SlideShare une entreprise Scribd logo
1  sur  5
Télécharger pour lire hors ligne
Designation: E2550 – 11
Standard Test Method for
Thermal Stability by Thermogravimetry1
This standard is issued under the fixed designation E2550; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (´) indicates an editorial change since the last revision or reapproval.
1. Scope
1.1 This test method covers the assessment of material
thermal stability through the determination of the temperature
at which the materials start to decompose or react and the
extent of the mass change using thermogravimetry. The test
method uses minimum quantities of material and is applicable
over the temperature range from ambient to 800°C.
1.2 The absence of reaction or decomposition is used as an
indication of thermal stability in this test method under the
experimental conditions used.
1.3 This test method may be performed on solids or liquids,
which do not sublime or vaporize in the temperature range of
interest.
1.4 This test method shall not be used by itself to establish
a safe operating or storage temperature. It may be used in
conjunction with other test methods (for example, E487, E537
and E1981) as part of a hazard analysis of a material.
1.5 This test method is normally applicable to reaction or
decomposition occurring in the range from room temperature
to 800 °C. The temperature range may be extended depending
on the instrumentation used.
1.6 This test method may be performed in an inert, a
reactive or self-generated atmosphere.
1.7 The values stated in SI units are to be regarded as
standard. No other units of measurement are included in this
standard.
1.8 There is no ISO standard equivalent to this test method.
1.9 This standard does not purport to address all of the
safety concerns, if any, associated with its use. It is the
responsibility of the user of this standard to establish appro-
priate safety and health practices and determine the applica-
bility of regulatory limitations prior to use. This standard may
involve hazardous materials, operations, and equipment.
2. Referenced Documents
2.1 ASTM Standards:2
E473 Terminology Relating to Thermal Analysis and Rhe-
ology
E487 Test Method for Constant-Temperature Stability of
Chemical Materials
E537 Test Method for The Thermal Stability of Chemicals
by Differential Scanning Calorimetry
E691 Practice for Conducting an Interlaboratory Study to
Determine the Precision of a Test Method
E1142 Terminology Relating to Thermophysical Properties
E1445 Terminology Relating to Hazard Potential of Chemi-
cals
E1582 Practice for Calibration of Temperature Scale for
Thermogravimetry
E1981 Guide for Assessing Thermal Stability of Materials
by Methods of Accelerating Rate Calorimetry
E2040 Test Method for Mass Scale Calibration of Thermo-
gravimetric Analyzers
3. Terminology
3.1 Definition:
3.1.1 Specific technical terms used in this test method are
defined in Terminologies E473, E1142 and E1445. These terms
include thermogravimetry (TG), thermogravimetric analysis
(TGA), thermal stability, onset temperature (To), derivative,
and TG curve.
3.2 Definitions of Terms Specific to This Standard:
3.2.1 DTG curve, n—a plot of the first derivative of TG data
with respect to temperature or time.
3.2.2 mass change plateau, n—a region of the TG curve
with a relatively constant mass; it is accompanied by a
minimum in the DTG curve for a mass loss, or a maximum for
a mass gain.
1
This test method is under the jurisdiction of ASTM Committee E37 on Thermal
Measurements and is the direct responsibility of Subcommittee E37.01 on Calo-
rimetry and Mass Loss.
Current edition approved April 1, 2011. Published May 2011. Originally
approved in 2007. Last previous edition approved in 2007 as E2550 – 2007. DOI:
10.1520/E2550-11.
2
For referenced ASTM standards, visit the ASTM website, www.astm.org, or
contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM
Standards volume information, refer to the standard’s Document Summary page on
the ASTM website.
1
Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.
Copyright ASTM International
Provided by IHS under license with ASTM Licensee=Nanyang Technological Univ/5926867100
Not for Resale, 05/29/2014 11:53:07 MDT
No reproduction or networking permitted without license from IHS
--`,`,,``,```,`,`,`,`,``,`,`,,`-`-`,,`,,`,`,,`---
daneshlink.com
4. Summary of Test Method
4.1 A sample of the material to be examined is placed in an
inert container and then heated at a controlled rate of 1 to 20°C
min–1
under a controlled atmosphere. The sample mass is
recorded continuously as a function of time and temperature.
4.2 When the sample undergoes a reaction or thermal
decomposition involving a mass change, that change is indi-
cated by a departure from the initially established baseline of
the mass record (see Fig. 1).
4.3 The onset temperature and mass changes are determined
and reported.
5. Significance and Use
5.1 TG provides a rapid method for determining the thermal
decomposition and reaction mass change of a material.
5.2 This test method is useful in detecting potentially
hazardous reactions and in estimating the temperatures at
which these reactions occur. This test method is recommended
as a screening test for detecting the thermal hazards of an
uncharacterized material or mixture (see Section 8).
5.3 Energetic materials, pharmaceuticals and polymers are
examples of materials for which this test might be useful. This
test is especially useful for materials having melting points that
overlap with the onset of reaction or decomposition.
NOTE 1—In Differential Scanning Calorimetry (DSC), the melting
endotherm may interfere with the determination of the onset temperature
for reaction or decomposition.
5.4 This test is not suitable for materials that sublime or
vaporize in the temperature range of interest. A sample with
volatile impurities needs to be purified prior to the TGA
testing. Alternatively, the sample can be tested as is, however,
special caution is required during the data analysis. The mass
loss due to the loss of impurity should not interfere with the
determination of reaction or decomposition temperature.
5.5 The four significant criteria of this test method are: the
detection of a sample mass change; the extent of the mass
change; the approximate temperature at which the event
occurs; the observance of effects due to the atmosphere.
6. Limitations
6.1 Many environmental factors affect the existence, mag-
nitude and onset temperature of a particular reaction or
decomposition. Some of these, including heating rate, instru-
mental sensitivity, and atmosphere reactivity, will affect the
detectability of a reaction or decomposition using this proce-
dure. Therefore, it is imperative that the results obtained from
the application of this test method be viewed only as an
indication of the thermal stability of a material.
6.2 This test method can only be used to detect reaction or
decomposition that involves a mass change, such as a produc-
tion of gaseous species or a mass gain in reactive atmosphere.
This test method is not suitable for materials that sublime or
vaporize in the temperature of interest.
6.3 This test method may not be reliable for heterogeneous
samples.
NOTE 2—For heterogeneous samples, it is recommended to perform
replicate measurements to determine the variability of the results. If
inconsistent results are obtained, the study should be carried out using
larger-scale apparatus, such as accelerating rate calorimetry.
7. Apparatus
7.1 Thermogravimetric Analyzer (TGA)—The essential in-
strumentation required to provide the minimum thermogravi-
metric analytical capability for this practice includes:
7.1.1 A thermobalance composed of:
7.1.1.1 A furnace to provide uniform controlled heating of a
specimen to a constant temperature or at a constant rate within
the applicable temperature range of this test method.
7.1.1.2 A temperature sensor to provide an indication of the
specimen/furnace temperature to 60.1°C.
7.1.1.3 A continuously recording balance to measure the
specimen mass with a minimum capacity of 10 mg and a
sensitivity of 610 µg.
NOTE 3—An apparatus with a larger capacity can also be used. The
sensitivity must be at least 60.1 mass %.
FIG. 1 Typical TG and DTG Curves
E2550 – 11
2
Copyright ASTM International
Provided by IHS under license with ASTM Licensee=Nanyang Technological Univ/5926867100
Not for Resale, 05/29/2014 11:53:07 MDT
No reproduction or networking permitted without license from IHS
--`,`,,``,```,`,`,`,`,``,`,`,,`-`-`,,`,,`,`,,`---
daneshlink.com
7.1.1.4 A means of maintaining the specimen/container
under atmospheric control of an inert or reactive gas of
99.9+ % purity at a purge rate of 20 to 100 65 mL min– 1
.
NOTE 4—Purge rate may vary depending on the instrument used.
Excessive purge rates should be avoided as this may introduce interfer-
ences due to turbulence effects and temperature gradients.
NOTE 5—Experiments can also be performed in a self generated
atmosphere. DSC sealed containers with a pinhole of 0.025 to 0.38 mm
diameter have been shown to establish saturation of a gaseous self
generated atmosphere.3
7.1.2 A temperature controller capable of executing a spe-
cific temperature program by operating the furnace between
selected temperature limits at a rate of temperature change
between 1 and 20°C min–1
to within 60.1°C min– 1
.
7.1.3 A recording device capable of recording and display-
ing on the Y-axis any fraction of the specimen mass signal
(TGA curve) including the signal noise as a function of any
fraction of the temperature (or time) signal on the X-axis
including the signal noise.
7.1.4 Containers (pans, crucibles, etc.) that are inert to the
specimen and that will remain gravimetrically stable within the
temperature limits of this test method.
NOTE 6—For experiments in a self generated atmosphere, DSC sealed
containers with pinhole of 0.025 to 0.38 mm diameter can be used.
7.2 Auxiliary equipment necessary or useful in conducting
this test method includes:
7.2.1 A balance with a capacity of 100 mg or more to weigh
specimens or containers, or both, to 60.1 mg.
7.2.2 Device to encapsulate the specimen in DSC sealable
containers for self-generated atmosphere studies.
8. Safety Precautions
8.1 The use of this test method as an initial test for material
whose potential hazards are unknown requires that precautions
be taken during the sample preparation and testing.
8.2 Larger specimens (>5 mg) should be used only after
consideration is given to the potential for hazardous reac-
tion(s). For energetic material or materials whose characteris-
tics are unknown, it is safest to start with a specimen mass of
no more than 1 mg and a lower heating rate (1 to 10°C min–1
).
8.3 When particle size reduction by grinding is necessary,
the user of the test method shall presume that the material is
sensitive to stimuli such as friction and electrostatic discharge.
Accordingly, appropriate tests shall be conducted on those
materials prior to grinding. Use of suitable protective equip-
ment is always recommended when preparing materials of
unknown hazard. If a Material Safety Data Sheet is available,
it shall be acquired and studied prior to handling unknown
materials.
8.4 Toxic or corrosive effluents, or both, may be released
when heating the material and could be harmful to the
personnel or the apparatus. Use of an exhaust system to remove
such effluents is highly recommended.
9. Sampling
9.1 Samples shall be representative of the material being
studied including particle size and purity.
9.2 In the absence of other information, the samples are
assumed to be analyzed as received. If a treatment, such as
drying, is applied to the sample prior to analysis, this treatment
and any resulting mass change must be noted in the report.
9.3 The selection of specimen mass depends upon the
magnitude of hazard associated with the material, the sensitiv-
ity of the instrument, the heating rate and the specimen
homogeneity. This test method should be carried out on as
small of a quantity of material as possible, while specimens are
still large enough to be representative of the material and to
exhibit adequate signals. Typical specimen mass is between 1
and 10 mg.
NOTE 7—The particle size of the specimen should be considered, since
thicker specimens may show transition broadening due to the thermal
conductivity lag into the specimen cores.
10. Preparation of Apparatus
10.1 Prepare the TGA using any procedures described in the
manufacturer’s operations manual.
10.2 Place the temperature sensor in the proper position in
accordance with the manufacturer’s operations manual.
NOTE 8—Care must be taken to ensure that the specimen container is
not in contact in any way with the sensor, unless the TGA was designed
with the temperature sensor fixed to the crucible holder. It is also
important that the temperature sensor is not moved after temperature
calibration has been carried out.
10.3 Maintain a constant flow of purge gas for the furnace in
the range from 20 to 100 mL min–1
throughout the experiment.
11. Calibration
11.1 Calibrate the mass signal using Practice E2040 or
instrument manufacturer’s guidelines and record details.
11.2 Calibrate the furnace temperature in accordance with
Practice E1582 using the same heating rate, purge gas, flow
rate and temperature sensor position to be used for subsequent
specimens tests.
12. Recommended Condition of Tests
12.1 Specimen Mass—5 mg of specimen is generally con-
sidered adequate. Decrease the specimen mass to 1 mg if the
characteristics of materials are unknown.
NOTE 9—For energetic material, it is recommended to use a specimen
mass of no more than 1.0 mg.
12.2 Heating Rate—A rate of 10 to 20°C min–1
is consid-
ered normal.
NOTE 10—The onset temperature is affected by heating rate. Therefore,
only results obtained at the same heating rate shall be compared.
NOTE 11—A lower heating rate (1 to 10°C min–1
) should be used when
a complex change of mass is encountered.
NOTE 12—For energetic material, it is recommended to use a lower
heating rate (1 to 10°C min–1
). For primary explosives, it is suggested to
start with a heating rate of no more than 3°C min–1
.
12.3 Temperature Range—The temperature typically ranges
from room temperature to 600°C.
3
Kwok, Q., and Seyler, R.J., Journal of Thermal Analysis and Calorimetry, Vol
83, No. 1, 2006, p. 117.
E2550 – 11
3
Copyright ASTM International
Provided by IHS under license with ASTM Licensee=Nanyang Technological Univ/5926867100
Not for Resale, 05/29/2014 11:53:07 MDT
No reproduction or networking permitted without license from IHS
--`,`,,``,```,`,`,`,`,``,`,`,,`-`-`,,`,,`,`,,`---
daneshlink.com
13. Procedure
13.1 Tare an empty and clean specimen container.
13.2 Weigh the specimen with a mass within 10 mass % of
the target size into the tared container.
NOTE 13—Powder and granular samples should be distributed evenly
over the sample container to maximize the exposed surface.
13.3 Place the specimen and container into the TGA at
ambient temperature.
13.4 Heat the specimen at a constant rate of 10°C min–1
and
record the TG curve. Continue heating until a constant mass is
obtained or the temperature is well above the useful tempera-
ture range of the material tested.
NOTE 14—Other heating rates may be used but shall be reported.
13.5 Once the experiment is complete, cool the instrument
to room temperature, remove, and clean or replace the speci-
men container.
13.6 Display the TG and DTG curves.
13.7 Using the TG curve, construct a baseline from the
initial mass extrapolated upward in temperature.
13.8 For any reaction(s) observed, determine the onset
temperature by selecting a point on the TG curve where a
deflection is first observed from the established baseline prior
to the thermal event.
NOTE 15—The TG curve should be zoomed to a scale of 1 to 2 mass %
for the onset temperature selection (see Fig. 2).
NOTE 16—The onset temperature can also be determined from the DTG
curve where a deflection from the DTG established baseline is first
observed. However, only results obtained from the same method should be
compared.
13.9 Calculate the mass change for reaction(s) or decompo-
sition(s) by subtracting the sample mass at the onset tempera-
ture by the mass on the mass change plateau immediately after
the thermal event.
NOTE 17—Replicate experiments are recommended, particularly for a
heterogeneous sample. Calculate the means and standard deviations for
the onset temperature and mass change from replicates.
14. Report
14.1 The report shall include the following:
14.1.1 Description of the sample and any sample prepara-
tion or pretreatment, or both.
14.1.2 Initial specimen mass.
14.1.3 Description of apparatus including manufacturer and
model.
14.1.4 Instrument calibration details.
14.1.5 Material of container.
14.1.6 Test conditions including atmosphere, flow rate,
heating rate and temperature range.
14.1.7 The onset temperature and mass change of all reac-
tions observed.
NOTE 18—If replicates were performed, the report should include the
number of tests, the mean values and the standard deviations of the onset
temperature and mass change.
14.1.8 When a test is repeated using a different atmosphere
or a different heating rate, note any significant changes in the
TG curves resulting from the different experiment conditions.
14.1.9 The specific dated version of this test method used.
15. Precision and Bias
15.1 The precision and bias of this standard method were
determined in an interlaboratory test (ILT) in 2008. Thirteen
laboratories using thermogravimetric analyzers from six manu-
facturers and ten instrument models participated in the ILT.
The TG onset temperature, TG mass change and DTG onset
temperature for the thermal stability of polyethylene terephta-
late (PET) were determined. Each laboratory reported the onset
temperatures and mass changes in quintuplicate. The statistical
analysis was conducted in accordance with Practice E691.
15.2 Precision:
15.2.1 Within laboratory variability may be described using
the repeatability value (r) obtained by multiplying the repeat-
ability standard deviation by 2.8. The repeatability value esti-
mates the 95 % confidence limit. That is, two within laboratory
FIG. 2 Zoomed TG and DTG Curves for T0 Determination
E2550 – 11
4
Copyright ASTM International
Provided by IHS under license with ASTM Licensee=Nanyang Technological Univ/5926867100
Not for Resale, 05/29/2014 11:53:07 MDT
No reproduction or networking permitted without license from IHS
--`,`,,``,```,`,`,`,`,``,`,`,,`-`-`,,`,,`,`,,`---
daneshlink.com
results should be considered suspect if they differ by more than
the repeatability value (r).
15.2.2 The repeatability standard deviation for TG onset
temperature is 6°C.
15.2.3 The repeatability standard deviation for TG mass
change is 0.6 %.
15.2.4 The repeatability standard deviation for DTG onset
temperature is 5°C.
15.3 Between laboratory variability may be estimated using
the reproducibility value (R) obtained by multiplying the
reproducibility standard deviation by 2.8. The reproducibility
value estimates the 95 % confidence limit. That is, two
between laboratory results should be considered suspect if they
differ by more than the reproducibility value (R).
15.3.1 The reproducibility standard deviation for TG onset
temperature is 54°C.
15.3.2 The reproducibility standard deviation for TG mass
change is 2.3 %.
15.3.3 The reproducibility standard deviation for DTG on-
set temperature is 18°C.
15.4 Bias:
15.4.1 Bias is the difference between a test result and an
accepted reference value. There is no accepted reference value
for the thermal stability for PET. Therefore no bias information
can be provided.
15.4.2 The mean values of TG onset temperature, TG mass
change and DTG onset temperature for the thermal stability for
PET at a heat rate of 10°C min–1
were observed to be 304°C,
–87.0 % and 335°C, respectively.
16. Keywords
16.1 thermal analysis; thermal decomposition; thermal sta-
bility; thermogravimetric analysis; thermogravimetry
ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned
in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk
of infringement of such rights, are entirely their own responsibility.
This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and
if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards
and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the
responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should
make your views known to the ASTM Committee on Standards, at the address shown below.
This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959,
United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above
address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website
(www.astm.org). Permission rights to photocopy the standard may also be secured from the ASTM website (www.astm.org/
COPYRIGHT/).
E2550 – 11
5
Copyright ASTM International
Provided by IHS under license with ASTM Licensee=Nanyang Technological Univ/5926867100
Not for Resale, 05/29/2014 11:53:07 MDT
No reproduction or networking permitted without license from IHS
--`,`,,``,```,`,`,`,`,``,`,`,,`-`-`,,`,,`,`,,`---
daneshlink.com

Contenu connexe

Similaire à Thermal Stability Test Method

Bulletin : Thermal Analysis (TGA) using Perkin Elmer & Mettler Toledo
Bulletin : Thermal Analysis (TGA) using Perkin Elmer & Mettler ToledoBulletin : Thermal Analysis (TGA) using Perkin Elmer & Mettler Toledo
Bulletin : Thermal Analysis (TGA) using Perkin Elmer & Mettler ToledoNoor Fatihah Suhaimi
 
Preparation of Samples for Compositional Analysis
Preparation of Samples for Compositional AnalysisPreparation of Samples for Compositional Analysis
Preparation of Samples for Compositional AnalysisBiorefineryEPC™
 
Lecture notes on therm analysis in PowerPoint
Lecture notes on therm analysis in PowerPointLecture notes on therm analysis in PowerPoint
Lecture notes on therm analysis in PowerPointJJsry
 
lecture notes of thermal analysis in power points
lecture notes of thermal analysis in power pointslecture notes of thermal analysis in power points
lecture notes of thermal analysis in power pointsJJsry
 
Stability and Shelf Life
Stability and Shelf LifeStability and Shelf Life
Stability and Shelf LifeAditya Sharma
 
Thermal analysis assignment 2nd edition
Thermal analysis assignment 2nd editionThermal analysis assignment 2nd edition
Thermal analysis assignment 2nd editionKamal Uddin Rayhan
 
Presentation on-stability-study of pharmaceutical product
Presentation on-stability-study of pharmaceutical productPresentation on-stability-study of pharmaceutical product
Presentation on-stability-study of pharmaceutical productMd Mohsin
 
Thermoanalytical techniques
Thermoanalytical techniquesThermoanalytical techniques
Thermoanalytical techniquesDeepali Jadhav
 
Astm d2938 unconfined compressive strength
Astm d2938 unconfined compressive strengthAstm d2938 unconfined compressive strength
Astm d2938 unconfined compressive strengthDavid Gaspar
 
Seminor on accelerated stability testing of dosage forms sahil
Seminor on accelerated stability testing of dosage forms sahilSeminor on accelerated stability testing of dosage forms sahil
Seminor on accelerated stability testing of dosage forms sahilsahilhusen
 
Seminor on accelerated stability testing of dosage forms sahil
Seminor on accelerated stability testing of dosage forms sahilSeminor on accelerated stability testing of dosage forms sahil
Seminor on accelerated stability testing of dosage forms sahilsahilhusen
 
Differential thermal analysis and it's pharmaceutical application
Differential thermal analysis and it's pharmaceutical applicationDifferential thermal analysis and it's pharmaceutical application
Differential thermal analysis and it's pharmaceutical applicationJp Prakash
 
THERMOGRAVIMETRIC ANALYSIS ppt by devika.pptx
THERMOGRAVIMETRIC ANALYSIS ppt by devika.pptxTHERMOGRAVIMETRIC ANALYSIS ppt by devika.pptx
THERMOGRAVIMETRIC ANALYSIS ppt by devika.pptxJilaniSheikMohammed
 
621 Unit 2.pdf thermak methods of analysis
621 Unit 2.pdf thermak methods of analysis621 Unit 2.pdf thermak methods of analysis
621 Unit 2.pdf thermak methods of analysisMiratunnoor1
 
DIFFERENTIAL THERMAL ANALYSIS (DTA), ppt
DIFFERENTIAL THERMAL ANALYSIS (DTA),  pptDIFFERENTIAL THERMAL ANALYSIS (DTA),  ppt
DIFFERENTIAL THERMAL ANALYSIS (DTA), pptshaisejacob
 
Qualification of gc equipment by manoj kumar
Qualification of gc equipment by manoj kumarQualification of gc equipment by manoj kumar
Qualification of gc equipment by manoj kumarhimaja donthula
 

Similaire à Thermal Stability Test Method (20)

Bulletin : Thermal Analysis (TGA) using Perkin Elmer & Mettler Toledo
Bulletin : Thermal Analysis (TGA) using Perkin Elmer & Mettler ToledoBulletin : Thermal Analysis (TGA) using Perkin Elmer & Mettler Toledo
Bulletin : Thermal Analysis (TGA) using Perkin Elmer & Mettler Toledo
 
Sop125v3 1
Sop125v3 1Sop125v3 1
Sop125v3 1
 
Preparation of Samples for Compositional Analysis
Preparation of Samples for Compositional AnalysisPreparation of Samples for Compositional Analysis
Preparation of Samples for Compositional Analysis
 
Lecture notes on therm analysis in PowerPoint
Lecture notes on therm analysis in PowerPointLecture notes on therm analysis in PowerPoint
Lecture notes on therm analysis in PowerPoint
 
lecture notes of thermal analysis in power points
lecture notes of thermal analysis in power pointslecture notes of thermal analysis in power points
lecture notes of thermal analysis in power points
 
Stability and Shelf Life
Stability and Shelf LifeStability and Shelf Life
Stability and Shelf Life
 
Thermal analysis assignment 2nd edition
Thermal analysis assignment 2nd editionThermal analysis assignment 2nd edition
Thermal analysis assignment 2nd edition
 
Presentation on-stability-study of pharmaceutical product
Presentation on-stability-study of pharmaceutical productPresentation on-stability-study of pharmaceutical product
Presentation on-stability-study of pharmaceutical product
 
Thermoanalytical techniques
Thermoanalytical techniquesThermoanalytical techniques
Thermoanalytical techniques
 
D1004.pdf
D1004.pdfD1004.pdf
D1004.pdf
 
Astm d2938 unconfined compressive strength
Astm d2938 unconfined compressive strengthAstm d2938 unconfined compressive strength
Astm d2938 unconfined compressive strength
 
Seminor on accelerated stability testing of dosage forms sahil
Seminor on accelerated stability testing of dosage forms sahilSeminor on accelerated stability testing of dosage forms sahil
Seminor on accelerated stability testing of dosage forms sahil
 
Seminor on accelerated stability testing of dosage forms sahil
Seminor on accelerated stability testing of dosage forms sahilSeminor on accelerated stability testing of dosage forms sahil
Seminor on accelerated stability testing of dosage forms sahil
 
Differential thermal analysis and it's pharmaceutical application
Differential thermal analysis and it's pharmaceutical applicationDifferential thermal analysis and it's pharmaceutical application
Differential thermal analysis and it's pharmaceutical application
 
THERMOGRAVIMETRIC ANALYSIS ppt by devika.pptx
THERMOGRAVIMETRIC ANALYSIS ppt by devika.pptxTHERMOGRAVIMETRIC ANALYSIS ppt by devika.pptx
THERMOGRAVIMETRIC ANALYSIS ppt by devika.pptx
 
621 Unit 2.pdf thermak methods of analysis
621 Unit 2.pdf thermak methods of analysis621 Unit 2.pdf thermak methods of analysis
621 Unit 2.pdf thermak methods of analysis
 
GC-MS
GC-MSGC-MS
GC-MS
 
DIFFERENTIAL THERMAL ANALYSIS (DTA), ppt
DIFFERENTIAL THERMAL ANALYSIS (DTA),  pptDIFFERENTIAL THERMAL ANALYSIS (DTA),  ppt
DIFFERENTIAL THERMAL ANALYSIS (DTA), ppt
 
1 oxygen permeability test method of pudding cups
1   oxygen permeability test method of pudding cups1   oxygen permeability test method of pudding cups
1 oxygen permeability test method of pudding cups
 
Qualification of gc equipment by manoj kumar
Qualification of gc equipment by manoj kumarQualification of gc equipment by manoj kumar
Qualification of gc equipment by manoj kumar
 

Dernier

Call Girls Dubai &ubble O525547819 Call Girls In Dubai Blastcum
Call Girls Dubai &ubble O525547819 Call Girls In Dubai BlastcumCall Girls Dubai &ubble O525547819 Call Girls In Dubai Blastcum
Call Girls Dubai &ubble O525547819 Call Girls In Dubai Blastcumkojalkojal131
 
Food & Nutrition Strategy Baseline (FNS.pdf)
Food & Nutrition Strategy Baseline (FNS.pdf)Food & Nutrition Strategy Baseline (FNS.pdf)
Food & Nutrition Strategy Baseline (FNS.pdf)Mohamed Miyir
 
VIP Call Girls In Singar Nagar ( Lucknow ) 🔝 8923113531 🔝 Cash Payment Avai...
VIP Call Girls In Singar Nagar ( Lucknow  ) 🔝 8923113531 🔝  Cash Payment Avai...VIP Call Girls In Singar Nagar ( Lucknow  ) 🔝 8923113531 🔝  Cash Payment Avai...
VIP Call Girls In Singar Nagar ( Lucknow ) 🔝 8923113531 🔝 Cash Payment Avai...anilsa9823
 
Top Rated Pune Call Girls Yashwant Nagar ⟟ 6297143586 ⟟ Call Me For Genuine ...
Top Rated  Pune Call Girls Yashwant Nagar ⟟ 6297143586 ⟟ Call Me For Genuine ...Top Rated  Pune Call Girls Yashwant Nagar ⟟ 6297143586 ⟟ Call Me For Genuine ...
Top Rated Pune Call Girls Yashwant Nagar ⟟ 6297143586 ⟟ Call Me For Genuine ...Call Girls in Nagpur High Profile
 
VIP Call Girls Service Shamshabad Hyderabad Call +91-8250192130
VIP Call Girls Service Shamshabad Hyderabad Call +91-8250192130VIP Call Girls Service Shamshabad Hyderabad Call +91-8250192130
VIP Call Girls Service Shamshabad Hyderabad Call +91-8250192130Suhani Kapoor
 
Low Rate Call Girls Nashik Mahima 7001305949 Independent Escort Service Nashik
Low Rate Call Girls Nashik Mahima 7001305949 Independent Escort Service NashikLow Rate Call Girls Nashik Mahima 7001305949 Independent Escort Service Nashik
Low Rate Call Girls Nashik Mahima 7001305949 Independent Escort Service Nashikranjana rawat
 
Low Rate Call Girls Nagpur Esha Call 7001035870 Meet With Nagpur Escorts
Low Rate Call Girls Nagpur Esha Call 7001035870 Meet With Nagpur EscortsLow Rate Call Girls Nagpur Esha Call 7001035870 Meet With Nagpur Escorts
Low Rate Call Girls Nagpur Esha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
Top Rated Pune Call Girls Baner ⟟ 6297143586 ⟟ Call Me For Genuine Sex Servi...
Top Rated  Pune Call Girls Baner ⟟ 6297143586 ⟟ Call Me For Genuine Sex Servi...Top Rated  Pune Call Girls Baner ⟟ 6297143586 ⟟ Call Me For Genuine Sex Servi...
Top Rated Pune Call Girls Baner ⟟ 6297143586 ⟟ Call Me For Genuine Sex Servi...Call Girls in Nagpur High Profile
 
(KRITIKA) Balaji Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] P...
(KRITIKA) Balaji Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] P...(KRITIKA) Balaji Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] P...
(KRITIKA) Balaji Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] P...ranjana rawat
 
Booking open Available Pune Call Girls Sanaswadi 6297143586 Call Hot Indian ...
Booking open Available Pune Call Girls Sanaswadi  6297143586 Call Hot Indian ...Booking open Available Pune Call Girls Sanaswadi  6297143586 Call Hot Indian ...
Booking open Available Pune Call Girls Sanaswadi 6297143586 Call Hot Indian ...Call Girls in Nagpur High Profile
 
(PRIYA) Call Girls Budhwar Peth ( 7001035870 ) HI-Fi Pune Escorts Service
(PRIYA) Call Girls Budhwar Peth ( 7001035870 ) HI-Fi Pune Escorts Service(PRIYA) Call Girls Budhwar Peth ( 7001035870 ) HI-Fi Pune Escorts Service
(PRIYA) Call Girls Budhwar Peth ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
THE ARTISANAL SALT OF SAN VICENTE, ILOCOS SUR: A CASE STUDY
THE ARTISANAL SALT OF SAN VICENTE, ILOCOS SUR: A CASE STUDYTHE ARTISANAL SALT OF SAN VICENTE, ILOCOS SUR: A CASE STUDY
THE ARTISANAL SALT OF SAN VICENTE, ILOCOS SUR: A CASE STUDYHumphrey A Beña
 
(ASHA) Sb Road Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(ASHA) Sb Road Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(ASHA) Sb Road Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(ASHA) Sb Road Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
Dubai Call Girls Drilled O525547819 Call Girls Dubai (Raphie)
Dubai Call Girls Drilled O525547819 Call Girls Dubai (Raphie)Dubai Call Girls Drilled O525547819 Call Girls Dubai (Raphie)
Dubai Call Girls Drilled O525547819 Call Girls Dubai (Raphie)kojalkojal131
 
(ANJALI) Shikrapur Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...
(ANJALI) Shikrapur Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...(ANJALI) Shikrapur Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...
(ANJALI) Shikrapur Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...ranjana rawat
 
VVIP Pune Call Girls Viman Nagar (7001035870) Pune Escorts Nearby with Comple...
VVIP Pune Call Girls Viman Nagar (7001035870) Pune Escorts Nearby with Comple...VVIP Pune Call Girls Viman Nagar (7001035870) Pune Escorts Nearby with Comple...
VVIP Pune Call Girls Viman Nagar (7001035870) Pune Escorts Nearby with Comple...Call Girls in Nagpur High Profile
 
(MAYA) Baner Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MAYA) Baner Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MAYA) Baner Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MAYA) Baner Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
Tech Social Sharing Space 4.0_Donation_System_April_26_2024_Rev70.pdf
Tech Social Sharing Space 4.0_Donation_System_April_26_2024_Rev70.pdfTech Social Sharing Space 4.0_Donation_System_April_26_2024_Rev70.pdf
Tech Social Sharing Space 4.0_Donation_System_April_26_2024_Rev70.pdfAlessandroMartins454470
 
Let Me Relax Dubai Russian Call girls O56338O268 Dubai Call girls AgenCy
Let Me Relax Dubai Russian Call girls O56338O268 Dubai Call girls AgenCyLet Me Relax Dubai Russian Call girls O56338O268 Dubai Call girls AgenCy
Let Me Relax Dubai Russian Call girls O56338O268 Dubai Call girls AgenCystephieert
 

Dernier (20)

Call Girls Dubai &ubble O525547819 Call Girls In Dubai Blastcum
Call Girls Dubai &ubble O525547819 Call Girls In Dubai BlastcumCall Girls Dubai &ubble O525547819 Call Girls In Dubai Blastcum
Call Girls Dubai &ubble O525547819 Call Girls In Dubai Blastcum
 
Food & Nutrition Strategy Baseline (FNS.pdf)
Food & Nutrition Strategy Baseline (FNS.pdf)Food & Nutrition Strategy Baseline (FNS.pdf)
Food & Nutrition Strategy Baseline (FNS.pdf)
 
VIP Call Girls In Singar Nagar ( Lucknow ) 🔝 8923113531 🔝 Cash Payment Avai...
VIP Call Girls In Singar Nagar ( Lucknow  ) 🔝 8923113531 🔝  Cash Payment Avai...VIP Call Girls In Singar Nagar ( Lucknow  ) 🔝 8923113531 🔝  Cash Payment Avai...
VIP Call Girls In Singar Nagar ( Lucknow ) 🔝 8923113531 🔝 Cash Payment Avai...
 
Top Rated Pune Call Girls Yashwant Nagar ⟟ 6297143586 ⟟ Call Me For Genuine ...
Top Rated  Pune Call Girls Yashwant Nagar ⟟ 6297143586 ⟟ Call Me For Genuine ...Top Rated  Pune Call Girls Yashwant Nagar ⟟ 6297143586 ⟟ Call Me For Genuine ...
Top Rated Pune Call Girls Yashwant Nagar ⟟ 6297143586 ⟟ Call Me For Genuine ...
 
VIP Call Girls Service Shamshabad Hyderabad Call +91-8250192130
VIP Call Girls Service Shamshabad Hyderabad Call +91-8250192130VIP Call Girls Service Shamshabad Hyderabad Call +91-8250192130
VIP Call Girls Service Shamshabad Hyderabad Call +91-8250192130
 
young Whatsapp Call Girls in Jamuna Vihar 🔝 9953056974 🔝 escort service
young Whatsapp Call Girls in Jamuna Vihar 🔝 9953056974 🔝 escort serviceyoung Whatsapp Call Girls in Jamuna Vihar 🔝 9953056974 🔝 escort service
young Whatsapp Call Girls in Jamuna Vihar 🔝 9953056974 🔝 escort service
 
Low Rate Call Girls Nashik Mahima 7001305949 Independent Escort Service Nashik
Low Rate Call Girls Nashik Mahima 7001305949 Independent Escort Service NashikLow Rate Call Girls Nashik Mahima 7001305949 Independent Escort Service Nashik
Low Rate Call Girls Nashik Mahima 7001305949 Independent Escort Service Nashik
 
Low Rate Call Girls Nagpur Esha Call 7001035870 Meet With Nagpur Escorts
Low Rate Call Girls Nagpur Esha Call 7001035870 Meet With Nagpur EscortsLow Rate Call Girls Nagpur Esha Call 7001035870 Meet With Nagpur Escorts
Low Rate Call Girls Nagpur Esha Call 7001035870 Meet With Nagpur Escorts
 
Top Rated Pune Call Girls Baner ⟟ 6297143586 ⟟ Call Me For Genuine Sex Servi...
Top Rated  Pune Call Girls Baner ⟟ 6297143586 ⟟ Call Me For Genuine Sex Servi...Top Rated  Pune Call Girls Baner ⟟ 6297143586 ⟟ Call Me For Genuine Sex Servi...
Top Rated Pune Call Girls Baner ⟟ 6297143586 ⟟ Call Me For Genuine Sex Servi...
 
(KRITIKA) Balaji Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] P...
(KRITIKA) Balaji Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] P...(KRITIKA) Balaji Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] P...
(KRITIKA) Balaji Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] P...
 
Booking open Available Pune Call Girls Sanaswadi 6297143586 Call Hot Indian ...
Booking open Available Pune Call Girls Sanaswadi  6297143586 Call Hot Indian ...Booking open Available Pune Call Girls Sanaswadi  6297143586 Call Hot Indian ...
Booking open Available Pune Call Girls Sanaswadi 6297143586 Call Hot Indian ...
 
(PRIYA) Call Girls Budhwar Peth ( 7001035870 ) HI-Fi Pune Escorts Service
(PRIYA) Call Girls Budhwar Peth ( 7001035870 ) HI-Fi Pune Escorts Service(PRIYA) Call Girls Budhwar Peth ( 7001035870 ) HI-Fi Pune Escorts Service
(PRIYA) Call Girls Budhwar Peth ( 7001035870 ) HI-Fi Pune Escorts Service
 
THE ARTISANAL SALT OF SAN VICENTE, ILOCOS SUR: A CASE STUDY
THE ARTISANAL SALT OF SAN VICENTE, ILOCOS SUR: A CASE STUDYTHE ARTISANAL SALT OF SAN VICENTE, ILOCOS SUR: A CASE STUDY
THE ARTISANAL SALT OF SAN VICENTE, ILOCOS SUR: A CASE STUDY
 
(ASHA) Sb Road Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(ASHA) Sb Road Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(ASHA) Sb Road Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(ASHA) Sb Road Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
Dubai Call Girls Drilled O525547819 Call Girls Dubai (Raphie)
Dubai Call Girls Drilled O525547819 Call Girls Dubai (Raphie)Dubai Call Girls Drilled O525547819 Call Girls Dubai (Raphie)
Dubai Call Girls Drilled O525547819 Call Girls Dubai (Raphie)
 
(ANJALI) Shikrapur Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...
(ANJALI) Shikrapur Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...(ANJALI) Shikrapur Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...
(ANJALI) Shikrapur Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...
 
VVIP Pune Call Girls Viman Nagar (7001035870) Pune Escorts Nearby with Comple...
VVIP Pune Call Girls Viman Nagar (7001035870) Pune Escorts Nearby with Comple...VVIP Pune Call Girls Viman Nagar (7001035870) Pune Escorts Nearby with Comple...
VVIP Pune Call Girls Viman Nagar (7001035870) Pune Escorts Nearby with Comple...
 
(MAYA) Baner Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MAYA) Baner Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MAYA) Baner Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MAYA) Baner Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
Tech Social Sharing Space 4.0_Donation_System_April_26_2024_Rev70.pdf
Tech Social Sharing Space 4.0_Donation_System_April_26_2024_Rev70.pdfTech Social Sharing Space 4.0_Donation_System_April_26_2024_Rev70.pdf
Tech Social Sharing Space 4.0_Donation_System_April_26_2024_Rev70.pdf
 
Let Me Relax Dubai Russian Call girls O56338O268 Dubai Call girls AgenCy
Let Me Relax Dubai Russian Call girls O56338O268 Dubai Call girls AgenCyLet Me Relax Dubai Russian Call girls O56338O268 Dubai Call girls AgenCy
Let Me Relax Dubai Russian Call girls O56338O268 Dubai Call girls AgenCy
 

Thermal Stability Test Method

  • 1. Designation: E2550 – 11 Standard Test Method for Thermal Stability by Thermogravimetry1 This standard is issued under the fixed designation E2550; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (´) indicates an editorial change since the last revision or reapproval. 1. Scope 1.1 This test method covers the assessment of material thermal stability through the determination of the temperature at which the materials start to decompose or react and the extent of the mass change using thermogravimetry. The test method uses minimum quantities of material and is applicable over the temperature range from ambient to 800°C. 1.2 The absence of reaction or decomposition is used as an indication of thermal stability in this test method under the experimental conditions used. 1.3 This test method may be performed on solids or liquids, which do not sublime or vaporize in the temperature range of interest. 1.4 This test method shall not be used by itself to establish a safe operating or storage temperature. It may be used in conjunction with other test methods (for example, E487, E537 and E1981) as part of a hazard analysis of a material. 1.5 This test method is normally applicable to reaction or decomposition occurring in the range from room temperature to 800 °C. The temperature range may be extended depending on the instrumentation used. 1.6 This test method may be performed in an inert, a reactive or self-generated atmosphere. 1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.8 There is no ISO standard equivalent to this test method. 1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appro- priate safety and health practices and determine the applica- bility of regulatory limitations prior to use. This standard may involve hazardous materials, operations, and equipment. 2. Referenced Documents 2.1 ASTM Standards:2 E473 Terminology Relating to Thermal Analysis and Rhe- ology E487 Test Method for Constant-Temperature Stability of Chemical Materials E537 Test Method for The Thermal Stability of Chemicals by Differential Scanning Calorimetry E691 Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method E1142 Terminology Relating to Thermophysical Properties E1445 Terminology Relating to Hazard Potential of Chemi- cals E1582 Practice for Calibration of Temperature Scale for Thermogravimetry E1981 Guide for Assessing Thermal Stability of Materials by Methods of Accelerating Rate Calorimetry E2040 Test Method for Mass Scale Calibration of Thermo- gravimetric Analyzers 3. Terminology 3.1 Definition: 3.1.1 Specific technical terms used in this test method are defined in Terminologies E473, E1142 and E1445. These terms include thermogravimetry (TG), thermogravimetric analysis (TGA), thermal stability, onset temperature (To), derivative, and TG curve. 3.2 Definitions of Terms Specific to This Standard: 3.2.1 DTG curve, n—a plot of the first derivative of TG data with respect to temperature or time. 3.2.2 mass change plateau, n—a region of the TG curve with a relatively constant mass; it is accompanied by a minimum in the DTG curve for a mass loss, or a maximum for a mass gain. 1 This test method is under the jurisdiction of ASTM Committee E37 on Thermal Measurements and is the direct responsibility of Subcommittee E37.01 on Calo- rimetry and Mass Loss. Current edition approved April 1, 2011. Published May 2011. Originally approved in 2007. Last previous edition approved in 2007 as E2550 – 2007. DOI: 10.1520/E2550-11. 2 For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard’s Document Summary page on the ASTM website. 1 Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Copyright ASTM International Provided by IHS under license with ASTM Licensee=Nanyang Technological Univ/5926867100 Not for Resale, 05/29/2014 11:53:07 MDT No reproduction or networking permitted without license from IHS --`,`,,``,```,`,`,`,`,``,`,`,,`-`-`,,`,,`,`,,`--- daneshlink.com
  • 2. 4. Summary of Test Method 4.1 A sample of the material to be examined is placed in an inert container and then heated at a controlled rate of 1 to 20°C min–1 under a controlled atmosphere. The sample mass is recorded continuously as a function of time and temperature. 4.2 When the sample undergoes a reaction or thermal decomposition involving a mass change, that change is indi- cated by a departure from the initially established baseline of the mass record (see Fig. 1). 4.3 The onset temperature and mass changes are determined and reported. 5. Significance and Use 5.1 TG provides a rapid method for determining the thermal decomposition and reaction mass change of a material. 5.2 This test method is useful in detecting potentially hazardous reactions and in estimating the temperatures at which these reactions occur. This test method is recommended as a screening test for detecting the thermal hazards of an uncharacterized material or mixture (see Section 8). 5.3 Energetic materials, pharmaceuticals and polymers are examples of materials for which this test might be useful. This test is especially useful for materials having melting points that overlap with the onset of reaction or decomposition. NOTE 1—In Differential Scanning Calorimetry (DSC), the melting endotherm may interfere with the determination of the onset temperature for reaction or decomposition. 5.4 This test is not suitable for materials that sublime or vaporize in the temperature range of interest. A sample with volatile impurities needs to be purified prior to the TGA testing. Alternatively, the sample can be tested as is, however, special caution is required during the data analysis. The mass loss due to the loss of impurity should not interfere with the determination of reaction or decomposition temperature. 5.5 The four significant criteria of this test method are: the detection of a sample mass change; the extent of the mass change; the approximate temperature at which the event occurs; the observance of effects due to the atmosphere. 6. Limitations 6.1 Many environmental factors affect the existence, mag- nitude and onset temperature of a particular reaction or decomposition. Some of these, including heating rate, instru- mental sensitivity, and atmosphere reactivity, will affect the detectability of a reaction or decomposition using this proce- dure. Therefore, it is imperative that the results obtained from the application of this test method be viewed only as an indication of the thermal stability of a material. 6.2 This test method can only be used to detect reaction or decomposition that involves a mass change, such as a produc- tion of gaseous species or a mass gain in reactive atmosphere. This test method is not suitable for materials that sublime or vaporize in the temperature of interest. 6.3 This test method may not be reliable for heterogeneous samples. NOTE 2—For heterogeneous samples, it is recommended to perform replicate measurements to determine the variability of the results. If inconsistent results are obtained, the study should be carried out using larger-scale apparatus, such as accelerating rate calorimetry. 7. Apparatus 7.1 Thermogravimetric Analyzer (TGA)—The essential in- strumentation required to provide the minimum thermogravi- metric analytical capability for this practice includes: 7.1.1 A thermobalance composed of: 7.1.1.1 A furnace to provide uniform controlled heating of a specimen to a constant temperature or at a constant rate within the applicable temperature range of this test method. 7.1.1.2 A temperature sensor to provide an indication of the specimen/furnace temperature to 60.1°C. 7.1.1.3 A continuously recording balance to measure the specimen mass with a minimum capacity of 10 mg and a sensitivity of 610 µg. NOTE 3—An apparatus with a larger capacity can also be used. The sensitivity must be at least 60.1 mass %. FIG. 1 Typical TG and DTG Curves E2550 – 11 2 Copyright ASTM International Provided by IHS under license with ASTM Licensee=Nanyang Technological Univ/5926867100 Not for Resale, 05/29/2014 11:53:07 MDT No reproduction or networking permitted without license from IHS --`,`,,``,```,`,`,`,`,``,`,`,,`-`-`,,`,,`,`,,`--- daneshlink.com
  • 3. 7.1.1.4 A means of maintaining the specimen/container under atmospheric control of an inert or reactive gas of 99.9+ % purity at a purge rate of 20 to 100 65 mL min– 1 . NOTE 4—Purge rate may vary depending on the instrument used. Excessive purge rates should be avoided as this may introduce interfer- ences due to turbulence effects and temperature gradients. NOTE 5—Experiments can also be performed in a self generated atmosphere. DSC sealed containers with a pinhole of 0.025 to 0.38 mm diameter have been shown to establish saturation of a gaseous self generated atmosphere.3 7.1.2 A temperature controller capable of executing a spe- cific temperature program by operating the furnace between selected temperature limits at a rate of temperature change between 1 and 20°C min–1 to within 60.1°C min– 1 . 7.1.3 A recording device capable of recording and display- ing on the Y-axis any fraction of the specimen mass signal (TGA curve) including the signal noise as a function of any fraction of the temperature (or time) signal on the X-axis including the signal noise. 7.1.4 Containers (pans, crucibles, etc.) that are inert to the specimen and that will remain gravimetrically stable within the temperature limits of this test method. NOTE 6—For experiments in a self generated atmosphere, DSC sealed containers with pinhole of 0.025 to 0.38 mm diameter can be used. 7.2 Auxiliary equipment necessary or useful in conducting this test method includes: 7.2.1 A balance with a capacity of 100 mg or more to weigh specimens or containers, or both, to 60.1 mg. 7.2.2 Device to encapsulate the specimen in DSC sealable containers for self-generated atmosphere studies. 8. Safety Precautions 8.1 The use of this test method as an initial test for material whose potential hazards are unknown requires that precautions be taken during the sample preparation and testing. 8.2 Larger specimens (>5 mg) should be used only after consideration is given to the potential for hazardous reac- tion(s). For energetic material or materials whose characteris- tics are unknown, it is safest to start with a specimen mass of no more than 1 mg and a lower heating rate (1 to 10°C min–1 ). 8.3 When particle size reduction by grinding is necessary, the user of the test method shall presume that the material is sensitive to stimuli such as friction and electrostatic discharge. Accordingly, appropriate tests shall be conducted on those materials prior to grinding. Use of suitable protective equip- ment is always recommended when preparing materials of unknown hazard. If a Material Safety Data Sheet is available, it shall be acquired and studied prior to handling unknown materials. 8.4 Toxic or corrosive effluents, or both, may be released when heating the material and could be harmful to the personnel or the apparatus. Use of an exhaust system to remove such effluents is highly recommended. 9. Sampling 9.1 Samples shall be representative of the material being studied including particle size and purity. 9.2 In the absence of other information, the samples are assumed to be analyzed as received. If a treatment, such as drying, is applied to the sample prior to analysis, this treatment and any resulting mass change must be noted in the report. 9.3 The selection of specimen mass depends upon the magnitude of hazard associated with the material, the sensitiv- ity of the instrument, the heating rate and the specimen homogeneity. This test method should be carried out on as small of a quantity of material as possible, while specimens are still large enough to be representative of the material and to exhibit adequate signals. Typical specimen mass is between 1 and 10 mg. NOTE 7—The particle size of the specimen should be considered, since thicker specimens may show transition broadening due to the thermal conductivity lag into the specimen cores. 10. Preparation of Apparatus 10.1 Prepare the TGA using any procedures described in the manufacturer’s operations manual. 10.2 Place the temperature sensor in the proper position in accordance with the manufacturer’s operations manual. NOTE 8—Care must be taken to ensure that the specimen container is not in contact in any way with the sensor, unless the TGA was designed with the temperature sensor fixed to the crucible holder. It is also important that the temperature sensor is not moved after temperature calibration has been carried out. 10.3 Maintain a constant flow of purge gas for the furnace in the range from 20 to 100 mL min–1 throughout the experiment. 11. Calibration 11.1 Calibrate the mass signal using Practice E2040 or instrument manufacturer’s guidelines and record details. 11.2 Calibrate the furnace temperature in accordance with Practice E1582 using the same heating rate, purge gas, flow rate and temperature sensor position to be used for subsequent specimens tests. 12. Recommended Condition of Tests 12.1 Specimen Mass—5 mg of specimen is generally con- sidered adequate. Decrease the specimen mass to 1 mg if the characteristics of materials are unknown. NOTE 9—For energetic material, it is recommended to use a specimen mass of no more than 1.0 mg. 12.2 Heating Rate—A rate of 10 to 20°C min–1 is consid- ered normal. NOTE 10—The onset temperature is affected by heating rate. Therefore, only results obtained at the same heating rate shall be compared. NOTE 11—A lower heating rate (1 to 10°C min–1 ) should be used when a complex change of mass is encountered. NOTE 12—For energetic material, it is recommended to use a lower heating rate (1 to 10°C min–1 ). For primary explosives, it is suggested to start with a heating rate of no more than 3°C min–1 . 12.3 Temperature Range—The temperature typically ranges from room temperature to 600°C. 3 Kwok, Q., and Seyler, R.J., Journal of Thermal Analysis and Calorimetry, Vol 83, No. 1, 2006, p. 117. E2550 – 11 3 Copyright ASTM International Provided by IHS under license with ASTM Licensee=Nanyang Technological Univ/5926867100 Not for Resale, 05/29/2014 11:53:07 MDT No reproduction or networking permitted without license from IHS --`,`,,``,```,`,`,`,`,``,`,`,,`-`-`,,`,,`,`,,`--- daneshlink.com
  • 4. 13. Procedure 13.1 Tare an empty and clean specimen container. 13.2 Weigh the specimen with a mass within 10 mass % of the target size into the tared container. NOTE 13—Powder and granular samples should be distributed evenly over the sample container to maximize the exposed surface. 13.3 Place the specimen and container into the TGA at ambient temperature. 13.4 Heat the specimen at a constant rate of 10°C min–1 and record the TG curve. Continue heating until a constant mass is obtained or the temperature is well above the useful tempera- ture range of the material tested. NOTE 14—Other heating rates may be used but shall be reported. 13.5 Once the experiment is complete, cool the instrument to room temperature, remove, and clean or replace the speci- men container. 13.6 Display the TG and DTG curves. 13.7 Using the TG curve, construct a baseline from the initial mass extrapolated upward in temperature. 13.8 For any reaction(s) observed, determine the onset temperature by selecting a point on the TG curve where a deflection is first observed from the established baseline prior to the thermal event. NOTE 15—The TG curve should be zoomed to a scale of 1 to 2 mass % for the onset temperature selection (see Fig. 2). NOTE 16—The onset temperature can also be determined from the DTG curve where a deflection from the DTG established baseline is first observed. However, only results obtained from the same method should be compared. 13.9 Calculate the mass change for reaction(s) or decompo- sition(s) by subtracting the sample mass at the onset tempera- ture by the mass on the mass change plateau immediately after the thermal event. NOTE 17—Replicate experiments are recommended, particularly for a heterogeneous sample. Calculate the means and standard deviations for the onset temperature and mass change from replicates. 14. Report 14.1 The report shall include the following: 14.1.1 Description of the sample and any sample prepara- tion or pretreatment, or both. 14.1.2 Initial specimen mass. 14.1.3 Description of apparatus including manufacturer and model. 14.1.4 Instrument calibration details. 14.1.5 Material of container. 14.1.6 Test conditions including atmosphere, flow rate, heating rate and temperature range. 14.1.7 The onset temperature and mass change of all reac- tions observed. NOTE 18—If replicates were performed, the report should include the number of tests, the mean values and the standard deviations of the onset temperature and mass change. 14.1.8 When a test is repeated using a different atmosphere or a different heating rate, note any significant changes in the TG curves resulting from the different experiment conditions. 14.1.9 The specific dated version of this test method used. 15. Precision and Bias 15.1 The precision and bias of this standard method were determined in an interlaboratory test (ILT) in 2008. Thirteen laboratories using thermogravimetric analyzers from six manu- facturers and ten instrument models participated in the ILT. The TG onset temperature, TG mass change and DTG onset temperature for the thermal stability of polyethylene terephta- late (PET) were determined. Each laboratory reported the onset temperatures and mass changes in quintuplicate. The statistical analysis was conducted in accordance with Practice E691. 15.2 Precision: 15.2.1 Within laboratory variability may be described using the repeatability value (r) obtained by multiplying the repeat- ability standard deviation by 2.8. The repeatability value esti- mates the 95 % confidence limit. That is, two within laboratory FIG. 2 Zoomed TG and DTG Curves for T0 Determination E2550 – 11 4 Copyright ASTM International Provided by IHS under license with ASTM Licensee=Nanyang Technological Univ/5926867100 Not for Resale, 05/29/2014 11:53:07 MDT No reproduction or networking permitted without license from IHS --`,`,,``,```,`,`,`,`,``,`,`,,`-`-`,,`,,`,`,,`--- daneshlink.com
  • 5. results should be considered suspect if they differ by more than the repeatability value (r). 15.2.2 The repeatability standard deviation for TG onset temperature is 6°C. 15.2.3 The repeatability standard deviation for TG mass change is 0.6 %. 15.2.4 The repeatability standard deviation for DTG onset temperature is 5°C. 15.3 Between laboratory variability may be estimated using the reproducibility value (R) obtained by multiplying the reproducibility standard deviation by 2.8. The reproducibility value estimates the 95 % confidence limit. That is, two between laboratory results should be considered suspect if they differ by more than the reproducibility value (R). 15.3.1 The reproducibility standard deviation for TG onset temperature is 54°C. 15.3.2 The reproducibility standard deviation for TG mass change is 2.3 %. 15.3.3 The reproducibility standard deviation for DTG on- set temperature is 18°C. 15.4 Bias: 15.4.1 Bias is the difference between a test result and an accepted reference value. There is no accepted reference value for the thermal stability for PET. Therefore no bias information can be provided. 15.4.2 The mean values of TG onset temperature, TG mass change and DTG onset temperature for the thermal stability for PET at a heat rate of 10°C min–1 were observed to be 304°C, –87.0 % and 335°C, respectively. 16. Keywords 16.1 thermal analysis; thermal decomposition; thermal sta- bility; thermogravimetric analysis; thermogravimetry ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility. This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below. This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org). Permission rights to photocopy the standard may also be secured from the ASTM website (www.astm.org/ COPYRIGHT/). E2550 – 11 5 Copyright ASTM International Provided by IHS under license with ASTM Licensee=Nanyang Technological Univ/5926867100 Not for Resale, 05/29/2014 11:53:07 MDT No reproduction or networking permitted without license from IHS --`,`,,``,```,`,`,`,`,``,`,`,,`-`-`,,`,,`,`,,`--- daneshlink.com