glucosa + 2ADP + 2Pi  2Lactato + 2ATP + 2H2O La Lactato Deshidrogenasa (LDH) es un tetrámero que existe en 5 formas isoenzimáticas, forma- das a partir de dos tipos de subunidades, una que abunda en tejidos aeróbicos (tipo H) y otra de tejido anaeróbico (tipo M). Las isoenzimas con predominio de subunidades tipo H tienen KM bajo por Piruvato y también son inhibidas por él. En cambio, las isoenzimas con predominio de tipo M tienen KM grande y no son inhibidas por Piruvato. La distribución de las isoenzimas es caracterís- tica de cada tejido, H4 predomina en el tejido cardiaco y M4 en músculo estriado, por eso la LDH es empleada en Diagnóstico Clínico. Terminación Aeróbica Cuando la célula necesita energía y la oxigenación es suficiente, el Piruvato producto de la Glicó- lisis se puede convertir en Acetil-CoA por acción del Complejo de la Piruvato Deshidrogenasa. Este complejo conecta la Glicólisis no oxidativa, con el Ciclo del ácido Cítrico que oxida la Ace- til-CoA, para obtener el máximo rendimiento de energía de los Glúcidos que es alrededor de 38 ATP por molécula de Glucosa. El complejo se encuentra en la matriz mitocondrial, por lo tanto el Piruvato de la Glicólisis debe atravesar la membrana mitocondrial interna; este proceso depende de un transportador específico que utiliza el gradiente de protones como fuente de energía. Complejo de la Piruvato Deshidorgenasa La reacción global del complejo oculta su complejidad que se pone de manifiesto cuando averiguamos que además de NAD+ y CoA-SH, la reacción requiere TPP, Lipoato y FAD como coenzimas. El complejo está formado por cinco actividades enzimáti- cas, que se describen a continuación. O C C CH3 O O C CH3 S O CoA Piruvato NAD+ NADH Acetil-CoA CO2 CoA-SH
  • 16. Metabolismo de Glúcidos maov/mlvm/16 Piruvato Deshidrogenasa (EC 1.2.4.1) Esta enzima tiene Pirofosfato de Tiamina (TPP) como grupo prostético. El Piruvato se une al TPP y se descarboxila, convirtiendose en el radical Acetoil.. O P O P O O O O O N N H CH2 N S CH2 CH3 CH3 CH2 CH OH CH3 Enzima O C C CH3 O O Piruvato Acetoil-TPP TPP-Enzima CO La enzima es activada por sustrato e inhibida por producto. También es activada por Ca2+ e Insu- lina, e inhibida por ATP, y NADH. La regulación depende de enzimas cinasas y fosfatasas, que también forman parte del complejo. O P O P O O O O O N N H CH2 N S CH2 CH3 CH3 CH2 CH OH CH3 Enzima SSH C NH O C CH3 O Enzima N H C O N H C CH O OH N N N O O P O P O N NH2 O O O O O OH P O OO CH2C CH3 CH3 SCCH3 O Acetoil-TPP TPP-Enzima Lipoamida-Enzima Acetil-lipoamida Dihidrolipoamida CoA-SH Acetil-CoA Lipoato Acetil Transferasa (EC 2.3.1.12) La enzima tiene como grupo prostético Ácido Lipóico, unido al grupo amino de un resto de Lisi-
  • 17. Metabolismo de Glúcidos maov/mlvm/17 na en forma de Lipoamida. Cataliza la transferencia del acetoilo a la Coenzima-A. Durante la transferencia, la Lipoamida oxida el acetoilo a acetilo, reduciéndose a dihidrolipoami- da que debe re – oxidarse para que el complejo siga funcionando. Lipoamida Deshidrogenasa (EC 1.8.1.4) La tercera enzima catalítica del complejo, requiere FAD como grupo prostético. Cataliza la oxi- dación de la dihidrolipoamida, dependiente de FAD. SHSH C NH O Enzima S C NH O Enzima S FAD FADH2 NADH NAD+ Dihidrolipoamida Lipoamida La oxidación del FADH2 depende de NAD+ , lo cual es raro, pues el NAD+ es más reductor que el FAD y la reacción debía ser a la inversa, pero la oxidación rápida del NADH en la Cadena Respi- ratoria, permite que la reacción se lleve a cabo en el sentido indicado. Piruvato Deshidrogenasa Cinasa (EC 2.7.1.99) Esta enzima participa en la regulación de la actividad del complejo. Fosforila e inactiva a la Piru- vato Deshidrogenasa, evitando el consumo de Piruvato. Piruvato Deshidrogenasa Activa Piruvato Deshidrogenasa Fosfato Inactiva ATP ADP La enzima es activada por ATP, Acetil-CoA y NADH e inhibida por Piruvato. La activación de la Cinasa, provoca la inhibición del complejo por lo tanto, ATP, Acetil-CoA y NADH, inhiben la transformación de Piruvato en Acetil-CoA, mientras que el Piruvato activa su transformación. Piruvato Deshidrogenasa Fosfatasa (EC 3.1.3.43) Esta enzima cataliza la desfosforilación de la Piruvato Deshidrogenasa y con ello la activa. Piruvato Deshidrogenasa Activa Piruvato Deshidrogenasa Fosfato Inactiva H2O Pi
  • 18. Metabolismo de Glúcidos maov/mlvm/18 La fosfatasa es activada por Ca2+ e Insulina. En oposición a la enzima anterior, las sustancias que activan la Fosfatasa, también activan al complejo, entonces, Ca2+ e Insulina activan la transfor- mación de Piruvato en Acetil-CoA. Muchos autores consideran que la síntesis de Acetil-CoA es una vía metabólica en si misma pues cuenta con una enzima generadora de flujo, la Piruvato Deshidrogenasa y regulación indepen- diente. La conversión de Piruvato en Acetil-CoA añade 2 NADH al rendimiento de la Glicólisis quedan- do como: Glucosa + 2ADP + 2Pi + 4NAD+  2 Acetil-CoA + 2 CO2 + 2ATP + 4NADH + 4H+ + 2H2O Vía de la Glicerolfosfato Deshidrogenasa Para que los equivalentes reductores producidos en la Glicólisis se puedan oxidar en la termina- ción aeróbica, deben entrar a la Mitocondria. Existen dos rutas de entrada, la Vía de la Glicerol- fosfato Deshidrógenasa y la lanzadera del Malato-Aspartato Glicerolfosfato Deshidrogenasa (NAD+ ) (EC 1.1.1.8) y Glicerolfosfato Deshidrogenasa (Fla- vina) (EC 1.1.99.5) La Glicerolfosfato Deshidrogenasa, tiene dos isoenzimas, que dependen una de NAD+ y otra de Flavina, que se encuentran en ambas caras de la membrana mitocondrial catalizando la intercon- versión de Glicerolfosfato y Dihidroxiacetonafosfato, en la reacción siguiente. CH2 C CH2 O O P O O O OH CH2 CH CH2 O P O O O OH OH l-glicerolfosfatoDihidroxiacetonafosfato Aceptor reducido Aceptor oxidado La enzima dependiente de NAD+ se encuentra en la cara externa de la membrana mitocondrial. La enzima dependiente de Flavina está en la membrana mitocondrial interna y transfiere los equivalentes reductores a la CoQ de cadena respiratoria a través de una Flavoproteína Des- hidrogenasa (EC 1.5.5.1). El resultado de la acción conjunta de ambas enzimas es la conversión del NADH citoplásmico en FADH2 mitocondrial. Esta ruta de entrada de equivalentes reductores no es importante en los humanos. La reacción de- pendiente de NAD+ es importante en la síntesis de lípidos pues produce Glicerolfosfato. Al introducir los equivalentes reductores por esta vía, el NADH se convierte en FADH2, por lo que el rendimiento máximo de energía por Glucosa disminuye a 36 ATP. Sin embargo, la impor- tancia de esta vía en los humanos es discutible, y se considera que la entrada principal de los equivalentes reductores del NADH a la mitocondria se efectúa a través de la Lanzadera Malato- Aspartato.
  • 19. Metabolismo de Glúcidos maov/mlvm/19 Vía del Malato-Aspartato ó Lanzadera Malato-Aspartato En la entrada de equivalentes reductores mediante la Lanzadera Malato-Aspartato, intervienen dos enzimas y dos transportadores de la membrana mitocondrial. CITOPLASMA MITOCONDRIA L-Malato Oxalacetato Aspartato-Cetoglutarato Glutamato NADH NAD+ L-Malato Oxalacetato Aspartato -Cetoglutarato Glutamato NADH NAD+ Malato Deshidrogenasa (EC 1.1.1.37) En el citoplasma, la reacción oxidaría el NADH, formando Malato el cual entra a la mitocondria intercambiándose con -Cetoglutarato. Dentro de la mitocondria la reacción regenera el NADH, formando Oxalacetato. C CH CH2 C OH O O O O C C CH2 C O O O O O NAD+ NADH L-Malato Oxalacetato El Oxalacetato formado no sale como tal sino que es sustrato para la reacción siguiente. Aspartato Aminotransferasa (EC 2.6.1.1) La enzima depende de la coenzima Fos- fato de Piridoxal (PLP). En la Mitocon- dría la reacción transfiere el amino del Glutamato al Oxalacetato transformán- dolo en Aspartato, que sale al citoplasma intercambiándose con Glutamato. En el citoplasma, la reacción convierte el As- partato en Oxalacetato, devolviendo el amino del Aspartato al - Cetoglutarato. El Oxalacetato nuevamente actúa como aceptor de los equivalentes reductores del NADH y vuel- C CH CH2 C NH3 + O O O O C C CH2 C O O O O O C CH CH2 CH2 NH3 + O O C O O C C CH2 CH2 O O C O O O L-AspartatoOxalacetato L-Glutamato -Cetoglutarato  PLP
  • 20. Metabolismo de Glúcidos maov/mlvm/20 ve a entrar a la mitocondria. Funcionando de esta manera, la lanzadera introduce equivalentes reductores del citoplasma a la mitocondria como NADH. Debido a que ambas reacciones son reversibles, la lanzadera puede funcionar en ambos sentidos y por lo tanto, también puede sacar equivalentes reductores de la mi- tocondria. La dirección preferente está determinada por la concentración de NAD reducido a am- bos lados de la membrana mitocondrial. Algunos autores consideran que la reversibilidad de la lanzadera la hace inapropiada para introducir equivalentes reductores a la mitocondria y por ello prefieren considerar que la entrada es a través de la Glicerolfosfato Deshidrogenasa. Sin embar- go, como ya se apuntó, la importancia relativa de esta vía en los humanos es materia de debate. Por otro lado, aunque las vías metabólicas de la matriz mitocondrial producen muchos equivalen- tes reductores, en condiciones normales, estos son consumidos rápidamente por la cadena respira- toria y no se acumulan. Derivación del Bisfosfoglicerato En el eritrocito, el 2,3-bisfosfoglicerato actúa como modulador alostérico de la Hemoglobina, disminuyendo su afinidad por el Oxígeno. Cuando los eritrocitos pasan por los pulmones, la pre- sión parcial de Oxígeno es alta y la hemoglobina se satura, desplazando el bisfosfoglicerato. En la circulación periférica, cuando la saturación disminuye, el bisfosfoglicerato se une a la hemoglo- bina y disminuye la afinidad por el Oxígeno facilitando la liberación. Al regresar a los pulmones el ciclo se repite. La concentración de bisfosfoglicerato está determinada por dos enzimas que forman una derivación de la Glicólisis. Bisfosfoglicetaro Mutasa (EC 5.4.2.4) Al cambiar el fosfato del carboxilo 1 al alcohol en 2, se pierde la contribución energética del enlace anhidro, por lo que el 2,3 - bisfosfoglicerato no tiene energía de hidrólisis suficiente para la síntesis de ATP. Bisfosfoglicerato fosfatasa (EC 3.1.3.13) Esta secuencia de reacciones desvía el fosfoglicerato de la ruta de Glicólisis normal, y resulta en la pérdida de un en- lace de alta energía, que no se aprovecha en síntesis de ATP. A consecuencia de lo anterior, en el Eritrocito el rendimiento de la Glicólisis es únicamente de 1 ATP. P O O O C C CH2 O O H O O P O O O O P O O O P O O O C C CH2 OH O H O 1,3-bisfosfoglicerato 2,3-bisfosfoglicerato P O O O C C CH2 O O H O O P O O O O P O O O C C CH2 OH O H O 3-fosfoglicerato2,3-bisfosfoglicerato
  • 21. Metabolismo de Glúcidos maov/mlvm/21 Desordenes del metabolismo del 2,3-bisfosfoglicerato Se ha descrito un desorden genético que consiste en la disminución de la actividad de la Hexoci- nasa en Eritrocitos, que produce deficiencia de 2,3- bisfosfoglicerato. En estas condiciones la afi- nidad de la Hemoglobina por el Oxígeno está aumentada, provocando hipoxia en los tejidos y es- timulando la liberación de Eritropoyetina, en forma semejante a la adaptación a grandes alturas. El aumento de Eritrocitos que resulta, puede provocar problemas de Hemodinámica. También existe una condición generada por la deficiencia de Piruvato cinasa, que provoca la acumulación de 2,3-bisfosfoglicerato, resultando en la disminución de la afinidad de la Hemo- globina por el Oxígeno, que se libera en mayor cantidad en los tejidos y disminuye la liberación de Eritropoyetina, lo cual puede causar anemia. Gluconeogénesis o Síntesis de Glucosa Todos los monosacáridos que necesita el organismo pueden sintetizarse a partir de Glucosa la cual a su vez, se forma a partir de aminoácidos y otras sustancias que no son glúcidos, mediante la ruta conocida como Gluconeogénesis. Esta vía es importante en casi todos los tejidos, pero en especial en el Hígado donde sirve para mantener la Glicemia durante períodos de ayuno. La Gluconeogénesis emplea las enzimas que catalizan reacciones reversibles de la Glicólisis y únicamente sustituye las que catalizan reacciones irreversibles. Cuando la célula tiene suficiente energía, para inhibir la conversión de Piruvato en Acetil-CoA, este se convierte en el precursor de la Glucosa. Para iniciar la Gluconeogénesis, el Piruvato debe convertirse en Fosfoenolpiruvato, pero como esta es una de las reacciones irreversibles de la Gli- cólisis, en la Glucoenogénesis se sigue la secuencia reacciones siguiente. Piruvato Carboxilasa (EC 6.4.1.1) Esta enzima es mitocondrial y como casi todas las carboxilasas, usa Biotina como coenzima. El Piruvato también se puede obtener de la oxidación del Lactato. O C C CH3 O O C C CH2 O O O C O O Oxalacetato ATP ADP+Pi Biotina, Mg2+ Piruvato CO2 La Piruvato Carboxilasa es inhibida por ADP, por lo tanto, la Gluconeogénesis sólo proceder cuando hay energía. Por otro lado, es activada por Acetil-CoA, lo cual es una señal de que esta molécula no está entrando al ciclo del ácido Cítrico. El Oxalacetato producido en la reacción se puede combinar con Acetil-CoA para formar Citrato.
  • 22. Metabolismo de Glúcidos maov/mlvm/22 Por lo anterior, se considera que la carboxilación del Piruvato, además de participar en la Gluco- neogénesis también es una reacción anaplerótica del ciclo del ácido Cítrico. Para participar en la Glicólisis, el Oxalacetato que se ha formado en la mitocondria, se debe transportar al citoplasma, esto se logra mediante la lanzadera del Malato-Aspartato. Fosfoenolpiruvato Carboxicinasa (EC 4.1.1.32) La enzima se encuentra tanto en mitocondria como citoplasma. Es inhibida por GDP, lo que indi- ca un nivel bajo de energía. O P O O O C C CH2 O OC C CH2 O O O C O O Fosfoenolpiruvato GDPGTP Oxalacetato CO2 El Fosfoenolpiruvato se transforma en Fructosa-1,6-bisfosfato mediante la acción secuencial de las enzimas Enolasa, Fosfoglicerato Mutasa, Fosfoglicerato Cinasa, Gliceraldehído-3-fosfato Deshidrogenasa, Triosafosfato Isomerasa y Aldolasa. En este camino se gastan 2 moléculas de ATP y dos de NADH, para formar las triosas que se deben condensar para formar la Fructosa- 1,6- bisfosfato. La siguiente enzima de Glicólisis, la Fosfofructocinasa cataliza otra reacción irre- versible y debe ser sustituida en la Gluconeogénesis, por la enzima siguiente. Fructosa bisfosfatasa (EC 3.1.3.11) Es la principal enzima regulable de la Gluconeogénesis. Tiene inhibición “cruzada” con Fosfo- fructocinasa. Es activada por ATP e inhibida por AMP y ADP. O CH2 OH OH CH2 OH OHOPO O O O CH2 OH OH CH2 OHOPO O O O P O O O H2O Pi Fructosa-6-fosfatoFructosa-1,6-bisfosfato La Fructosa-6-fosfato producida en esta reacción es convertida en Glucosa-6-fosfato por la Glu- cosa Fosfato Isomerasa. En el Hígado, la Glucogenogénesis, al igual que la Glucogenolisis, sirve para liberar Glucosa a la sangre, para ello se necesita la acción de la enzima Glucosa-6-fosfatasa mencionada al estudiar esta última vía. En músculo, cerebro y corazón, la Gluconeogénesis se lleva a cabo a partir de aminoácidos y sirve para generar los monosacáridos que requiere la célula, ya que estas carecen de la fosfatasa y por ende no permiten la salida de Glucosa.
  • 23. Metabolismo de Glúcidos maov/mlvm/23 Vía de las Pentosas También se conoce como la Vía Oxidativa Directa, Vía de la Hexosamonofosfato o Vía del ácido Glucónico. Tiene tres funciones: (1) Producción de NADPH, necesario en las reacciones de sínte- sis de ácidos grasos, colesterol, aminoácidos y desoxinucleótidos; (2) Producción de Ribosa para síntesis de ácidos nucleicos y (3) Interconversión de monosacáridos, para permitir su entrada a la Glicólisis. La vía consta de dos fases, la primera oxidativa, que produce NADPH y la segunda no oxidativa, que produce Ribosa e interconversión de monosacáridos. En forma semejante a la Glicólisis, que tiene diferente terminación, dependiendo del tejido y el estado metabólico de las células. Durante la síntesis de ácidos nucleicos se detendrá en Ribosa; si se requieren equivalentes reductores, puede regresar a Fructosa-6-fosfato, o cuando se tiene mo- nosacáridos poco comunes, se dirigirán estos hacia la Glicólisis. La cantidad de Glucosa que pasa por la vía de las Pentosas también varía según el tejidos y el es- tado metabólico de la células; en general es mayor en los tejidos que están realizando síntesis en forma activa (Hígado, Tejido adiposo, Glándula mamaría, Glándulas suprarrenales), que en los realizan menos síntesis (Músculo, Osteocito). Glucosa-6-fosfato Deshidrogenasa (EC 1.1.1.49) Esta enzima dirige la Glucosa-6-fosfato hacia la vía de las Pentosas. Prefiere el anómero . Es inhibida por NADPH y Acil-CoA, ambos compuestos se acumulan cuando ya no hacen falta equivalentes reductores para síntesis. O OH OH OH CH2 OH O P O O O O OH OH OH CH2 O P O O O O Glucosa-6-fosfato 6-fosfoglucono-5-lactona NADP NADPH Su ausencia produce crisis hemolíticas al consumir sustancias oxidantes, como fármacos anticoa- gulantes. Los individuos heterocigóticos pera este carácter son resistentes al parásito que provoca el paludismo (Plasmodium falciparum malarie) 6-Fosfoglucono-5-lactona hidrolasa ó Lactonasa (EC 3.1.1.31) La reacción es espontánea, pero muy lenta, por eso se requiere la enzima.
  • 24. Metabolismo de Glúcidos maov/mlvm/24 O OH OH OH CH2 O P O O O O C C CH2 H OH C HOH C OHH OHH C OO O P O O O 6-fosfoglucono-5-lactona H2O 6-Fosfogluconato Aunque teóricamente es reversible, la siguiente reacción, es irreversible y desplaza toda la se- cuencia hacia la derecha. 6-Fosfogluconato Deshidrogenasa (EC 1.1.1.44) Primero se oxida el carbono 3 de fosfogluconato, produciendo un -cetoácido inestable. El inter- mediario permanece unido a la enzima, hasta que se descarboxila para formar el producto. La descarboxilación hace que la reacción total sea irreversible y además, hace la vía irreversible. C C CH2 H OH C HOH C OHH OHH C OO O P O O O C C CH2 H OH C HOH C O OHH C OO O P O O O CH2 C CH CH CH2 OH OH OH O P O O O O CO2 6-Fosfogluconato 6-Fosfo-2-cetogluconato Ribulosa-5-fosfato NADP NADPH Con esta reacción, termina la fase oxidativa de la vía. Pentosafosfato Isomerasa (EC 5.3.1.6) Es una isomerización aldosacetosa en la que se produce toda la Ribosa necesaria para la sínte- sis de ácidos nucleicos. CH2 C CH CH CH2 OH OH OH O P O O O O CH CH CH CH CH2 O OH OH O P O O O OH Ribulosa-5-fosfato Ribosa-5-fosfato
  • 25. Metabolismo de Glúcidos maov/mlvm/25 Pentosafosfato Epimerasa (EC 5.1.3.1) La epimerización de la Ribosa se necesita cuando hay que regresar los carbonos a la Glucosa a la Glicólisis. CH2 C CH CH CH2 OH OH OH O P O O O O CH2 C CH CH CH2 OH OH O P O O O O OH Ribulosa-5-fosfato Xilulosa-5-fosfato Transcetolasa (EC 2.2.1.1) La enzima transfiere dos átomos de carbono. El donador siempre es una cetosa y el aceptor una aldosa. El carbono donador debe tener configuración L, y el carbono aldehídico aceptor adquiere esta configuración. CH CH CH CH CH2 O OH OH O P O O O OH CH2 C CH CH CH2 OH OH O P O O O O OH CH2 C OH O CH CH CH CH CH2 OH OH O P O O O OH OH CH CH CH2 OH O P O O O O Xilulosa- 5-fosfato + Sedoheptulosa- 7-fosfato Gliceraldehído- 3-fosfato + Ribosa- 5-fosfato La enzima puede usar varios sustratos y requiere TPP como coenzima. Transaldolasa (EC 2.2.1.2) Transfiere tres átomos de carbono. El donador siempre es una cetosa y el aceptor una aldosa. El carbono donador debe tener configuración D, y el carbono aldehídico aceptor adquiere esta con- figuración. La reacción regenera una hexosa.
  • 26. Metabolismo de Glúcidos maov/mlvm/26 CH2 C OH O CH CH CH CH CH2 OH OH O P O O O OH OH CH CH CH2 OH O P O O O O CH CH CH CH2 OH OH O P O O O O CH2 C OH O CHOH CH CH CH2 OH O P O O O OH Sedoheptulosa- 7-fosfato Gliceraldehído- 3-fosfato + Eritrosa- 4-fosfato Fructosa- 6-fosfato + Transcetolasa (EC 2.2.1.1) Con esta reacción, los carbonos de la Eritrosa se convierten en un intermediario de Glicólisis. CH CH CH CH2 OH OH O P O O O O CH2 C OH O CHOH CH CH CH2 OH O P O O O OH CH2 C CH CH CH2 OH OH O P O O O O OH CH CH CH2 OH O P O O O O Eritrosa- 4-fosfato Fructosa- 6-fosfato Xilulosa- 5-fosfato + Gliceraldehido- 3-fosfato + Cuando la célula requiere equivalentes reductores el Gliceraldehído-3-fosfato también puede convertirse en Fructosa mediante las reacciones de la Gluconeogénesis: Triosafosfato Isomerasa, para convertir el Gliceraldehído en Dihidroxiacetona; Aldolasa para condensar ambas triosas y formar Fructosa-1,6-bisfosfato, y Fructosa bisfosfato Fosfatasa para formar Fructosa-6-fosfato. Metabolismo de otros Monosacáridos Aunque la Glucosa es con mucho el monosacárido más importante en el metabolismo, en la dieta normal se ingieren otros monosacáridos que también deben ser metabolizados, los más importan- tes son Fructosa, proveniente de la degradación del azúcar de mesa, Sacarosa y de las frutas; Ga- lactosa, que se obtiene a partir del azúcar de la lecha, la Lactosa; y Manosa, que forma parte de los glúcidos digeribles de varios vegetales. Metabolismo de Manosa Hexocinasa (EC 2.7.1.1) Es la misma enzima que fosforila Glucosa. Tiene mayor afinidad por Manosa (KM = 100 M) que por Glucosa (KM= 150 M).
  • 27. Metabolismo de Glúcidos maov/mlvm/27 O OH OH CH2 OH OH OH O OH OH CH2 O P O O OOH OH ATP ADP Mg2+ Manosa Manosa-6-fosfato Manosa Fosfato Isomerasa (EC 5.3.1.8) Interconvierte específicamente Manosa y Fructosa. Prefiere actuar sobre el anómero  de Mano- sa, pero tiene actividad de amonerasa  O OH OH CH2 OH O P O O O OH O CH2 OH OH CH2 OH OHOPO O O Manosa-6-fosfato Fructosa-6-fosfato Con estas dos enzimas la Manosa se incorpora a la vía de la Glicólisis. El problema principal que presenta el metabolismo de Manosa, es la competencia por la Hexocinasa que mantiene con la Glucosa. El KM, favorece a la Manosa que tiene más afinidad, pero la concentración favorece a la Glucosa que está siempre en mayor cantidad. Metabolismo de Fructosa En teoría, la Fructosa puede seguir dos caminos para entrar a la Glicólisis. El primero es a través de la Hexocinasa, que la convierte directamente en Fructosa-6-fosfato. O CH2 OH OH CH2OH OHOPO O O O CH2 OH OH CH2OH OHOH Fructosa-6-fosfatoFructosa Sin embargo, como la afinidad por Fructosa (KM = 0.15 M) es 1000 veces menor que por Glucosa (KM= 150 M), y la concentración de esta también es mayor, esta ruta de entrada de Fructosa al metabolismo es poco importante, excepto en tejido adiposos, y por tal motivo, la Fructosa tiene una vía metabólica propia que se lleva a cabo, casi exclusivamente, en el citoplasma de las célu- las Hepáticas.
  • 28. Metabolismo de Glúcidos maov/mlvm/28 Fructocinasa (EC 2.7.1.3) Es una enzima hepática, específica de Fructosa, que cataliza la fosforilación en el carbono 1 para formar Fructosa-1-fosfato. O CH2 OH OH CH2 OHOH O P O O O O CH2 OH OH CH2 OH OHOH Fructosa-1-fosfatoFructosa ATP ADP Su ausencia provoca un estado asintomático denominado “Fructosuria Esencial”, porque no se puede absorber la Fructosa de la sangre y la mayor parte debe eliminarse por orina. La Fructosa-1-fosfato que se produce no ese sustrato para la Aldoalsa 1 de la Glicólisis y por tan- to se necesita otra enzima específica para el metabolismo de Fructosa. Fructosa-1-fosfato Aldolasa, Aldolasa B ó Aldolasa 2. (EC 4.1.2.13) Cataliza el mismo tipo de reacción que la Aldolasa 1, pero es específica de Fructosa-1-fosfato, formado Dihidroxiacetonafosfato a partir de los carbonos 1 a 3 de Fructosa y Gliceraldehído del 4 al 6. O CH2 OH OH C H2 OHOH O P O O O CH2 3 C2 CH2 1 O O P O O O OH CH 4 C 5 CH2 6 OH OH O H+ Fructosa-1-fosfato Dihidroxiacetona- fosfato Gliceraldehído Su ausencia provoca “Intolerancia a la Fructosa”, por acumulación en tejido hepático de Fructo- sa-1-fosfato que inhibe la Glicólisis y la Gluconeogénesis provocando hipoglicemia severa, lo cual que resulta en Vómito, Ictericia, Hepatomegalia y desarrollo pobre. La Dihidroxiacetonafosfato puede entrar directamente a la Glicólisis pero el Gliceraldehído no porque carece del fosfato necesario. Triosa Cinasa (EC 2.7.1.28) Convierte el Gliceraldehído en Gliceraldehído-3- fosfato, para que pueda entrar a la Glicólisis. Esta vía de entrada de Fructosa a Glicólisis, evita la reacción de la Fosfofructocinasa, que es el punto prin- cipal de regulación, por lo tanto, la ingesta aumentada CH C C H2 OH OH O H CH C C H2 OH O P O O O O H Gliceraldehído ATP ADP Gliceraldehído- 3-fosfato
  • 29. Metabolismo de Glúcidos maov/mlvm/29 de Fructosa, como durante la aplicación de sueros fructosados, puede provocar estados de Hiper- glicemia que deben ser considerados en el tratamiento de pacientes diabéticos. Metabolismo de Galactosa La Galactosa no es sustrato de ninguna de las cinasas de otros monosacáridos y por lo tanto tam- bién presenta una vía metabólica propia, que se realiza principalmente en el Hígado. Galactocinasa (EC 2.7.1.6) Esta enzima es específica de Galactosa a la que fosforila en el carbono 1. Su actividad no respon- de a hormonas. O OH CH2 OH OH OH OH O OH CH2 OH OH O P O O O OHATP ADP Mg2+ Galactosa Galactosa-1-fosfato Galactosa-1-fosfato Uridiltransferasa (EC 2.7.7.12) Transfiere el UDP de la Glucosa a la Galactosa. La UDP-Galactosa puede seguir varios destinos, entre ellos, la Glicólisis. O OH OH CH2 OH O P OH O O O O OH OH OH CH2 OH O UDP O OH OH OH CH2 OH O P O O O O OH OH CH2 OH O UDP OH + + UDP-Glucosa Galactosa-1-fosfato Glucosa-1-fosfato UDP-Galactosa La ausencia de la enzima provoca la “Galactosemia”, que causa Desnutrición, Hepatomegalia, Retraso mental, Ictericia, Cataratas, Vómito y Muerte. La Galactosemia es uno de los desordenes congénitos del metabolismo más comunes. En algunos países alcaza una frecuencia de 1 en 30 000. UDP-Glucosa-4-Epimerasa (EC 5.1.3.2) Isomeriza la UDP-Galactosa a UDP-Glucosa. La conversión a UDP-Glucosa permite que la Galactosa se incorpore al metabolismo general de Glúcidos. O OH OH OH CH2 OH O UDP O OH OH CH2 OH O UDP OH UDP-GlucosaUDP-Galactosa
  • 30. Metabolismo de Glúcidos maov/mlvm/30 UDP-Galactosa Pirofosforilasa (EC 2.7.7.10) En algunos individuos puede aparece esta enzima en la adolescencia. Permite emplear la Galacto- sa sin que pase por la Uridil transferasa. O OH OH CH2OH O P O O O OH O OH OH CH2OH O UDP OH UTP PPi Mg2+ Galactosa-1-fosfato UDP-Galactosa Otras vías metabólicas relacionadas con los Glúcidos Algunos derivados de monosacáridos y otras moléculas, siguen rutas metabólicas que se relacio- nan con los Glúcidos, entre los más importantes están el ácido Glucurónico y el Etanol. Metabolismo del ácido Glucurónico Este derivado de Glucosa es componente de varios polisacáridos estructurales y también se utiliza en reacciones de biotransformación de fármacos. Cuando se degradan los mucopolisacáridos es- tructurales, el ácido Glucurónico liberado debe metabolizarse o eliminarse, para evitar patologías. UDP-Glucosa-6-Deshidrogenasa (EC 1.1.1.22) Esta es la enzima que sintetiza el ácido Glucurónico para que se incorpore a polisacáridos estruc- turales. O OH OH OH COO- O UDP O OH OH OH CH2 OH O UDP 2NAD+ 2NADH H2O UDP-Glucosa UDP-Glucuronato UDP-Glucuronato Transferasa (EC 2.4.1.17) Esta enzima transfiere el Glucuronato a radicales OH de diversos receptores. Su actividad es im- portante en el metabolismo de fármacos, esteroides y porfirinas, y para la síntesis de mucopolisa- cáridos. Β-Glucuronidasa (EC 3.2.1.31) Hidroliza el enlace glicosídico entre el glucuronato y el aglicon, produciendo el Glucuronato li- bre, que puede ser eliminado en orina, o degradarse por acción de las enzimas siguientes.
  • 31. Metabolismo de Glúcidos maov/mlvm/31 Glucuronato Reductasa (EC 1.1.1.19) Al reducir el carbono 1 de aldehído a alcohol, el carbono 6 se vuelve más importante. Por lo tan- to, se invierte la numeración de los carbonos y entonces el penúltimo carbono es L. O OH OH COO- OHOH CH2 CH CH CH CH C OH OH OH OH OH O O NADPH NADP+ D-Glucuronato L-Gulonato L-Gulonato Deshidrogenasa (EC 1.1.1.45) Se produce un 3-cetoácido inestable. CH2 CH CH CH CH C OH OH OH OH OH O O CH2 CH CH C CH OH OH OH O OH CO O NADHNAD+ L-Gulonato 3-ceto-L-Gulonato L-Dehidrogulonato Descarboxilasa (EC 4.1.1.34) La eliminación de CO2, hace la reacción irreversible. CH2 CH CH C CH C OH OH OH O OH O O CH2 CH CH C CH2 OH OH OH O OH L-Cetogulonato L-Xilulosa CO2 L-Xilulosa Reductasa (EC 1.1.1.10) Oxido-reductasa dependiente de NADPH. Su ausencia produce “Pentosuria Esencial”, asintomá- tica.
  • 32. Metabolismo de Glúcidos maov/mlvm/32 C C CH2 HOH C H OH CH2 O OH OH C C CH2 HOH C H OH CH2 OH OH OH H NADPH NADP+ L-Xilulosa Xilitol D-Xilitol Desihdrogenasa (EC 1.1.1.9) Depende de NAD+ . Oxida el carbono simétrico que fue reducido, invirtiendo la numeración de los carbonos y regresando a la familia D. C C CH2 O C H CH2 OH OH H OH OH C C CH2 HOH C H OH CH2 OH OH OH H NADHNAD+ D-XilulosaXilitol Junto con la reducción anterior, interconvierte los enantiómeros de la Xilulosa. Xilulosa Cinasa (EC 2.7.1.17) La Xilulosa-5-fosfato puede entrar a la fase no oxidativa de la vía de las pentosas, transformarse en Ribosa, Fructosa o Gliceraldehído y pasar al metabolismo general de Glúcidos. C C CH2 OH C OH CH2 OH OH O H H C C CH2 OH C OH CH2 O OH O H H P O O O ADPATP D-Xilulosa D-Xilulosa- 5-fosfato Mg2+ Casi todos los organismos, con excepción de primates y cobayos, pueden sintetizar la vitamina C (Ácido ascórbico) a partir del ácido L-Gulónico, comenzando con una reacción de ciclización es- pontánea.
  • 33. Metabolismo de Glúcidos maov/mlvm/33 CH2 CH CH CH CH C OH OH OH OH OH O O CH2 CH CH CH CH C OH OH O OH OH O L-Gulonato L-Gulono- 4-lactona H2O L-Gulonolactona Oxidasa (EC 1.1.3.8) Los animales que no pueden sintetizar vitamina C, carecen de esta enzima. CH2 CH CH CH CH C OH OH O OH OH O CH2 CH CH C C C OH OH O OH OH O L-Gulono- 4-lactona FADH2 Ac. Ascórbico FAD Metabolismo del Etanol La síntesis de Etanol la efectúan únicamente las levaduras y aunque los humanos no son capaces de producirlo, el estudio de su metabolismo es digno de atención a causa de su elevado consumo. Piruvato Descarboxilasa. (EC 4.1.1.1) La enzima requiere Pirofosfato de Tiamina (TPP) y está ausente en los organismos superiores. CH3 C C O O O CH3 CH O Piruvato Acetaldehído CO2 TPP La descarboxilación hace la reacción irreversible. Alcohol Deshidrogenasa (EC 1.1.1.1) La enzima de levadura es diferente de la de mamíferos. CH3 CH O CH3 C O ONADH Acetaldehído NAD+ Etanol
  • 34. Metabolismo de Glúcidos maov/mlvm/34 El etanol es un componente importante de la dieta de los humanos, aunque el propósito del con- sumo no es nutricional, es una magnifica fuente de energía. Alcohol Deshidrogenasa (EC 1.1.1.1) Esta enzima es muy rápida, aunque se encuentra en poca cantidad, es inducible. Tiene propieda- des y especificidad diferente a la de levadura. CH3 CH2 OH CH3 CH O Etanol NADH Acetaldehído NAD+ El acetaldehído formado es citotóxico. Aldehído Deshidrogenasa (EC 1.2.1.3) Esta es una enzima más lenta que la anterior, por lo que el consumo de grandes cantidades de Etanol puede llevar a la acumulación de acetaldehído hasta niveles tóxicos. El acetaldehído acu- mulado produce el síndrome del “día siguiente”. CH3 CH O CH3 C O ONADH Acetaldehído NAD+ Acetato Acetil-CoA Sintetasa (EC 6.2.1.1) Esta reacción es irreversible y hace que toda la vía lo sea. El Acetil-CoA, sirve como fuente de energía, si se oxida en el ciclo de Krebs. Si no se usa como fuente de energía, se guarda en forma de ácidos grasos. CH3 C S O CoA CH3 C O O ADPATP Acetil-CoAAcetato CoA-SH H2O Las vías metabólicas que mostramos aquí, son las más interesantes, pero en realidad son sólo una pequeña parte de todo el metabolismo de Glúcidos.