SlideShare une entreprise Scribd logo
1  sur  61
Télécharger pour lire hors ligne
Location:
QuantUniversity Meetup
April 13th 2017
Boston, MA
Anomaly Detection
Techniques and Best Practices
2016 Copyright QuantUniversity LLC.
Presented By:
Sri Krishnamurthy, CFA, CAP
www.QuantUniversity.com
sri@quantuniversity.com
2
Slides and Code available at:
http://www.analyticscertificate.com/Anomaly/
- Analytics Advisory services
- Custom training programs
- Architecture assessments, advice and audits
- Trained more than 500 students in Quantitative methods, Data Science
and Big Data Technologies using MATLAB, Python and R
• Founder of QuantUniversity LLC. and
www.analyticscertificate.com
• Advisory and Consultancy for Financial Analytics
• Prior Experience at MathWorks, Citigroup and
Endeca and 25+ financial services and energy
customers.
• Regular Columnist for the Wilmott Magazine
• Author of forthcoming book
“Financial Modeling: A case study approach”
published by Wiley
• Charted Financial Analyst and Certified Analytics
Professional
• Teaching Analytics in the Babson College MBA
program and at Northeastern University, Boston
Sri Krishnamurthy
Founder and CEO
4
5
Quantitative Analytics and Big Data Analytics Onboarding
• Trained more than 500 students in
Quantitative methods, Data Science
and Big Data Technologies using
MATLAB, Python and R
• Launching the Analytics Certificate
Program in Summer 2017
(MATLAB version also available)
7
• 3 Two Day onsite workshops in May, June, July 2017
• Weekly online lectures
• A capstone project working on a real data set.
• Final Demo day in August
• Cost $3999/- for working professionals
• Scholarships available for recent graduates and in-transition
professionals.
Delivery Format
8
• April 2017
▫ Anomaly Detection Workshop – Boston – April 24-25
• May 2017
▫ Anomaly Detection Workshop- New York - May 2-3
▫ Launching the Summer Analytics Certificate Program
Events of Interest
9
What is anomaly detection?
• Anomalies or outliers are data points that appear to deviate
markedly from expected outputs.
• It is the process of finding patterns in data that don’t
conform to a prior expected behavior.
• Anomaly detection is being employed more increasingly in
the presence of big data that is captured by sensors(IOT),
social media platforms, huge networks, etc. including
energy systems, medical devices, banking, network
intrusion detection, etc.
10
11
• Fraud Detection
• Stock market
• E-commerce
Examples
12
1. Graphical approach
2. Statistical approach
3. Machine learning approach
Three methodologies to Anomaly Detection
13
 Boxplot
 Scatter plot
 Adjusted quantile plot
Anomaly Detection Methods
• Most outlier detection methods generate an output
that are:
▫ Real-valued outlier scores: quantifies the tendency of a
data point being an outlier by assigning a score or
probability to it.
▫ Binary labels: result of using a threshold to convert
outlier scores to binary labels, inlier or outlier.
14
Graphical approaches
• Statistical tails are most commonly used for one dimensional
distributions, although the same concept can be applied to
multidimensional case.
• It is important to understand that all extreme values are outliers
but the reverse may not be true.
• For instance in one dimensional dataset of
{1,3,3,3,50,97,97,97,100}, observation 50 equals to mean and isn’t
considered as an extreme value, but since this observation is the
most isolated point, it should be considered as an outlier.
15
Box plot
• A standardized way of displaying the
variation of data based on the five
number summary, which includes
minimum, first quartile, median, third
quartile, and maximum.
• This plot does not make any assumptions
of the underlying statistical distribution.
• Any data not included between the
minimum and maximum are considered
as an outlier.
16
Boxplot
17
See Graphical_Approach.R
Side-by-side boxplot for each variable
Scatter plot
• Scatter plots plot pairs of data to show the correlation between typically two
numerical variables.
• An outlier is defined as a data point that doesn't seem to fit with the rest of the
data points.
• In scatterplots, outliers of either intersection or union sets of two variables can
be shown.
18
Scatterplot
19
See Graphical_Approach.R
Scatterplot of Sepal.Width and Sepal.Length
20
• In statistics, a Q–Q plotis a probability plot, which is a graphical
method for comparing two probability distributions by plotting their
quantiles against each other.
• If the two distributions being compared are similar, the points in the
Q–Q plot will approximately lie on the line y = x.
Q-Q plot
Source: Wikipedia
Adjusted quantile plot
• This plot identifies possible multivariate outliers by calculating the Mahalanobis
distance of each point from the center of the data.
• Multi-dimensional Mahalanobis distance between vectors x and y in 𝑅 𝑛 can be
formulated as:
d(x,y) = x − y TS−1(x − y)
where x and y are random vectors of the same distribution with the covariance
matrix S.
• An outlier is defined as a point with a distance larger than some pre-
determined value.
21
Adjusted quantile plot
• Before applying this method and many other parametric
multivariate methods, first we need to check if the data is
multivariate normally distributed using different
multivariate normality tests, such as Royston, Mardia, Chi-
square, univariate plots, etc.
• In R, we use the “mvoutlier” package, which utilizes
graphical approaches as discussed above.
22
Adjusted quantile plot
23
Min-Max normalization before diving into analysis
Multivariate normality test
Outlier Boolean vector identifies the
outliers
Alpha defines maximum thresholding proportion
See Graphical_Approach.R
Adjusted quantile plot
24
See Graphical_Approach.R
Mahalanobis distances
Covariance matrix
Adjusted quantile plot
25
See Graphical_Approach.R
26
 Hypothesis testing (Grubb’s test)
 Scores
Grubbs’ test
• Test for outliers for univariate data sets assumed to come from a normally
distributed population.
• Grubbs' test detects one outlier at a time. This outlier is expunged from the
dataset and the test is iterated until no outliers are detected.
• This test is defined for the following hypotheses:
H0: There are no outliers in the data set
H1: There is exactly one outlier in the data set
• The Grubbs' test statistic is defined as:
27
Grubbs’ test
28
See Statistical_Approach.R
The above function repeats the Grubbs’ test until it finds
all the outliers within the data.
Grubbs’ test
29
See Statistical_Approach.R
Histogram of normal observations vs outliers)
Scores
• Scores quantifies the tendency of a data point being an outlier by assigning it a
score or probability.
• The most commonly used scores are:
▫ Normal score:
𝑥 𝑖 −𝑀𝑒𝑎𝑛
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
▫ T-student score:
(𝑧−𝑠𝑞𝑟𝑡 𝑛−2 )
𝑠𝑞𝑟𝑡(𝑧−1−𝑡2)
▫ Chi-square score:
𝑥 𝑖 −𝑀𝑒𝑎𝑛
𝑠𝑑
2
▫ IQR score: 𝑄3-𝑄1
• By using “score” function in R, p-values can be returned instead of scores.
30
Scores
31
See Statistical_Approach.R
“type” defines the type of the score, such as
normal, t-student, etc.
“prob=1” returns the corresponding p-value.
Scores
32
See Statistical_Approach.R
By setting “prob” to any specific value, logical vector
returns the data points, whose probabilities are
greater than this cut-off value, as outliers.
By setting “type” to IQR, all values lower than first
and greater than third quartiles are considered and
difference between them and nearest quartile
divided by IQR is calculated.
33
• Anomaly Detection
▫ Seasonal Hybrid ESD (S-H-ESD) builds upon the Generalized ESD test for
detecting anomalies.
▫ Anomaly detection referring to point-in-time anomalous data points that
could be global or local. A local anomaly is one that occurs inside a seasonal
pattern; Could be +ve or –ve.
▫ More details here: https://github.com/twitter/AnomalyDetection
• Breakout Detection
▫ A breakout is characterized in this package by two steady states and an
intermediate transition period that could be sudden or gradual
▫ Uses the E-Divisive with Medians algorithm; Can detect one or multiple
breakouts in a given time series and employs energy statistics to detect
divergence in mean. More details here:
(https://blog.twitter.com/2014/breakout-detection-in-the-wild )
Twitter packages
Ref: http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h3.htm
34
• Twitter-R-Anomaly Detection tutorial.ipyb
Demo
35
 Linear regression
 Piecewise/ segmented regression
 Clustering-based approaches
Linear regression
• Linear regression investigates the linear relationships between variables and
predict one variable based on one or more other variables and it can be
formulated as:
𝑌 = 𝛽0 + ෍
𝑖=1
𝑝
𝛽𝑖 𝑋𝑖
where Y and 𝑋𝑖 are random variables, 𝛽𝑖 is regression coefficient and 𝛽0 is a
constant.
• In this model, ordinary least squares estimator is usually used to minimize the
difference between the dependent variable and independent variables.
36
Piecewise/segmented regression
• A method in regression analysis, in which the independent variable is
partitioned into intervals to allow multiple linear models to be fitted to data for
different ranges.
• This model can be applied when there are ‘breakpoints’ and clearly two
different linear relationships in the data with a sudden, sharp change in
directionality. Below is a simple segmented regression for data with two
breakpoints:
𝑌 = 𝐶0 + 𝜑1 𝑋 𝑋 < 𝑋1
𝑌 = 𝐶1 + 𝜑2 𝑋 𝑋 > 𝑋1
where Y is a predicted value, X is an independent variable, 𝐶0 and 𝐶1 are
constant values, 𝜑1 and 𝜑2 are regression coefficients, and 𝑋1 and 𝑋2 are
breakpoints.
37
38
Anomaly detection vs Supervised learning
Piecewise/segmented regression
• For this example, we use “segmented” package in R to first illustrate piecewise
regression for two dimensional data set, which has a breakpoint around z=0.5.
39
See Piecewise_Regression.R
“pmax” is used for parallel maximization to
create different values for y.
Piecewise/segmented regression
• Then, we use linear regression to predict y values for each segment of z.
40
See Piecewise_Regression.R
Piecewise/segmented regression
• Finally, the outliers can be detected for each segment by setting some rules for
residuals of model.
41
See Piecewise_Regression.R
Here, we set the rule for the residuals corresponding to z
less than 0.5, by which the outliers with residuals below
0.5 can be defined as outliers.
Clustering-based approaches
• These methods are suitable for unsupervised anomaly detection.
• They aim to partition the data into meaningful groups (clusters) based on the
similarities and relationships between the groups found in the data.
• Each data point is assigned a degree of membership for each of the clusters.
• Anomalies are those data points that:
▫ Do not fit into any clusters.
▫ Belong to a particular cluster but are far away from the cluster centroid.
▫ Form small or sparse clusters.
42
Clustering-based approaches
• These methods partition the data into k clusters by assigning each data point to
its closest cluster centroid by minimizing the within-cluster sum of squares
(WSS), which is:
෍
𝑘=1
𝐾
෍
𝑖∈𝑆 𝑘
෍
𝑗=1
𝑃
(𝑥𝑖𝑗 − 𝜇 𝑘𝑗)2
where 𝑆 𝑘 is the set of observations in the kth cluster and 𝜇 𝑘𝑗 is the mean of jth
variable of the cluster center of the kth cluster.
• Then, they select the top n points that are the farthest away from their nearest
cluster centers as outliers.
43
44
Anomaly Detection vs Unsupervised Learning
Clustering-based approaches
• “Kmod” package in R is used to show the application of K-means model.
45
In this example the number of clusters is defined
through bend graph in order to pass to K-mod
function.
See Clustering_Approach.R
Clustering-based approaches
46
See Clustering_Approach.R
K=4 is the number of clusters and L=10 is
the number of outliers
Clustering-based approaches
47
See Clustering_Approach.R
Scatter plots of normal and outlier data points
Summary
48
We have covered Anomaly detection
Introduction  Definition of anomaly detection and its importance in energy systems
 Different types of anomaly detection methods: Statistical, graphical and machine
learning methods
Graphical approach  Graphical methods consist of boxplot, scatterplot, adjusted quantile plot and symbol
plot to demonstrate outliers graphically
 The main assumption for applying graphical approaches is multivariate normality
 Mahalanobis distance methods is mainly used for calculating the distance of a point
from a center of multivariate distribution
Statistical approach  Statistical hypothesis testing includes of: Chi-square, Grubb’s test
 Statistical methods may use either scores or p-value as threshold to detect outliers
Machine learning approach  Both supervised and unsupervised learning methods can be used for outlier detection
 Piece wised or segmented regression can be used to identify outliers based on the
residuals for each segment
 In K-means clustering method outliers are defined as points which have doesn’t belong
to any cluster, are far away from the centroids of the cluster or shaping sparse clusters
49
50
Lending club
51
The Data
https://www.lendingclub.com/info/download-data.action
52
The Data
https://www.kaggle.com/wendykan/lending-club-loan-data
Variable description
54
• Unsupervised Algorithms
▫ Given a dataset with variables 𝑥𝑖, build a model that captures the
similarities in different observations and assigns them to different
buckets => Clustering, etc.
▫ Create a transformed representation of the original data=> PCA
Machine Learning
Obs1,
Obs2,Obs3
etc.
Model
Obs1- Class 1
Obs2- Class 2
Obs3- Class 1
55
• Motivation1:
Autoencoders
1. http://ai.stanford.edu/~quocle/tutorial2.pdf
56
• Goal is to have ෤𝑥 to approximate x
• Interesting applications such as
▫ Data compression
▫ Visualization
▫ Pre-train neural networks
Autoencoder
57
Demo in Keras1
1. https://blog.keras.io/building-autoencoders-in-keras.html
2. https://keras.io/models/model/
58
1. Build an AutoEncoder model and train it
2. Decode to retrieve noisy representation
3. Compute distances using true and noisy representations
4. Look for anomalies
Anomaly Detection
(MATLAB version also available)
www.analyticscertificate.com
60
Workshop offer!
Details about the Anomaly detection workshop
at:
http://www.analyticscertificate.com/Anomaly/
CODE : Anomaly gets QuantUniversity meetup members 20% off
Thank you!
Members & IBM
Sri Krishnamurthy, CFA, CAP
Founder and CEO
QuantUniversity LLC.
srikrishnamurthy
www.QuantUniversity.com
Contact
Information, data and drawings embodied in this presentation are strictly a property of QuantUniversity LLC. and shall not be
distributed or used in any other publication without the prior written consent of QuantUniversity LLC.
61

Contenu connexe

Tendances

An Introduction to Anomaly Detection
An Introduction to Anomaly DetectionAn Introduction to Anomaly Detection
An Introduction to Anomaly DetectionKenneth Graham
 
Anomaly detection Workshop slides
Anomaly detection Workshop slidesAnomaly detection Workshop slides
Anomaly detection Workshop slidesQuantUniversity
 
Anomaly Detection
Anomaly DetectionAnomaly Detection
Anomaly Detectionguest0edcaf
 
Anomaly detection with machine learning at scale
Anomaly detection with machine learning at scaleAnomaly detection with machine learning at scale
Anomaly detection with machine learning at scaleImpetus Technologies
 
Outlier detection method introduction
Outlier detection method introductionOutlier detection method introduction
Outlier detection method introductionDaeJin Kim
 
Anomaly Detection and Spark Implementation - Meetup Presentation.pptx
Anomaly Detection and Spark Implementation - Meetup Presentation.pptxAnomaly Detection and Spark Implementation - Meetup Presentation.pptx
Anomaly Detection and Spark Implementation - Meetup Presentation.pptxImpetus Technologies
 
Anomaly detection (Unsupervised Learning) in Machine Learning
Anomaly detection (Unsupervised Learning) in Machine LearningAnomaly detection (Unsupervised Learning) in Machine Learning
Anomaly detection (Unsupervised Learning) in Machine LearningKuppusamy P
 
Unsupervised Anomaly Detection with Isolation Forest - Elena Sharova
Unsupervised Anomaly Detection with Isolation Forest - Elena SharovaUnsupervised Anomaly Detection with Isolation Forest - Elena Sharova
Unsupervised Anomaly Detection with Isolation Forest - Elena SharovaPyData
 
Chapter 10 Anomaly Detection
Chapter 10 Anomaly DetectionChapter 10 Anomaly Detection
Chapter 10 Anomaly DetectionKhalid Elshafie
 
Parametric & Non-Parametric Machine Learning (Supervised ML)
Parametric & Non-Parametric Machine Learning (Supervised ML)Parametric & Non-Parametric Machine Learning (Supervised ML)
Parametric & Non-Parametric Machine Learning (Supervised ML)Rehan Guha
 
ML - Multiple Linear Regression
ML - Multiple Linear RegressionML - Multiple Linear Regression
ML - Multiple Linear RegressionAndrew Ferlitsch
 
Data science life cycle
Data science life cycleData science life cycle
Data science life cycleManoj Mishra
 
Fraud detection ML
Fraud detection MLFraud detection ML
Fraud detection MLMaatougSelim
 
Exploratory data analysis
Exploratory data analysisExploratory data analysis
Exploratory data analysisGramener
 
Random Forest Algorithm - Random Forest Explained | Random Forest In Machine ...
Random Forest Algorithm - Random Forest Explained | Random Forest In Machine ...Random Forest Algorithm - Random Forest Explained | Random Forest In Machine ...
Random Forest Algorithm - Random Forest Explained | Random Forest In Machine ...Simplilearn
 

Tendances (20)

An Introduction to Anomaly Detection
An Introduction to Anomaly DetectionAn Introduction to Anomaly Detection
An Introduction to Anomaly Detection
 
Anomaly detection
Anomaly detectionAnomaly detection
Anomaly detection
 
Anomaly detection
Anomaly detectionAnomaly detection
Anomaly detection
 
Anomaly detection Workshop slides
Anomaly detection Workshop slidesAnomaly detection Workshop slides
Anomaly detection Workshop slides
 
Anomaly Detection: A Survey
Anomaly Detection: A SurveyAnomaly Detection: A Survey
Anomaly Detection: A Survey
 
Anomaly Detection
Anomaly DetectionAnomaly Detection
Anomaly Detection
 
Anomaly detection with machine learning at scale
Anomaly detection with machine learning at scaleAnomaly detection with machine learning at scale
Anomaly detection with machine learning at scale
 
Outlier detection method introduction
Outlier detection method introductionOutlier detection method introduction
Outlier detection method introduction
 
Anomaly Detection and Spark Implementation - Meetup Presentation.pptx
Anomaly Detection and Spark Implementation - Meetup Presentation.pptxAnomaly Detection and Spark Implementation - Meetup Presentation.pptx
Anomaly Detection and Spark Implementation - Meetup Presentation.pptx
 
Anomaly detection (Unsupervised Learning) in Machine Learning
Anomaly detection (Unsupervised Learning) in Machine LearningAnomaly detection (Unsupervised Learning) in Machine Learning
Anomaly detection (Unsupervised Learning) in Machine Learning
 
Unsupervised Anomaly Detection with Isolation Forest - Elena Sharova
Unsupervised Anomaly Detection with Isolation Forest - Elena SharovaUnsupervised Anomaly Detection with Isolation Forest - Elena Sharova
Unsupervised Anomaly Detection with Isolation Forest - Elena Sharova
 
Outlier Detection
Outlier DetectionOutlier Detection
Outlier Detection
 
Chapter 10 Anomaly Detection
Chapter 10 Anomaly DetectionChapter 10 Anomaly Detection
Chapter 10 Anomaly Detection
 
Parametric & Non-Parametric Machine Learning (Supervised ML)
Parametric & Non-Parametric Machine Learning (Supervised ML)Parametric & Non-Parametric Machine Learning (Supervised ML)
Parametric & Non-Parametric Machine Learning (Supervised ML)
 
L14. Anomaly Detection
L14. Anomaly DetectionL14. Anomaly Detection
L14. Anomaly Detection
 
ML - Multiple Linear Regression
ML - Multiple Linear RegressionML - Multiple Linear Regression
ML - Multiple Linear Regression
 
Data science life cycle
Data science life cycleData science life cycle
Data science life cycle
 
Fraud detection ML
Fraud detection MLFraud detection ML
Fraud detection ML
 
Exploratory data analysis
Exploratory data analysisExploratory data analysis
Exploratory data analysis
 
Random Forest Algorithm - Random Forest Explained | Random Forest In Machine ...
Random Forest Algorithm - Random Forest Explained | Random Forest In Machine ...Random Forest Algorithm - Random Forest Explained | Random Forest In Machine ...
Random Forest Algorithm - Random Forest Explained | Random Forest In Machine ...
 

Similaire à QuantUniversity Meetup Anomaly Detection Techniques Boston

Anomaly detection Meetup Slides
Anomaly detection Meetup SlidesAnomaly detection Meetup Slides
Anomaly detection Meetup SlidesQuantUniversity
 
Anomaly detection : QuantUniversity Workshop
Anomaly detection : QuantUniversity Workshop Anomaly detection : QuantUniversity Workshop
Anomaly detection : QuantUniversity Workshop QuantUniversity
 
Outlier analysis for Temporal Datasets
Outlier analysis for Temporal DatasetsOutlier analysis for Temporal Datasets
Outlier analysis for Temporal DatasetsQuantUniversity
 
Unit 3 – AIML.pptx
Unit 3 – AIML.pptxUnit 3 – AIML.pptx
Unit 3 – AIML.pptxhiblooms
 
KIT-601 Lecture Notes-UNIT-2.pdf
KIT-601 Lecture Notes-UNIT-2.pdfKIT-601 Lecture Notes-UNIT-2.pdf
KIT-601 Lecture Notes-UNIT-2.pdfDr. Radhey Shyam
 
computer application in pharmaceutical research
computer application in pharmaceutical researchcomputer application in pharmaceutical research
computer application in pharmaceutical researchSUJITHA MARY
 
Spsshelp 100608163328-phpapp01
Spsshelp 100608163328-phpapp01Spsshelp 100608163328-phpapp01
Spsshelp 100608163328-phpapp01Henock Beyene
 
Basic geostatistics
Basic geostatisticsBasic geostatistics
Basic geostatisticsSerdar Kaya
 
UNIT 3: Data Warehousing and Data Mining
UNIT 3: Data Warehousing and Data MiningUNIT 3: Data Warehousing and Data Mining
UNIT 3: Data Warehousing and Data MiningNandakumar P
 
Multiple-Linear-Regression-Model-Analysis.pptx
Multiple-Linear-Regression-Model-Analysis.pptxMultiple-Linear-Regression-Model-Analysis.pptx
Multiple-Linear-Regression-Model-Analysis.pptxNaryCasila
 
604_multiplee.ppt
604_multiplee.ppt604_multiplee.ppt
604_multiplee.pptRufesh
 
Imputation techniques for missing data in clinical trials
Imputation techniques for missing data in clinical trialsImputation techniques for missing data in clinical trials
Imputation techniques for missing data in clinical trialsNitin George
 

Similaire à QuantUniversity Meetup Anomaly Detection Techniques Boston (20)

Anomaly detection Meetup Slides
Anomaly detection Meetup SlidesAnomaly detection Meetup Slides
Anomaly detection Meetup Slides
 
Anomaly detection : QuantUniversity Workshop
Anomaly detection : QuantUniversity Workshop Anomaly detection : QuantUniversity Workshop
Anomaly detection : QuantUniversity Workshop
 
Anomaly detection
Anomaly detectionAnomaly detection
Anomaly detection
 
Machine learning meetup
Machine learning meetupMachine learning meetup
Machine learning meetup
 
Outlier analysis for Temporal Datasets
Outlier analysis for Temporal DatasetsOutlier analysis for Temporal Datasets
Outlier analysis for Temporal Datasets
 
Unit 3 – AIML.pptx
Unit 3 – AIML.pptxUnit 3 – AIML.pptx
Unit 3 – AIML.pptx
 
KIT-601 Lecture Notes-UNIT-2.pdf
KIT-601 Lecture Notes-UNIT-2.pdfKIT-601 Lecture Notes-UNIT-2.pdf
KIT-601 Lecture Notes-UNIT-2.pdf
 
Descriptive Analytics: Data Reduction
 Descriptive Analytics: Data Reduction Descriptive Analytics: Data Reduction
Descriptive Analytics: Data Reduction
 
computer application in pharmaceutical research
computer application in pharmaceutical researchcomputer application in pharmaceutical research
computer application in pharmaceutical research
 
Spsshelp 100608163328-phpapp01
Spsshelp 100608163328-phpapp01Spsshelp 100608163328-phpapp01
Spsshelp 100608163328-phpapp01
 
Basic geostatistics
Basic geostatisticsBasic geostatistics
Basic geostatistics
 
Descriptive Analysis.pptx
Descriptive Analysis.pptxDescriptive Analysis.pptx
Descriptive Analysis.pptx
 
Credit risk meetup
Credit risk meetupCredit risk meetup
Credit risk meetup
 
chi_square test.pptx
chi_square test.pptxchi_square test.pptx
chi_square test.pptx
 
UNIT 3: Data Warehousing and Data Mining
UNIT 3: Data Warehousing and Data MiningUNIT 3: Data Warehousing and Data Mining
UNIT 3: Data Warehousing and Data Mining
 
03 Data Mining Techniques
03 Data Mining Techniques03 Data Mining Techniques
03 Data Mining Techniques
 
Multiple-Linear-Regression-Model-Analysis.pptx
Multiple-Linear-Regression-Model-Analysis.pptxMultiple-Linear-Regression-Model-Analysis.pptx
Multiple-Linear-Regression-Model-Analysis.pptx
 
Week_2_Lecture.pdf
Week_2_Lecture.pdfWeek_2_Lecture.pdf
Week_2_Lecture.pdf
 
604_multiplee.ppt
604_multiplee.ppt604_multiplee.ppt
604_multiplee.ppt
 
Imputation techniques for missing data in clinical trials
Imputation techniques for missing data in clinical trialsImputation techniques for missing data in clinical trials
Imputation techniques for missing data in clinical trials
 

Plus de QuantUniversity

EU Artificial Intelligence Act 2024 passed !
EU Artificial Intelligence Act 2024 passed !EU Artificial Intelligence Act 2024 passed !
EU Artificial Intelligence Act 2024 passed !QuantUniversity
 
Managing-the-Risks-of-LLMs-in-FS-Industry-Roundtable-TruEra-QuantU.pdf
Managing-the-Risks-of-LLMs-in-FS-Industry-Roundtable-TruEra-QuantU.pdfManaging-the-Risks-of-LLMs-in-FS-Industry-Roundtable-TruEra-QuantU.pdf
Managing-the-Risks-of-LLMs-in-FS-Industry-Roundtable-TruEra-QuantU.pdfQuantUniversity
 
PYTHON AND DATA SCIENCE FOR INVESTMENT PROFESSIONALS
PYTHON AND DATA SCIENCE FOR INVESTMENT PROFESSIONALSPYTHON AND DATA SCIENCE FOR INVESTMENT PROFESSIONALS
PYTHON AND DATA SCIENCE FOR INVESTMENT PROFESSIONALSQuantUniversity
 
Qu for India - QuantUniversity FundRaiser
Qu for India  - QuantUniversity FundRaiserQu for India  - QuantUniversity FundRaiser
Qu for India - QuantUniversity FundRaiserQuantUniversity
 
Ml master class for CFA Dallas
Ml master class for CFA DallasMl master class for CFA Dallas
Ml master class for CFA DallasQuantUniversity
 
Algorithmic auditing 1.0
Algorithmic auditing 1.0Algorithmic auditing 1.0
Algorithmic auditing 1.0QuantUniversity
 
Towards Fairer Datasets: Filtering and Balancing the Distribution of the Peop...
Towards Fairer Datasets: Filtering and Balancing the Distribution of the Peop...Towards Fairer Datasets: Filtering and Balancing the Distribution of the Peop...
Towards Fairer Datasets: Filtering and Balancing the Distribution of the Peop...QuantUniversity
 
Machine Learning: Considerations for Fairly and Transparently Expanding Acces...
Machine Learning: Considerations for Fairly and Transparently Expanding Acces...Machine Learning: Considerations for Fairly and Transparently Expanding Acces...
Machine Learning: Considerations for Fairly and Transparently Expanding Acces...QuantUniversity
 
Seeing what a gan cannot generate: paper review
Seeing what a gan cannot generate: paper reviewSeeing what a gan cannot generate: paper review
Seeing what a gan cannot generate: paper reviewQuantUniversity
 
AI Explainability and Model Risk Management
AI Explainability and Model Risk ManagementAI Explainability and Model Risk Management
AI Explainability and Model Risk ManagementQuantUniversity
 
Algorithmic auditing 1.0
Algorithmic auditing 1.0Algorithmic auditing 1.0
Algorithmic auditing 1.0QuantUniversity
 
Machine Learning in Finance: 10 Things You Need to Know in 2021
Machine Learning in Finance: 10 Things You Need to Know in 2021Machine Learning in Finance: 10 Things You Need to Know in 2021
Machine Learning in Finance: 10 Things You Need to Know in 2021QuantUniversity
 
Bayesian Portfolio Allocation
Bayesian Portfolio AllocationBayesian Portfolio Allocation
Bayesian Portfolio AllocationQuantUniversity
 
Constructing Private Asset Benchmarks
Constructing Private Asset BenchmarksConstructing Private Asset Benchmarks
Constructing Private Asset BenchmarksQuantUniversity
 
Machine Learning Interpretability
Machine Learning InterpretabilityMachine Learning Interpretability
Machine Learning InterpretabilityQuantUniversity
 
Responsible AI in Action
Responsible AI in ActionResponsible AI in Action
Responsible AI in ActionQuantUniversity
 
Qu speaker series 14: Synthetic Data Generation in Finance
Qu speaker series 14: Synthetic Data Generation in FinanceQu speaker series 14: Synthetic Data Generation in Finance
Qu speaker series 14: Synthetic Data Generation in FinanceQuantUniversity
 

Plus de QuantUniversity (20)

EU Artificial Intelligence Act 2024 passed !
EU Artificial Intelligence Act 2024 passed !EU Artificial Intelligence Act 2024 passed !
EU Artificial Intelligence Act 2024 passed !
 
Managing-the-Risks-of-LLMs-in-FS-Industry-Roundtable-TruEra-QuantU.pdf
Managing-the-Risks-of-LLMs-in-FS-Industry-Roundtable-TruEra-QuantU.pdfManaging-the-Risks-of-LLMs-in-FS-Industry-Roundtable-TruEra-QuantU.pdf
Managing-the-Risks-of-LLMs-in-FS-Industry-Roundtable-TruEra-QuantU.pdf
 
PYTHON AND DATA SCIENCE FOR INVESTMENT PROFESSIONALS
PYTHON AND DATA SCIENCE FOR INVESTMENT PROFESSIONALSPYTHON AND DATA SCIENCE FOR INVESTMENT PROFESSIONALS
PYTHON AND DATA SCIENCE FOR INVESTMENT PROFESSIONALS
 
Qu for India - QuantUniversity FundRaiser
Qu for India  - QuantUniversity FundRaiserQu for India  - QuantUniversity FundRaiser
Qu for India - QuantUniversity FundRaiser
 
Ml master class for CFA Dallas
Ml master class for CFA DallasMl master class for CFA Dallas
Ml master class for CFA Dallas
 
Algorithmic auditing 1.0
Algorithmic auditing 1.0Algorithmic auditing 1.0
Algorithmic auditing 1.0
 
Towards Fairer Datasets: Filtering and Balancing the Distribution of the Peop...
Towards Fairer Datasets: Filtering and Balancing the Distribution of the Peop...Towards Fairer Datasets: Filtering and Balancing the Distribution of the Peop...
Towards Fairer Datasets: Filtering and Balancing the Distribution of the Peop...
 
Machine Learning: Considerations for Fairly and Transparently Expanding Acces...
Machine Learning: Considerations for Fairly and Transparently Expanding Acces...Machine Learning: Considerations for Fairly and Transparently Expanding Acces...
Machine Learning: Considerations for Fairly and Transparently Expanding Acces...
 
Seeing what a gan cannot generate: paper review
Seeing what a gan cannot generate: paper reviewSeeing what a gan cannot generate: paper review
Seeing what a gan cannot generate: paper review
 
AI Explainability and Model Risk Management
AI Explainability and Model Risk ManagementAI Explainability and Model Risk Management
AI Explainability and Model Risk Management
 
Algorithmic auditing 1.0
Algorithmic auditing 1.0Algorithmic auditing 1.0
Algorithmic auditing 1.0
 
Machine Learning in Finance: 10 Things You Need to Know in 2021
Machine Learning in Finance: 10 Things You Need to Know in 2021Machine Learning in Finance: 10 Things You Need to Know in 2021
Machine Learning in Finance: 10 Things You Need to Know in 2021
 
Bayesian Portfolio Allocation
Bayesian Portfolio AllocationBayesian Portfolio Allocation
Bayesian Portfolio Allocation
 
The API Jungle
The API JungleThe API Jungle
The API Jungle
 
Explainable AI Workshop
Explainable AI WorkshopExplainable AI Workshop
Explainable AI Workshop
 
Constructing Private Asset Benchmarks
Constructing Private Asset BenchmarksConstructing Private Asset Benchmarks
Constructing Private Asset Benchmarks
 
Machine Learning Interpretability
Machine Learning InterpretabilityMachine Learning Interpretability
Machine Learning Interpretability
 
Responsible AI in Action
Responsible AI in ActionResponsible AI in Action
Responsible AI in Action
 
Qu speaker series 14: Synthetic Data Generation in Finance
Qu speaker series 14: Synthetic Data Generation in FinanceQu speaker series 14: Synthetic Data Generation in Finance
Qu speaker series 14: Synthetic Data Generation in Finance
 
Qwafafew meeting 5
Qwafafew meeting 5Qwafafew meeting 5
Qwafafew meeting 5
 

Dernier

VIP Call Girls Service Miyapur Hyderabad Call +91-8250192130
VIP Call Girls Service Miyapur Hyderabad Call +91-8250192130VIP Call Girls Service Miyapur Hyderabad Call +91-8250192130
VIP Call Girls Service Miyapur Hyderabad Call +91-8250192130Suhani Kapoor
 
Generative AI on Enterprise Cloud with NiFi and Milvus
Generative AI on Enterprise Cloud with NiFi and MilvusGenerative AI on Enterprise Cloud with NiFi and Milvus
Generative AI on Enterprise Cloud with NiFi and MilvusTimothy Spann
 
Mature dropshipping via API with DroFx.pptx
Mature dropshipping via API with DroFx.pptxMature dropshipping via API with DroFx.pptx
Mature dropshipping via API with DroFx.pptxolyaivanovalion
 
Delhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip CallDelhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Callshivangimorya083
 
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip CallDelhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Callshivangimorya083
 
Best VIP Call Girls Noida Sector 22 Call Me: 8448380779
Best VIP Call Girls Noida Sector 22 Call Me: 8448380779Best VIP Call Girls Noida Sector 22 Call Me: 8448380779
Best VIP Call Girls Noida Sector 22 Call Me: 8448380779Delhi Call girls
 
VidaXL dropshipping via API with DroFx.pptx
VidaXL dropshipping via API with DroFx.pptxVidaXL dropshipping via API with DroFx.pptx
VidaXL dropshipping via API with DroFx.pptxolyaivanovalion
 
Carero dropshipping via API with DroFx.pptx
Carero dropshipping via API with DroFx.pptxCarero dropshipping via API with DroFx.pptx
Carero dropshipping via API with DroFx.pptxolyaivanovalion
 
Schema on read is obsolete. Welcome metaprogramming..pdf
Schema on read is obsolete. Welcome metaprogramming..pdfSchema on read is obsolete. Welcome metaprogramming..pdf
Schema on read is obsolete. Welcome metaprogramming..pdfLars Albertsson
 
Smarteg dropshipping via API with DroFx.pptx
Smarteg dropshipping via API with DroFx.pptxSmarteg dropshipping via API with DroFx.pptx
Smarteg dropshipping via API with DroFx.pptxolyaivanovalion
 
Call me @ 9892124323 Cheap Rate Call Girls in Vashi with Real Photo 100% Secure
Call me @ 9892124323  Cheap Rate Call Girls in Vashi with Real Photo 100% SecureCall me @ 9892124323  Cheap Rate Call Girls in Vashi with Real Photo 100% Secure
Call me @ 9892124323 Cheap Rate Call Girls in Vashi with Real Photo 100% SecurePooja Nehwal
 
{Pooja: 9892124323 } Call Girl in Mumbai | Jas Kaur Rate 4500 Free Hotel Del...
{Pooja:  9892124323 } Call Girl in Mumbai | Jas Kaur Rate 4500 Free Hotel Del...{Pooja:  9892124323 } Call Girl in Mumbai | Jas Kaur Rate 4500 Free Hotel Del...
{Pooja: 9892124323 } Call Girl in Mumbai | Jas Kaur Rate 4500 Free Hotel Del...Pooja Nehwal
 
FESE Capital Markets Fact Sheet 2024 Q1.pdf
FESE Capital Markets Fact Sheet 2024 Q1.pdfFESE Capital Markets Fact Sheet 2024 Q1.pdf
FESE Capital Markets Fact Sheet 2024 Q1.pdfMarinCaroMartnezBerg
 
BigBuy dropshipping via API with DroFx.pptx
BigBuy dropshipping via API with DroFx.pptxBigBuy dropshipping via API with DroFx.pptx
BigBuy dropshipping via API with DroFx.pptxolyaivanovalion
 
Determinants of health, dimensions of health, positive health and spectrum of...
Determinants of health, dimensions of health, positive health and spectrum of...Determinants of health, dimensions of health, positive health and spectrum of...
Determinants of health, dimensions of health, positive health and spectrum of...shambhavirathore45
 
100-Concepts-of-AI by Anupama Kate .pptx
100-Concepts-of-AI by Anupama Kate .pptx100-Concepts-of-AI by Anupama Kate .pptx
100-Concepts-of-AI by Anupama Kate .pptxAnupama Kate
 
ALSO dropshipping via API with DroFx.pptx
ALSO dropshipping via API with DroFx.pptxALSO dropshipping via API with DroFx.pptx
ALSO dropshipping via API with DroFx.pptxolyaivanovalion
 

Dernier (20)

Delhi 99530 vip 56974 Genuine Escort Service Call Girls in Kishangarh
Delhi 99530 vip 56974 Genuine Escort Service Call Girls in  KishangarhDelhi 99530 vip 56974 Genuine Escort Service Call Girls in  Kishangarh
Delhi 99530 vip 56974 Genuine Escort Service Call Girls in Kishangarh
 
VIP Call Girls Service Miyapur Hyderabad Call +91-8250192130
VIP Call Girls Service Miyapur Hyderabad Call +91-8250192130VIP Call Girls Service Miyapur Hyderabad Call +91-8250192130
VIP Call Girls Service Miyapur Hyderabad Call +91-8250192130
 
Sampling (random) method and Non random.ppt
Sampling (random) method and Non random.pptSampling (random) method and Non random.ppt
Sampling (random) method and Non random.ppt
 
Generative AI on Enterprise Cloud with NiFi and Milvus
Generative AI on Enterprise Cloud with NiFi and MilvusGenerative AI on Enterprise Cloud with NiFi and Milvus
Generative AI on Enterprise Cloud with NiFi and Milvus
 
Mature dropshipping via API with DroFx.pptx
Mature dropshipping via API with DroFx.pptxMature dropshipping via API with DroFx.pptx
Mature dropshipping via API with DroFx.pptx
 
Delhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip CallDelhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
 
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip CallDelhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
 
Best VIP Call Girls Noida Sector 22 Call Me: 8448380779
Best VIP Call Girls Noida Sector 22 Call Me: 8448380779Best VIP Call Girls Noida Sector 22 Call Me: 8448380779
Best VIP Call Girls Noida Sector 22 Call Me: 8448380779
 
VidaXL dropshipping via API with DroFx.pptx
VidaXL dropshipping via API with DroFx.pptxVidaXL dropshipping via API with DroFx.pptx
VidaXL dropshipping via API with DroFx.pptx
 
Carero dropshipping via API with DroFx.pptx
Carero dropshipping via API with DroFx.pptxCarero dropshipping via API with DroFx.pptx
Carero dropshipping via API with DroFx.pptx
 
Schema on read is obsolete. Welcome metaprogramming..pdf
Schema on read is obsolete. Welcome metaprogramming..pdfSchema on read is obsolete. Welcome metaprogramming..pdf
Schema on read is obsolete. Welcome metaprogramming..pdf
 
Smarteg dropshipping via API with DroFx.pptx
Smarteg dropshipping via API with DroFx.pptxSmarteg dropshipping via API with DroFx.pptx
Smarteg dropshipping via API with DroFx.pptx
 
Call me @ 9892124323 Cheap Rate Call Girls in Vashi with Real Photo 100% Secure
Call me @ 9892124323  Cheap Rate Call Girls in Vashi with Real Photo 100% SecureCall me @ 9892124323  Cheap Rate Call Girls in Vashi with Real Photo 100% Secure
Call me @ 9892124323 Cheap Rate Call Girls in Vashi with Real Photo 100% Secure
 
{Pooja: 9892124323 } Call Girl in Mumbai | Jas Kaur Rate 4500 Free Hotel Del...
{Pooja:  9892124323 } Call Girl in Mumbai | Jas Kaur Rate 4500 Free Hotel Del...{Pooja:  9892124323 } Call Girl in Mumbai | Jas Kaur Rate 4500 Free Hotel Del...
{Pooja: 9892124323 } Call Girl in Mumbai | Jas Kaur Rate 4500 Free Hotel Del...
 
FESE Capital Markets Fact Sheet 2024 Q1.pdf
FESE Capital Markets Fact Sheet 2024 Q1.pdfFESE Capital Markets Fact Sheet 2024 Q1.pdf
FESE Capital Markets Fact Sheet 2024 Q1.pdf
 
BigBuy dropshipping via API with DroFx.pptx
BigBuy dropshipping via API with DroFx.pptxBigBuy dropshipping via API with DroFx.pptx
BigBuy dropshipping via API with DroFx.pptx
 
Determinants of health, dimensions of health, positive health and spectrum of...
Determinants of health, dimensions of health, positive health and spectrum of...Determinants of health, dimensions of health, positive health and spectrum of...
Determinants of health, dimensions of health, positive health and spectrum of...
 
CHEAP Call Girls in Saket (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
CHEAP Call Girls in Saket (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICECHEAP Call Girls in Saket (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
CHEAP Call Girls in Saket (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
 
100-Concepts-of-AI by Anupama Kate .pptx
100-Concepts-of-AI by Anupama Kate .pptx100-Concepts-of-AI by Anupama Kate .pptx
100-Concepts-of-AI by Anupama Kate .pptx
 
ALSO dropshipping via API with DroFx.pptx
ALSO dropshipping via API with DroFx.pptxALSO dropshipping via API with DroFx.pptx
ALSO dropshipping via API with DroFx.pptx
 

QuantUniversity Meetup Anomaly Detection Techniques Boston

  • 1. Location: QuantUniversity Meetup April 13th 2017 Boston, MA Anomaly Detection Techniques and Best Practices 2016 Copyright QuantUniversity LLC. Presented By: Sri Krishnamurthy, CFA, CAP www.QuantUniversity.com sri@quantuniversity.com
  • 2. 2 Slides and Code available at: http://www.analyticscertificate.com/Anomaly/
  • 3. - Analytics Advisory services - Custom training programs - Architecture assessments, advice and audits - Trained more than 500 students in Quantitative methods, Data Science and Big Data Technologies using MATLAB, Python and R
  • 4. • Founder of QuantUniversity LLC. and www.analyticscertificate.com • Advisory and Consultancy for Financial Analytics • Prior Experience at MathWorks, Citigroup and Endeca and 25+ financial services and energy customers. • Regular Columnist for the Wilmott Magazine • Author of forthcoming book “Financial Modeling: A case study approach” published by Wiley • Charted Financial Analyst and Certified Analytics Professional • Teaching Analytics in the Babson College MBA program and at Northeastern University, Boston Sri Krishnamurthy Founder and CEO 4
  • 5. 5 Quantitative Analytics and Big Data Analytics Onboarding • Trained more than 500 students in Quantitative methods, Data Science and Big Data Technologies using MATLAB, Python and R • Launching the Analytics Certificate Program in Summer 2017
  • 6. (MATLAB version also available)
  • 7. 7 • 3 Two Day onsite workshops in May, June, July 2017 • Weekly online lectures • A capstone project working on a real data set. • Final Demo day in August • Cost $3999/- for working professionals • Scholarships available for recent graduates and in-transition professionals. Delivery Format
  • 8. 8 • April 2017 ▫ Anomaly Detection Workshop – Boston – April 24-25 • May 2017 ▫ Anomaly Detection Workshop- New York - May 2-3 ▫ Launching the Summer Analytics Certificate Program Events of Interest
  • 9. 9
  • 10. What is anomaly detection? • Anomalies or outliers are data points that appear to deviate markedly from expected outputs. • It is the process of finding patterns in data that don’t conform to a prior expected behavior. • Anomaly detection is being employed more increasingly in the presence of big data that is captured by sensors(IOT), social media platforms, huge networks, etc. including energy systems, medical devices, banking, network intrusion detection, etc. 10
  • 11. 11 • Fraud Detection • Stock market • E-commerce Examples
  • 12. 12 1. Graphical approach 2. Statistical approach 3. Machine learning approach Three methodologies to Anomaly Detection
  • 13. 13  Boxplot  Scatter plot  Adjusted quantile plot
  • 14. Anomaly Detection Methods • Most outlier detection methods generate an output that are: ▫ Real-valued outlier scores: quantifies the tendency of a data point being an outlier by assigning a score or probability to it. ▫ Binary labels: result of using a threshold to convert outlier scores to binary labels, inlier or outlier. 14
  • 15. Graphical approaches • Statistical tails are most commonly used for one dimensional distributions, although the same concept can be applied to multidimensional case. • It is important to understand that all extreme values are outliers but the reverse may not be true. • For instance in one dimensional dataset of {1,3,3,3,50,97,97,97,100}, observation 50 equals to mean and isn’t considered as an extreme value, but since this observation is the most isolated point, it should be considered as an outlier. 15
  • 16. Box plot • A standardized way of displaying the variation of data based on the five number summary, which includes minimum, first quartile, median, third quartile, and maximum. • This plot does not make any assumptions of the underlying statistical distribution. • Any data not included between the minimum and maximum are considered as an outlier. 16
  • 18. Scatter plot • Scatter plots plot pairs of data to show the correlation between typically two numerical variables. • An outlier is defined as a data point that doesn't seem to fit with the rest of the data points. • In scatterplots, outliers of either intersection or union sets of two variables can be shown. 18
  • 20. 20 • In statistics, a Q–Q plotis a probability plot, which is a graphical method for comparing two probability distributions by plotting their quantiles against each other. • If the two distributions being compared are similar, the points in the Q–Q plot will approximately lie on the line y = x. Q-Q plot Source: Wikipedia
  • 21. Adjusted quantile plot • This plot identifies possible multivariate outliers by calculating the Mahalanobis distance of each point from the center of the data. • Multi-dimensional Mahalanobis distance between vectors x and y in 𝑅 𝑛 can be formulated as: d(x,y) = x − y TS−1(x − y) where x and y are random vectors of the same distribution with the covariance matrix S. • An outlier is defined as a point with a distance larger than some pre- determined value. 21
  • 22. Adjusted quantile plot • Before applying this method and many other parametric multivariate methods, first we need to check if the data is multivariate normally distributed using different multivariate normality tests, such as Royston, Mardia, Chi- square, univariate plots, etc. • In R, we use the “mvoutlier” package, which utilizes graphical approaches as discussed above. 22
  • 23. Adjusted quantile plot 23 Min-Max normalization before diving into analysis Multivariate normality test Outlier Boolean vector identifies the outliers Alpha defines maximum thresholding proportion See Graphical_Approach.R
  • 24. Adjusted quantile plot 24 See Graphical_Approach.R Mahalanobis distances Covariance matrix
  • 25. Adjusted quantile plot 25 See Graphical_Approach.R
  • 26. 26  Hypothesis testing (Grubb’s test)  Scores
  • 27. Grubbs’ test • Test for outliers for univariate data sets assumed to come from a normally distributed population. • Grubbs' test detects one outlier at a time. This outlier is expunged from the dataset and the test is iterated until no outliers are detected. • This test is defined for the following hypotheses: H0: There are no outliers in the data set H1: There is exactly one outlier in the data set • The Grubbs' test statistic is defined as: 27
  • 28. Grubbs’ test 28 See Statistical_Approach.R The above function repeats the Grubbs’ test until it finds all the outliers within the data.
  • 29. Grubbs’ test 29 See Statistical_Approach.R Histogram of normal observations vs outliers)
  • 30. Scores • Scores quantifies the tendency of a data point being an outlier by assigning it a score or probability. • The most commonly used scores are: ▫ Normal score: 𝑥 𝑖 −𝑀𝑒𝑎𝑛 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 ▫ T-student score: (𝑧−𝑠𝑞𝑟𝑡 𝑛−2 ) 𝑠𝑞𝑟𝑡(𝑧−1−𝑡2) ▫ Chi-square score: 𝑥 𝑖 −𝑀𝑒𝑎𝑛 𝑠𝑑 2 ▫ IQR score: 𝑄3-𝑄1 • By using “score” function in R, p-values can be returned instead of scores. 30
  • 31. Scores 31 See Statistical_Approach.R “type” defines the type of the score, such as normal, t-student, etc. “prob=1” returns the corresponding p-value.
  • 32. Scores 32 See Statistical_Approach.R By setting “prob” to any specific value, logical vector returns the data points, whose probabilities are greater than this cut-off value, as outliers. By setting “type” to IQR, all values lower than first and greater than third quartiles are considered and difference between them and nearest quartile divided by IQR is calculated.
  • 33. 33 • Anomaly Detection ▫ Seasonal Hybrid ESD (S-H-ESD) builds upon the Generalized ESD test for detecting anomalies. ▫ Anomaly detection referring to point-in-time anomalous data points that could be global or local. A local anomaly is one that occurs inside a seasonal pattern; Could be +ve or –ve. ▫ More details here: https://github.com/twitter/AnomalyDetection • Breakout Detection ▫ A breakout is characterized in this package by two steady states and an intermediate transition period that could be sudden or gradual ▫ Uses the E-Divisive with Medians algorithm; Can detect one or multiple breakouts in a given time series and employs energy statistics to detect divergence in mean. More details here: (https://blog.twitter.com/2014/breakout-detection-in-the-wild ) Twitter packages Ref: http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h3.htm
  • 35. 35  Linear regression  Piecewise/ segmented regression  Clustering-based approaches
  • 36. Linear regression • Linear regression investigates the linear relationships between variables and predict one variable based on one or more other variables and it can be formulated as: 𝑌 = 𝛽0 + ෍ 𝑖=1 𝑝 𝛽𝑖 𝑋𝑖 where Y and 𝑋𝑖 are random variables, 𝛽𝑖 is regression coefficient and 𝛽0 is a constant. • In this model, ordinary least squares estimator is usually used to minimize the difference between the dependent variable and independent variables. 36
  • 37. Piecewise/segmented regression • A method in regression analysis, in which the independent variable is partitioned into intervals to allow multiple linear models to be fitted to data for different ranges. • This model can be applied when there are ‘breakpoints’ and clearly two different linear relationships in the data with a sudden, sharp change in directionality. Below is a simple segmented regression for data with two breakpoints: 𝑌 = 𝐶0 + 𝜑1 𝑋 𝑋 < 𝑋1 𝑌 = 𝐶1 + 𝜑2 𝑋 𝑋 > 𝑋1 where Y is a predicted value, X is an independent variable, 𝐶0 and 𝐶1 are constant values, 𝜑1 and 𝜑2 are regression coefficients, and 𝑋1 and 𝑋2 are breakpoints. 37
  • 38. 38 Anomaly detection vs Supervised learning
  • 39. Piecewise/segmented regression • For this example, we use “segmented” package in R to first illustrate piecewise regression for two dimensional data set, which has a breakpoint around z=0.5. 39 See Piecewise_Regression.R “pmax” is used for parallel maximization to create different values for y.
  • 40. Piecewise/segmented regression • Then, we use linear regression to predict y values for each segment of z. 40 See Piecewise_Regression.R
  • 41. Piecewise/segmented regression • Finally, the outliers can be detected for each segment by setting some rules for residuals of model. 41 See Piecewise_Regression.R Here, we set the rule for the residuals corresponding to z less than 0.5, by which the outliers with residuals below 0.5 can be defined as outliers.
  • 42. Clustering-based approaches • These methods are suitable for unsupervised anomaly detection. • They aim to partition the data into meaningful groups (clusters) based on the similarities and relationships between the groups found in the data. • Each data point is assigned a degree of membership for each of the clusters. • Anomalies are those data points that: ▫ Do not fit into any clusters. ▫ Belong to a particular cluster but are far away from the cluster centroid. ▫ Form small or sparse clusters. 42
  • 43. Clustering-based approaches • These methods partition the data into k clusters by assigning each data point to its closest cluster centroid by minimizing the within-cluster sum of squares (WSS), which is: ෍ 𝑘=1 𝐾 ෍ 𝑖∈𝑆 𝑘 ෍ 𝑗=1 𝑃 (𝑥𝑖𝑗 − 𝜇 𝑘𝑗)2 where 𝑆 𝑘 is the set of observations in the kth cluster and 𝜇 𝑘𝑗 is the mean of jth variable of the cluster center of the kth cluster. • Then, they select the top n points that are the farthest away from their nearest cluster centers as outliers. 43
  • 44. 44 Anomaly Detection vs Unsupervised Learning
  • 45. Clustering-based approaches • “Kmod” package in R is used to show the application of K-means model. 45 In this example the number of clusters is defined through bend graph in order to pass to K-mod function. See Clustering_Approach.R
  • 46. Clustering-based approaches 46 See Clustering_Approach.R K=4 is the number of clusters and L=10 is the number of outliers
  • 47. Clustering-based approaches 47 See Clustering_Approach.R Scatter plots of normal and outlier data points
  • 48. Summary 48 We have covered Anomaly detection Introduction  Definition of anomaly detection and its importance in energy systems  Different types of anomaly detection methods: Statistical, graphical and machine learning methods Graphical approach  Graphical methods consist of boxplot, scatterplot, adjusted quantile plot and symbol plot to demonstrate outliers graphically  The main assumption for applying graphical approaches is multivariate normality  Mahalanobis distance methods is mainly used for calculating the distance of a point from a center of multivariate distribution Statistical approach  Statistical hypothesis testing includes of: Chi-square, Grubb’s test  Statistical methods may use either scores or p-value as threshold to detect outliers Machine learning approach  Both supervised and unsupervised learning methods can be used for outlier detection  Piece wised or segmented regression can be used to identify outliers based on the residuals for each segment  In K-means clustering method outliers are defined as points which have doesn’t belong to any cluster, are far away from the centroids of the cluster or shaping sparse clusters
  • 49. 49
  • 54. 54 • Unsupervised Algorithms ▫ Given a dataset with variables 𝑥𝑖, build a model that captures the similarities in different observations and assigns them to different buckets => Clustering, etc. ▫ Create a transformed representation of the original data=> PCA Machine Learning Obs1, Obs2,Obs3 etc. Model Obs1- Class 1 Obs2- Class 2 Obs3- Class 1
  • 56. 56 • Goal is to have ෤𝑥 to approximate x • Interesting applications such as ▫ Data compression ▫ Visualization ▫ Pre-train neural networks Autoencoder
  • 57. 57 Demo in Keras1 1. https://blog.keras.io/building-autoencoders-in-keras.html 2. https://keras.io/models/model/
  • 58. 58 1. Build an AutoEncoder model and train it 2. Decode to retrieve noisy representation 3. Compute distances using true and noisy representations 4. Look for anomalies Anomaly Detection
  • 59. (MATLAB version also available) www.analyticscertificate.com
  • 60. 60 Workshop offer! Details about the Anomaly detection workshop at: http://www.analyticscertificate.com/Anomaly/ CODE : Anomaly gets QuantUniversity meetup members 20% off
  • 61. Thank you! Members & IBM Sri Krishnamurthy, CFA, CAP Founder and CEO QuantUniversity LLC. srikrishnamurthy www.QuantUniversity.com Contact Information, data and drawings embodied in this presentation are strictly a property of QuantUniversity LLC. and shall not be distributed or used in any other publication without the prior written consent of QuantUniversity LLC. 61