SlideShare une entreprise Scribd logo
1  sur  30
EEEC6430310 ELECTROMAGNETIC FIELDS AND WAVES
Maxwell’s Equation
FACULTY OF ENGINEERING AND COMPUTER TECHNOLOGY
BENG (HONS) IN ELECTRICALAND ELECTRONIC ENGINEERING
Ravandran Muttiah BEng (Hons) MSc MIET
Maxwell’s Equation
I. Maxwell’s Equation For Linear Media
𝛻 × 𝑬 = −𝜇
𝜕𝑯
𝜕𝑡
Faraday′
s Law
𝛻 × 𝑯 = 𝑱 + 𝜀
𝜕𝑬
𝜕𝑡
Ampere′
s Law
𝛻 ∙ 𝑬 =
𝜌f
𝜀
Gauss′
s Law
𝛻 ∙ 𝑯 = 0 Gauss′
s Law
where, 𝛻 = vector differential (del) operator
𝑬 = electric field intensity
𝑯 = magnetic field intensity
𝑱 = electric current density
𝜌f = free electric charge density
1
2
II. Pointing’s Theorem
A. Power Flow And Electromagnetic Energy
𝛻 ∙ 𝑬 × 𝑯 = 𝑯 ∙ 𝛻 × 𝑬 − 𝑬 ∙ 𝛻 × 𝑯
= −𝜇𝑯 ∙
𝜕𝑯
𝜕𝑡
− 𝑬 ∙ 𝑱 + 𝜀
𝜕𝑬
𝜕𝑡
= −
𝜇
2
𝜕
𝜕𝑡
𝑯 2
−
𝜀
2
𝜕
𝜕𝑡
𝑬 2
− 𝑬 ∙ 𝑱
𝛻 ∙ 𝑬 × 𝑯 +
𝜕
𝜕𝑡
1
2
𝜀 𝑬 2
+
1
2
𝜇 𝑯 2
= −𝑬 ∙ 𝑱
3
V
𝛻 ∙ 𝑬 × 𝑯 d𝑉 =
S
𝑬 × 𝑯 ∙ d𝑺
S
𝑬 × 𝑯 ∙ d𝒂 +
d
d𝑡 V
1
2
𝜀 𝑬 2
+
1
2
𝜇 𝑯 2
d𝑉 = −
𝑉
𝑬 ∙ 𝑱 d𝑉
𝑺 = 𝑬 × 𝑯 Poynting Vector
Watt
m2
𝑊 = V
1
2
𝜀 𝑬 2
+
1
2
𝜇 𝑯 2
d𝑉 Electromagnetic Stored Energy
𝑃d = V
𝑬 ∙ 𝑱 d𝑉 Power dissipated if 𝐽 ∙ 𝑬 > 0
e.g., 𝑱 = 𝜎𝑬 ⇒ 𝐽 ∙ 𝑬 = 𝜎 𝑬 𝟐
Power source if 𝐽 ∙ 𝑬 < 0
𝑃out =
S
𝑬 × 𝑯 ∙ d𝒂 =
S
𝑺 ∙ d𝒂
𝑃out +
d𝑊
d𝑡
= −𝑃d
𝑤e =
1
2
𝜀 𝑬 2
Electric energy density in
Joules
m3
𝑤m =
1
2
𝜇 𝑯 2
Magnetic energy density in
Joules
m3
4
Figure 1: The circuit power into an N terminal network 𝑘=1
𝑁
𝑉𝑘𝐼𝑘 equals the
electromagnetic power flow into the surface surrounding the network, − s
𝑬 × 𝑯 · d𝑺
B. Power In Electric Circuits
E
H
𝑆 = 𝐸 × 𝐻
𝑉1
𝑉2
𝑉3
𝑉𝑁−1
𝑉𝑁
𝐼1
𝐼2
𝐼3
𝐼𝑁−1
𝐼𝑁
𝑆
5
Outside circuit elements
C
𝑬 ∙ d𝒍 ≈ 0, 𝛻 × 𝑬 = 0 ⇒ 𝑬 = −𝛻Ф (Kirchoff’s Voltage Law 𝑘 𝑣𝑘 = 0)
𝛻 × 𝑯 = 𝑱 ⇒ 𝛻 ∙ 𝑱 = 0, S
𝑱 ∙ d𝑺 = 0 (Kirchoff’s Current Law 𝑘 𝑖𝑘 = 0)
𝑃in = −
S
𝑬 × 𝑯 ∙ d𝑺
= −
V
𝛻 ∙ 𝑬 × 𝑯 d𝑉
𝛻 ∙ 𝑬 × 𝑯 = 𝑯 ∙ 𝛻 × 𝑬 − 𝑬 ∙ 𝛻 × 𝑯 = −𝑬 ∙ 𝑱 = 𝛻Ф ∙ 𝑱
𝛻 ∙ 𝑱Ф = Ф𝛻 ∙ 𝑱 + 𝑱 ∙ 𝛻Ф
𝛻 ∙ 𝑬 × 𝑯 = 𝑱 ∙ 𝛻Ф = 𝛻 ∙ Ф𝑱
𝑃in = −
V
𝛻 ∙ 𝑬 × 𝑯 d𝑉 = −
V
𝛻 ∙ 𝑱Ф d𝑉 = −
S
𝑱Ф ∙ d𝑺
On 𝑆, Ф = voltages on each wire, 𝑱 is non-zero only on wires.
𝑃in = −
S
𝑱Ф ∙ d𝑺 = −
𝑘=1
𝑁
𝑣𝑘
S
𝑱 ∙ d𝑺 =
𝑘=1
𝑁
𝑣𝑘𝑖𝑘
0
0
−𝑖𝑘
C. Complex Poynting’s Theorem (Sinusoidal Steady State, ej𝜔𝑡
)
6
𝑬 𝒓, 𝑡 = Re 𝑬 𝒓 ej𝜔𝑡
=
1
2
𝑬∗
𝒓 ej𝜔𝑡
+ 𝑬∗
𝒓 e−j𝜔𝑡
𝑯 𝒓, 𝑡 = Re 𝑯 𝒓 ej𝜔𝑡
=
1
2
𝑯∗
𝒓 ej𝜔𝑡
+ 𝑯∗
𝒓 e−j𝜔𝑡
The real part of a complex number is
one-half of the sum of the number
and its complex conjugate
7
Maxwell’s Equations In Sinusoidal Steady State
𝛻 × 𝑬 𝒓 = −j𝜔𝜇𝑯 𝒓
𝛻 × 𝑯 𝒓 = 𝑱 𝒓 + j𝜔𝜀 𝒓
𝛻 ∙ 𝑬 𝒓 =
𝝆f 𝒓
𝜀
𝛻 ∙ 𝑯 𝒓 = 0
8
𝑺 𝒓, 𝑡 = 𝑬 𝒓, 𝑡 × 𝑯 𝒓, 𝑡
=
1
4
𝑬 𝒓 ej𝜔𝑡
+ 𝑬 𝒓 e−j𝜔𝑡
× 𝑯 𝒓 ej𝜔𝑡
+ 𝑯∗
𝒓 e−j𝜔𝑡
=
1
4
𝑬 𝒓 × 𝑯 𝒓 e2j𝜔𝑡
+𝑬∗
𝒓 × 𝑯 𝒓 + 𝑬 𝒓 × 𝑯∗
𝒓 + 𝑬∗
𝒓 × 𝑯∗
𝒓 e−2j𝜔𝑡
𝑺 =
1
4
𝑬∗
𝒓 × 𝑯 𝒓 + 𝑬 𝒓 × 𝑯∗
𝒓
=
1
2
Re 𝑬 𝒓 × 𝑯∗
𝒓
=
1
2
Re 𝑬∗
𝒓 × 𝑯 𝒓
(A complex number plus its complex conjugate is twice the real part of that number)
9
𝑺 =
1
2
Re 𝑬 𝒓 × 𝑯∗
𝒓
𝛻 ∙ 𝑺 = 𝛻 ∙
1
2
𝑬 𝒓 × 𝑯∗
𝒓 =
1
2
𝑯∗
𝒓 ∙ 𝛻 × 𝑬 𝒓 − 𝑬 𝒓 ∙ 𝛻 × 𝑯∗
𝒓
=
1
2
𝑯∗
𝒓 −j𝜔𝜇𝑯 𝒓 − 𝑬 𝒓 ∙ 𝑱∗
𝒓 − j𝜔𝜀𝑬∗
𝒓
=
1
2
−j𝜔𝜇 𝑯 𝒓 2
+ j𝜔𝜀 𝑬 𝒓 2
−
1
2
𝑬 𝒓 ∙ 𝑱∗
𝒓
𝑤m =
1
4
𝜇 𝑯 𝒓 2
, 𝑤e =
1
4
𝜀 𝑬 𝒓 2
𝑷d =
1
2
𝑬 𝒓 ∙ 𝑱∗
𝒓
𝛻 ∙ 𝑺 + 2j𝜔 𝑤m − 𝑤e = −𝑷d
III. Transverse Electromagnetic Waves (𝑱 = 0, 𝜌f = 0)
10
The great success of Maxwell’s equations lies partly in the simple prediction of
electromagnetic waves and their simple characterization of materials in terms of
conductivity 𝜎, permittivity 𝜀, and permeability 𝜇. In vacuum we find 𝜎 = 0, 𝜀 = 𝜀o
and 𝜇 = 𝜇o. Therefore, 𝑱 = 𝜎𝑬 = 0 and 𝜌f = 0.
A. Wave Equation
𝛻 × 𝑬 = −𝜇
𝜕𝑯
𝜕𝑡
𝛻 × 𝑯 = 𝜀
𝜕𝑬
𝜕𝑡
𝛻 ∙ 𝑬 = 0
𝛻 ∙ 𝑯 = 0
In contrast the nano-structure of media can be quite complex and requires quantum
mechanics and for its full explanation. Fortunately, simple classical approximations
to atoms and molecules suffice to understand the origin of 𝜎, 𝜀 and 𝜇.
11
𝛻 × 𝛻 × 𝑬 = −𝜇
𝜕
𝜕𝑡
𝛻 × 𝐻 = −𝜇
𝜕
𝜕𝑡
𝜀
𝜕𝑬
𝜕𝑡
𝛻 × 𝛻 × 𝑬 = 𝛻 𝛻 ∙ 𝑬 − 𝛻2
𝑬 = −𝜀𝜇
𝜕2
𝑬
𝜕𝑡2
Wave equation,
𝛻2
𝑬 =
1
𝑐2
𝜕2
𝑬
𝜕𝑡2
where, 𝑐 =
1
𝜀𝜇
is the velocity of the electromagnetic wave. In free space (i.e.
vacuum), 𝜇 = 𝜇o = 4π × 10−7 henries
m
and 𝜀 = 𝜀o ≈
10−9
36π
farads
m
, which leads to
𝑐o =
1
𝜀o𝜇o
≈ 3 × 108 m
s
. Similarly,
𝛻 × 𝛻 × 𝑯 = 𝛻 𝛻 ∙ 𝑯 − 𝛻2
𝑯 = 𝜀
𝜕
𝜕𝑡
𝛻 × 𝑬 = −𝜀𝜇
𝜕2
𝑯
𝜕𝑡2
𝛻2
𝑯 =
1
𝑐2
𝜕2
𝑯
𝜕𝑡2
, 𝑐 =
1
𝜀𝜇
0
0
12
x
z
y
𝜀1, 𝜇1
𝐸𝑥− = Re 𝑬𝑥− 𝑧 ej𝜔𝑡
𝐻𝑦− = Re 𝑯y− 𝑧 ej𝜔𝑡
𝐻𝑦+ = Re 𝑯y+ 𝑧 ej𝜔𝑡
𝐸𝑥+ = Re 𝑬𝑥+ 𝑧 ej𝜔𝑡
𝐾𝑥+ = Re 𝑲0 𝑧 ej𝜔𝑡
𝜀2, 𝜇2
B. Plane Waves
𝐸𝑥 𝑧, 𝑡 = Re 𝑬𝑥 𝑧 ej𝜔𝑡
d2
𝑬𝑥
d𝑧2 = −
𝜔2
𝑐2 𝑬𝑥
d2𝑬𝑥
d𝑧2
+ 𝑘2𝑬𝑥 = 0
13
where we have,
𝑘2
=
𝜔2
𝑐2
= 𝜔2
𝜀𝜇
𝑘 =
2π
𝜆
is the wavenumber, 𝜆 is the wavelength
𝑘 = ±
𝜔
𝑐
⇒ 𝜔 = 𝑘𝑐
𝜔 = 2π𝑓 =
2π
𝜆
𝑐 ⇒ 𝑓𝜆 = 𝑐
𝑬𝑥 = 𝐴1ej𝑘𝑧
+ 𝐴2e−j𝑘𝑧
𝐸𝑥 = Re 𝐴1ej 𝜔𝑡+𝑘𝑧
+ 𝐴2ej 𝜔𝑡−𝑘𝑧
For the wave in the −𝑧 direction we have:
𝜔𝑡 + 𝑘𝑧 = constant, 𝜔d𝑡 + 𝑘d𝑧 = 0
d𝑧
d𝑡
= −
𝜔
𝑘
= −𝑐
travelling wave in the
− 𝑧 direction
travelling wave in
the +𝑧 direction
14
For the wave in the +𝑧 direction we have:
𝜔𝑡 − 𝑧 = constant, 𝜔d𝑡 − 𝑘d𝑧 = 0,
d𝑧
d𝑡
=
𝜔
𝑘
= +𝑐
𝑬𝑥 𝑧 =
𝑬𝑥+e−j𝑘𝑧
𝑧 > 0
𝑬𝑥−ej𝑘𝑧
𝑧 < 0
𝛻 × 𝑬 = −𝜇
𝜕𝑯
𝜕𝑡
⇒
d𝑬𝑥
d𝑧
= −j𝜔𝜇𝑯𝑦 ⇒ 𝑯𝑦 = −
1
j𝜔𝜇
d𝑬𝑥
d𝑧
𝛻 × 𝑯 = 𝜀
𝜕𝑬
𝜕𝑡
⇒
d𝑯𝑦
d𝑧
= −j𝜔𝜀𝑬𝑥
𝑯𝑦 =
𝑘
𝜔𝜇
𝑬𝑥+e−j𝑘𝑧
𝑧 > 0
−
𝑘
𝜔𝜇
𝑬𝑥−ej𝑘𝑧
𝑧 < 0
𝑘
𝜔𝜇
=
𝜔 𝜀𝜇
𝜔𝜇
=
𝜀
𝜇
, 𝜂 =
𝜇
𝜀
is the wave impedance
𝑯𝑦 =
𝑬𝑥+
𝜂
e−j𝑘𝑧
𝑧 > 0
−
𝑬𝑥−
𝜂
ej𝑘𝑧
𝑧 < 0
15
Now we look at the boundary conditions:
𝑬𝑥 𝑧 = 0+, 𝑡 = 𝑬𝑥 𝑧 = 0−, 𝑡 ⇒ 𝑬𝑥+ = 𝑬𝑥−
𝑯𝑦 𝑧 = 0−, 𝑡 − 𝑯𝑦 𝑧 = 0+, 𝑡 = 𝑲𝑥 𝑧 = 0, 𝑡 ⇒
−𝑬𝑥− − 𝑬𝑥+
𝜂
= 𝑲0
𝑬𝑥+ = 𝑬𝑥− = −
𝜂𝑲0
2
𝑬𝑥 𝑧 =
−
𝜂𝑲0
2
e−j𝑘𝑧
𝑧 > 0
−
𝜂𝑲0
2
ej𝑘𝑧
𝑧 < 0
𝑯𝑦 𝑧 =
−
𝑲0
2
e−j𝑘𝑧
𝑧 > 0
𝑲0
2
ej𝑘𝑧
𝑧 < 0
𝑺 =
1
2
𝑬 × 𝑯∗
=
𝜂𝐾0
2
8
𝒊𝑧 𝑧 > 0
−
𝜂𝐾0
2
8
𝒊𝑧 𝑧 < 0
(𝑲0 real)
16
𝐸𝑥 𝑧, 𝑡 = Re 𝑬𝑥 𝑧 ej𝜔𝑡
=
−
𝜂𝑲0
2
cos 𝜔𝑡 − 𝑘𝑧 𝑧 > 0
−
𝜂𝑲0
2
cos 𝜔𝑡 + 𝑘𝑧 𝑧 < 0
𝐻𝑦 𝑧, 𝑡 = Re 𝑯𝑦 𝑧 ej𝜔𝑡
=
−
𝑲0
2
cos 𝜔𝑡 − 𝑘𝑧 𝑧 > 0
𝑲0
2
cos 𝜔𝑡 + 𝑘𝑧 𝑧 < 0
𝑆𝑧 = 𝐸𝑥𝐻𝑦 =
𝜂𝐾0
2
4
cos2
𝜔𝑡 − 𝑘𝑧 𝑧 > 0
−
𝜂𝐾0
2
4
cos2
𝜔𝑡 + 𝑘𝑧 𝑧 < 0
𝑆𝑧 =
𝜂𝐾0
2
8
𝑧 > 0
−
𝜂𝐾0
2
8
𝑧 < 0
17
C. Normal Incidence Onto A Perfect Conductor
Incident Fields: 𝑬i 𝑧, 𝑡 = Re 𝑬iej 𝜔𝑡−𝑘𝑧
𝒊𝑥
𝑯i 𝑧, 𝑡 = Re
𝑬i
𝜂
ej 𝜔𝑡−𝑘𝑧
𝒊𝑦
Reflected Fields: 𝑬r 𝑧, 𝑡 = Re 𝑬rej 𝜔𝑡+𝑘𝑧
𝒊𝑥
𝑯r 𝑧, 𝑡 = Re −
𝑬r
𝜂
ej 𝜔𝑡+𝑘𝑧
𝒊𝑦
𝑘 = 𝜔 𝜀𝜇, 𝜂 =
𝜇
𝜀
The boundary conditions require that,
𝐸𝑥 𝑧 = 0, 𝑡 = 𝐸𝑥, i 𝑧 = 0, 𝑡 + 𝐸𝑥, r 𝑧 = 0, 𝑡 = 0
𝑬i + 𝑬r = 0 ⇒ 𝑬r = −𝑬i
18
Figure 2: Time varying electromagnetic phenomena differ only in the scaling of time
(frequency) and size (wavelength). In linear dielectric media the frequency and
wavelength are related as 𝑓λ = 𝑐 (𝜔 = 𝑘𝑐), where 𝑐 =
1
𝜀𝜇
is the velocity of light in the
medium.
sin 𝑘z
𝜆 =
2π
𝑘
𝑇 =
2π
𝜔
2π
𝑘
2π
𝜔
𝑧
𝑡
π
𝜔
π
𝑘
−1
−1
1
1 sin 𝜔𝑡
0 102
104 106
108 1010
1012
1014 1016 1018
1020
Circuit Theory Microwaves
f (Hz)
Visible Light Ultraviolet X-Rays Gamma Rays
Power Infrared (Heat)
Radio and Television
AM FM
3 × 106
λ meters 3 × 104 3 × 102 3 3 × 10−2
3 × 10−4
3 × 10−6 3 × 10−8
3 × 10−10 3 × 10−12
19
For 𝑬i = 𝐸i real we have:
𝐸𝑥 𝑧, 𝑡 = 𝐸𝑥, i 𝑧, 𝑡 + 𝐸𝑥, r 𝑧, 𝑡 = Re 𝑬i e−j𝑘𝑧
− ej𝑘𝑧
ej𝜔𝑡
= 2𝐸i sin 𝑘𝑧 sin 𝜔𝑡
𝐻𝑦 𝑧, 𝑡 = 𝐻𝑦, i 𝑧, 𝑡 + 𝐻𝑦, r 𝑧, 𝑡 = Re
𝑬i
𝜂
e−j𝑘𝑧
− ej𝑘𝑧
ej𝜔𝑡
=
2𝐸i
𝜂
cos 𝑘𝑧 cos 𝜔𝑡
𝐾𝑧 𝑧 = 0, 𝑡 = 𝐻𝑦 𝑧 = 0, 𝑡 =
2𝐸i
𝜂
cos 𝜔𝑡
Radiation pressure in free space 𝜇 = 𝜇o, 𝜀 = 𝜀o
Force𝑧
Area 𝑧=0
=
1
2
𝑲 × 𝜇o𝑯 =
1
2
𝜇o𝐾𝑥𝐻𝑦
𝑧=0
𝒊𝑧 =
1
2
𝜇o𝐻𝑦
2
𝑧 = 0 𝒊𝑧
=
2𝜇o𝐸i
2
𝜂o
2 cos2
𝜔𝑡 𝒊𝑧
=
2𝜇o
𝜂o
𝜀o
𝐸i
2
cos2
𝜔𝑡 𝒊𝑧
= 2𝜀o 𝐸i
2
cos2
𝜔𝑡 𝒊𝑧
20
Figure 3: A uniform plane wave normally incident upon a perfect conductor has zero
electric field at the conducting surface thus requiring a reflected wave. The source of this
reflected wave is the surface current at 𝑧 = 0, which equals the magnetic field there. The
total electric and magnetic fields are 90° out of phase in time and space.
x
z
y
𝐸i = Re 𝑬iej 𝜔𝑡−𝑘𝑧
𝒊𝑥
𝐻i = Re
𝑬i
𝑍o
ej 𝜔𝑡−𝑘𝑧
𝒊𝑦
𝑘 =
𝜔
𝑐
𝒊𝑧
𝐻r = Re −
𝑬r
𝑍o
ej 𝜔𝑡+𝑘𝑧
𝒊𝑦
𝐸r = Re 𝑬rej 𝜔𝑡+𝑘𝑧
𝒊𝑥
𝑘r = −
𝜔
c1
𝒊𝑧
𝜀o, 𝜇o 𝜂o = 𝑍o=
𝜇o
𝜀o
𝐻𝑦 𝑠, 𝑡 =
2𝑬i
𝑍o
cos 𝑘𝑠 cos 𝜔𝑡
𝐸𝑥 𝑠, 𝑡 = 2𝑬isin 𝑘𝑠 sin 𝜔𝑡
𝜎 → ∞
21
Figure 4: A uniform plane wave normally incident upon a dielectric interface separating
two different materials has part of its power reflected and part transmitted.
IV. Normal Incidence Onto A Dielectric
x
z
y
𝜀1, 𝜇1 𝜂1 = 𝑍1 =
𝜇1
𝜀1
, 𝑐1 =
1
𝜀1𝜇1
𝜀2, 𝜇2 𝑍2 =
𝜇2
𝜀2
, 𝑐2 =
1
𝜀2𝜇2
𝐸i = Re 𝑬iej 𝜔𝑡−𝑘1𝑧
𝒊𝑥
𝐸t = Re 𝑬tej 𝜔𝑡−𝑘2𝑧
𝒊𝑥
𝐻t = Re
𝑬t
𝑍2
ej 𝜔𝑡−𝑘2𝑧
𝒊𝑦
𝐻r = Re −
𝑬r
𝑍1
ej 𝜔𝑡+𝑘1𝑧
𝒊𝑦
𝐻i = Re
𝑬i
𝑍1
ej 𝜔𝑡−𝑘1𝑧
𝒊𝑦
𝐸r = Re 𝑬rej 𝜔𝑡+𝑘1𝑧
𝒊𝑥
𝑘i = 𝑘1𝒊𝑧 =
𝜔
𝑐1
𝒊𝑧
𝑘r = −𝑘1𝒊𝑧 =
−𝜔
𝑐1
𝒊𝑧
𝑘t = 𝑘2𝒊𝑧 =
𝜔
𝑐2
𝒊𝑧
22
𝑬i 𝑧, 𝑡 = Re 𝑬iej 𝜔𝑡−𝑘1𝑧
𝑖𝑥 , 𝑘1 = 𝜔 𝜀1𝜇1
𝑯i 𝑧, 𝑡 = Re
𝑯i
𝜂1
ej 𝜔𝑡−𝑘1𝑧
𝑖𝑦 , 𝜂1 = 𝜔
𝜇1
𝜀1
𝑬r 𝑧, 𝑡 = Re 𝑬rej 𝜔𝑡+𝑘1𝑧
𝑖𝑥
𝑯r 𝑧, 𝑡 = Re −
𝑬r
𝜂1
ej 𝜔𝑡+𝑘1𝑧
𝑖𝑦
𝑬t 𝑧, 𝑡 = Re 𝑬tej 𝜔𝑡−𝑘2𝑧
𝑖𝑥 , 𝑘2 = 𝜔 𝜀2𝜇2
𝑯t 𝑧, 𝑡 = Re
𝑬t
𝜂2
ej 𝜔𝑡−𝑘2𝑧
𝑖𝑦 , 𝜂2 = 𝜔
𝜇2
𝜀2
23
𝐸𝑥 𝑧 = 0− = 𝐸𝑥 𝑧 = 0+ ⇒ 𝑬i + 𝑬r = 𝑬t
𝐻𝑦 𝑧 = 0− = 𝐻𝑦 𝑧 = 0+ ⇒
𝑬i − 𝑬r
𝜂1
=
𝑬t
𝜂2
𝑅 =
𝐸r
𝐸i
=
𝜂2 − 𝜂1
𝜂1 + 𝜂2
is the Reflection coefficient
𝑇 =
𝐸t
𝐸i
=
2𝜂2
𝜂1 + 𝜂2
is the Transmission coefficient
1 + 𝑅 = 𝑇
24
𝑆𝑧, i =
1
2
Re 𝑬𝑥 𝑧 𝑯𝑦
∗
𝑧
=
1
2𝜂1
Re 𝑬ie−j𝑘1𝑧
+ 𝑬rej𝑘1𝑧
𝑬i
∗
ej𝑘1𝑧
− 𝑬r
∗
e−j𝑘1𝑧
=
1
2𝜂1
𝑬i
2
− 𝑬r
2
+
1
2𝜂1
Re 𝑬r𝑬i
∗
e2j𝑘1𝑧
− 𝑬r
∗
𝑬ie−2j𝑘1𝑧
=
1
2𝜂1
𝑬i
2
− 𝑬r
2
=
𝑬i
2
2𝜂1
1 − 𝑅2
𝑆𝑧, t =
1
2𝜂2
𝑬t
2
=
𝑬i
2
𝑇2
2𝜂2
=
𝑬i
2
1 − 𝑅2
2𝜂2
= 𝑆𝑧, i
pure imaginary
25
V. Lossy Dielectrics, 𝑱 = 𝜎𝑬
Ampere′
s Law: 𝛻 × 𝑯 = 𝑱 + 𝜀
𝜕𝑬
𝜕𝑡
= 𝜎𝑬 + 𝜀
𝜕𝑬
𝜕𝑡
For ej𝜔𝑡
fields,
𝛻 × 𝑯 = j𝜔𝜀 + 𝜎 𝑬
= j𝜔𝜀 1 +
𝜎
j𝜔𝜀
𝑬
where, 𝜎 = conductivity of a medium (
Siemens
m
)
26
Define complex permittivity by 𝜺 = 𝜀 1 +
𝜎
j𝜔𝜀
. Then complex amplitude
solutions are the same as real amplitude solutions if we replace 𝜀 by 𝜺:
𝑘 = 𝜔 𝜺𝜇
𝜂 =
𝜇
𝜺
=
𝜇
𝜀 1 +
𝜎
j𝜔𝜀
𝑘 = 𝜔 𝜀𝜇 1 +
𝜎
j𝜔𝜀
27
A. Low Loss Limit:
𝜎
𝜔𝜀
≪ 1
𝑘 = 𝜔 𝜀𝜇 1 +
𝜎
j𝜔𝜀
≈ 𝜔 𝜀𝜇 1 +
1
2
𝜎
j𝜔𝜀
≈ 𝜔 𝜀𝜇 −
j𝜎
2
𝜇
𝜀
≈ 𝜔 𝜀𝜇 − j
𝜎𝜂
2
e−j𝑘𝑧
= e−j𝜔 𝜀𝜇𝑧
e
−j −j
𝜎𝜂
2
𝑧
= e−j𝜔 𝜀𝜇𝑧
e−
𝜎𝜂
2
𝑧
slow exponential decay
28
B. Large Loss Limit:
𝜎
𝜔𝜀
≫ 1
𝑘 = 𝜔 𝜀𝜇 1 +
𝜎
j𝜔𝜀
≈ 𝜔 𝜀𝜇
𝜎
𝜔𝜀
−j we know that,
𝜔
𝜔
= 𝜔
≈
𝜔𝜇𝜎
2
1 − j
≈
1 − j
𝛿
𝛿 =
2
𝜔𝜇𝜎
is the skin depth
e−j𝑘𝑧
= e
−j
1−j 𝑧
𝛿 = e
−j
𝑧
𝛿 e
−
𝑧
𝛿
fast exponential decay
1 − j
2
(1) Markus Zahn, Electromagnetics and Applications, Massachusetts
Institute of Technology: MIT Open Course Ware, 2005.
References
29

Contenu connexe

Tendances

Solved problems in waveguides
Solved problems in waveguidesSolved problems in waveguides
Solved problems in waveguidessubhashinivec
 
Microwave engineering full
Microwave engineering fullMicrowave engineering full
Microwave engineering fulllieulieuw
 
Capitulo 10, 7ma edición
Capitulo 10, 7ma ediciónCapitulo 10, 7ma edición
Capitulo 10, 7ma ediciónSohar Carr
 
Electromagnetic theory Chapter 1
Electromagnetic theory Chapter 1Electromagnetic theory Chapter 1
Electromagnetic theory Chapter 1Ali Farooq
 
Operational amplifier
Operational amplifierOperational amplifier
Operational amplifierUnsa Shakir
 
Frequency response
Frequency responseFrequency response
Frequency responsePatel Jay
 
Second order circuits linear circuit analysis
Second order circuits linear circuit analysisSecond order circuits linear circuit analysis
Second order circuits linear circuit analysisZulqarnainEngineerin
 
Rc and rl differentiator and integrator circuit
Rc and rl differentiator and integrator circuitRc and rl differentiator and integrator circuit
Rc and rl differentiator and integrator circuittaranjeet10
 
Norton's theorem
Norton's theoremNorton's theorem
Norton's theoremSyed Saeed
 
Solution of skill Assessment Control Systems Engineering By Norman S.Nise 6t...
Solution of skill Assessment  Control Systems Engineering By Norman S.Nise 6t...Solution of skill Assessment  Control Systems Engineering By Norman S.Nise 6t...
Solution of skill Assessment Control Systems Engineering By Norman S.Nise 6t...janicetiong
 
transmission-line-and-waveguide-ppt
transmission-line-and-waveguide-ppttransmission-line-and-waveguide-ppt
transmission-line-and-waveguide-pptATTO RATHORE
 
Negative feedback Amplifiers
Negative feedback AmplifiersNegative feedback Amplifiers
Negative feedback AmplifiersYeshudas Muttu
 
ce~cb cascode amplifier
ce~cb cascode amplifierce~cb cascode amplifier
ce~cb cascode amplifiermrinal mahato
 
RF circuit design using ADS
RF circuit design using ADSRF circuit design using ADS
RF circuit design using ADSankit_master
 

Tendances (20)

Solved problems in waveguides
Solved problems in waveguidesSolved problems in waveguides
Solved problems in waveguides
 
Antenna (2)
Antenna (2)Antenna (2)
Antenna (2)
 
Microwave engineering full
Microwave engineering fullMicrowave engineering full
Microwave engineering full
 
6 slides
6 slides6 slides
6 slides
 
Capitulo 10, 7ma edición
Capitulo 10, 7ma ediciónCapitulo 10, 7ma edición
Capitulo 10, 7ma edición
 
Smith chart basics
Smith chart basicsSmith chart basics
Smith chart basics
 
Electromagnetic theory Chapter 1
Electromagnetic theory Chapter 1Electromagnetic theory Chapter 1
Electromagnetic theory Chapter 1
 
Operational amplifier
Operational amplifierOperational amplifier
Operational amplifier
 
Frequency response
Frequency responseFrequency response
Frequency response
 
Bode plot
Bode plotBode plot
Bode plot
 
Second order circuits linear circuit analysis
Second order circuits linear circuit analysisSecond order circuits linear circuit analysis
Second order circuits linear circuit analysis
 
Rc and rl differentiator and integrator circuit
Rc and rl differentiator and integrator circuitRc and rl differentiator and integrator circuit
Rc and rl differentiator and integrator circuit
 
Norton's theorem
Norton's theoremNorton's theorem
Norton's theorem
 
Solution of skill Assessment Control Systems Engineering By Norman S.Nise 6t...
Solution of skill Assessment  Control Systems Engineering By Norman S.Nise 6t...Solution of skill Assessment  Control Systems Engineering By Norman S.Nise 6t...
Solution of skill Assessment Control Systems Engineering By Norman S.Nise 6t...
 
transmission-line-and-waveguide-ppt
transmission-line-and-waveguide-ppttransmission-line-and-waveguide-ppt
transmission-line-and-waveguide-ppt
 
Negative feedback Amplifiers
Negative feedback AmplifiersNegative feedback Amplifiers
Negative feedback Amplifiers
 
ce~cb cascode amplifier
ce~cb cascode amplifierce~cb cascode amplifier
ce~cb cascode amplifier
 
Unit 4 twoportnetwork
Unit 4 twoportnetworkUnit 4 twoportnetwork
Unit 4 twoportnetwork
 
Root locus
Root locus Root locus
Root locus
 
RF circuit design using ADS
RF circuit design using ADSRF circuit design using ADS
RF circuit design using ADS
 

Similaire à Maxwell's Equations Explained for Electromagnetic Fields and Waves

Reflection & Refraction.pptx
Reflection & Refraction.pptxReflection & Refraction.pptx
Reflection & Refraction.pptxPaulBoro1
 
Easy Plasma Theory BS Math helping notespdf
Easy Plasma Theory BS Math helping notespdfEasy Plasma Theory BS Math helping notespdf
Easy Plasma Theory BS Math helping notespdfAreeshaNoor9
 
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Dipole Arrays
Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Dipole ArraysLecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Dipole Arrays
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Dipole ArraysAIMST University
 
7). mechanical waves (finished)
7). mechanical waves (finished)7). mechanical waves (finished)
7). mechanical waves (finished)PhysicsLover
 
An Introduction to Microwave Imaging
An Introduction to Microwave ImagingAn Introduction to Microwave Imaging
An Introduction to Microwave ImagingHwa Pyung Kim
 
AC- circuits (combination).pdf
AC- circuits (combination).pdfAC- circuits (combination).pdf
AC- circuits (combination).pdfMTharunKumar3
 
Ac_steady_state_analyis.pptx
Ac_steady_state_analyis.pptxAc_steady_state_analyis.pptx
Ac_steady_state_analyis.pptxLucasMogaka
 
Ac_steady_state_analyis.pptx
Ac_steady_state_analyis.pptxAc_steady_state_analyis.pptx
Ac_steady_state_analyis.pptxLucasMogaka
 
Field exams mxq proplems engineering with solution
Field exams mxq proplems engineering with solutionField exams mxq proplems engineering with solution
Field exams mxq proplems engineering with solutionBaaselMedhat
 
Other RLC resonant circuits and Bode Plots 2024.pptx
Other RLC resonant circuits and Bode Plots 2024.pptxOther RLC resonant circuits and Bode Plots 2024.pptx
Other RLC resonant circuits and Bode Plots 2024.pptxDrOmarShAlyozbaky
 
Physics 498 SQD -- Lecture 3 -- Models and theories of superconductivity FINA...
Physics 498 SQD -- Lecture 3 -- Models and theories of superconductivity FINA...Physics 498 SQD -- Lecture 3 -- Models and theories of superconductivity FINA...
Physics 498 SQD -- Lecture 3 -- Models and theories of superconductivity FINA...RohitNukte
 
ME421-SDF (Forced) part 2.pdf
ME421-SDF (Forced) part 2.pdfME421-SDF (Forced) part 2.pdf
ME421-SDF (Forced) part 2.pdfJohnathan41
 
تطبيقات المعادلات التفاضلية
تطبيقات المعادلات التفاضليةتطبيقات المعادلات التفاضلية
تطبيقات المعادلات التفاضليةMohammedRazzaqSalman
 
Engineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsxEngineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsxHebaEng
 

Similaire à Maxwell's Equations Explained for Electromagnetic Fields and Waves (20)

Reflection & Refraction.pptx
Reflection & Refraction.pptxReflection & Refraction.pptx
Reflection & Refraction.pptx
 
Waveguides
WaveguidesWaveguides
Waveguides
 
LC oscillations.pdf
LC oscillations.pdfLC oscillations.pdf
LC oscillations.pdf
 
Ac/AC conveter
Ac/AC conveterAc/AC conveter
Ac/AC conveter
 
Easy Plasma Theory BS Math helping notespdf
Easy Plasma Theory BS Math helping notespdfEasy Plasma Theory BS Math helping notespdf
Easy Plasma Theory BS Math helping notespdf
 
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Dipole Arrays
Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Dipole ArraysLecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Dipole Arrays
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Dipole Arrays
 
7). mechanical waves (finished)
7). mechanical waves (finished)7). mechanical waves (finished)
7). mechanical waves (finished)
 
Resonance.pdf
Resonance.pdfResonance.pdf
Resonance.pdf
 
An Introduction to Microwave Imaging
An Introduction to Microwave ImagingAn Introduction to Microwave Imaging
An Introduction to Microwave Imaging
 
Ondas Gravitacionales (en ingles)
Ondas Gravitacionales (en ingles)Ondas Gravitacionales (en ingles)
Ondas Gravitacionales (en ingles)
 
AC- circuits (combination).pdf
AC- circuits (combination).pdfAC- circuits (combination).pdf
AC- circuits (combination).pdf
 
Ac_steady_state_analyis.pptx
Ac_steady_state_analyis.pptxAc_steady_state_analyis.pptx
Ac_steady_state_analyis.pptx
 
Ac_steady_state_analyis.pptx
Ac_steady_state_analyis.pptxAc_steady_state_analyis.pptx
Ac_steady_state_analyis.pptx
 
Field exams mxq proplems engineering with solution
Field exams mxq proplems engineering with solutionField exams mxq proplems engineering with solution
Field exams mxq proplems engineering with solution
 
Network analysis unit 2
Network analysis unit 2Network analysis unit 2
Network analysis unit 2
 
Other RLC resonant circuits and Bode Plots 2024.pptx
Other RLC resonant circuits and Bode Plots 2024.pptxOther RLC resonant circuits and Bode Plots 2024.pptx
Other RLC resonant circuits and Bode Plots 2024.pptx
 
Physics 498 SQD -- Lecture 3 -- Models and theories of superconductivity FINA...
Physics 498 SQD -- Lecture 3 -- Models and theories of superconductivity FINA...Physics 498 SQD -- Lecture 3 -- Models and theories of superconductivity FINA...
Physics 498 SQD -- Lecture 3 -- Models and theories of superconductivity FINA...
 
ME421-SDF (Forced) part 2.pdf
ME421-SDF (Forced) part 2.pdfME421-SDF (Forced) part 2.pdf
ME421-SDF (Forced) part 2.pdf
 
تطبيقات المعادلات التفاضلية
تطبيقات المعادلات التفاضليةتطبيقات المعادلات التفاضلية
تطبيقات المعادلات التفاضلية
 
Engineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsxEngineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsx
 

Plus de AIMST University

Future Generation of Mobile and Satellite Communication Technology
Future Generation of Mobile and Satellite Communication TechnologyFuture Generation of Mobile and Satellite Communication Technology
Future Generation of Mobile and Satellite Communication TechnologyAIMST University
 
Research Cluster - Wireless Communications for 5G/6G
Research Cluster - Wireless Communications for 5G/6GResearch Cluster - Wireless Communications for 5G/6G
Research Cluster - Wireless Communications for 5G/6GAIMST University
 
1G, 2G, 3G, 4G, and 5G Technology
1G, 2G, 3G, 4G, and 5G Technology1G, 2G, 3G, 4G, and 5G Technology
1G, 2G, 3G, 4G, and 5G TechnologyAIMST University
 
Lecture Notes - EEEC6430310 Electromagnetic Fields and Waves - Smith Chart
Lecture Notes - EEEC6430310 Electromagnetic Fields and Waves - Smith ChartLecture Notes - EEEC6430310 Electromagnetic Fields and Waves - Smith Chart
Lecture Notes - EEEC6430310 Electromagnetic Fields and Waves - Smith ChartAIMST University
 
Mini Project 2 - Wien Bridge Oscillator
Mini Project 2 - Wien Bridge OscillatorMini Project 2 - Wien Bridge Oscillator
Mini Project 2 - Wien Bridge OscillatorAIMST University
 
Experiment 1 - Frequency Determination Using The Lissajous Polar
Experiment 1 - Frequency Determination Using The Lissajous PolarExperiment 1 - Frequency Determination Using The Lissajous Polar
Experiment 1 - Frequency Determination Using The Lissajous PolarAIMST University
 
Experiment 2 - Phase Determination Using The Lissajous Polar
Experiment 2 - Phase Determination Using The Lissajous PolarExperiment 2 - Phase Determination Using The Lissajous Polar
Experiment 2 - Phase Determination Using The Lissajous PolarAIMST University
 
Experiment 3 - Dynamic Characteristic of Thermistor
Experiment 3 - Dynamic Characteristic of ThermistorExperiment 3 - Dynamic Characteristic of Thermistor
Experiment 3 - Dynamic Characteristic of ThermistorAIMST University
 
Mini Project 1 - Wheatstone Bridge Light Detector
Mini Project 1 - Wheatstone Bridge Light DetectorMini Project 1 - Wheatstone Bridge Light Detector
Mini Project 1 - Wheatstone Bridge Light DetectorAIMST University
 
Lecture Notes: EEEE6490345 RF And Microwave Electronics - Radio Communicatio...
Lecture Notes:  EEEE6490345 RF And Microwave Electronics - Radio Communicatio...Lecture Notes:  EEEE6490345 RF And Microwave Electronics - Radio Communicatio...
Lecture Notes: EEEE6490345 RF And Microwave Electronics - Radio Communicatio...AIMST University
 
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Instrumentation
Lecture Notes:  EEEC6430312 Measurements And Instrumentation - InstrumentationLecture Notes:  EEEC6430312 Measurements And Instrumentation - Instrumentation
Lecture Notes: EEEC6430312 Measurements And Instrumentation - InstrumentationAIMST University
 
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Fundamentals O...
Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Fundamentals O...Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Fundamentals O...
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Fundamentals O...AIMST University
 
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Instrument Typ...
Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Instrument Typ...Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Instrument Typ...
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Instrument Typ...AIMST University
 
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Errors During ...
Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Errors During ...Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Errors During ...
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Errors During ...AIMST University
 
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Transmission Line
Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Transmission LineLecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Transmission Line
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Transmission LineAIMST University
 
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Cylindrical Ca...
Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Cylindrical Ca...Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Cylindrical Ca...
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Cylindrical Ca...AIMST University
 
Lecture Notes: EEEC6440315 Communication Systems - Time Frequency Analysis -...
Lecture Notes:  EEEC6440315 Communication Systems - Time Frequency Analysis -...Lecture Notes:  EEEC6440315 Communication Systems - Time Frequency Analysis -...
Lecture Notes: EEEC6440315 Communication Systems - Time Frequency Analysis -...AIMST University
 
Mini Project 1: Impedance Matching With A Single Stub Tuner
Mini Project 1:  Impedance Matching With A Single Stub TunerMini Project 1:  Impedance Matching With A Single Stub Tuner
Mini Project 1: Impedance Matching With A Single Stub TunerAIMST University
 
Lecture Notes: EEEC6440315 Communication Systems - Spectral Analysis
Lecture Notes:  EEEC6440315 Communication Systems - Spectral AnalysisLecture Notes:  EEEC6440315 Communication Systems - Spectral Analysis
Lecture Notes: EEEC6440315 Communication Systems - Spectral AnalysisAIMST University
 
Lecture Notes: EEEC6440315 Communication Systems - Spectral Efficiency
Lecture Notes:  EEEC6440315 Communication Systems - Spectral EfficiencyLecture Notes:  EEEC6440315 Communication Systems - Spectral Efficiency
Lecture Notes: EEEC6440315 Communication Systems - Spectral EfficiencyAIMST University
 

Plus de AIMST University (20)

Future Generation of Mobile and Satellite Communication Technology
Future Generation of Mobile and Satellite Communication TechnologyFuture Generation of Mobile and Satellite Communication Technology
Future Generation of Mobile and Satellite Communication Technology
 
Research Cluster - Wireless Communications for 5G/6G
Research Cluster - Wireless Communications for 5G/6GResearch Cluster - Wireless Communications for 5G/6G
Research Cluster - Wireless Communications for 5G/6G
 
1G, 2G, 3G, 4G, and 5G Technology
1G, 2G, 3G, 4G, and 5G Technology1G, 2G, 3G, 4G, and 5G Technology
1G, 2G, 3G, 4G, and 5G Technology
 
Lecture Notes - EEEC6430310 Electromagnetic Fields and Waves - Smith Chart
Lecture Notes - EEEC6430310 Electromagnetic Fields and Waves - Smith ChartLecture Notes - EEEC6430310 Electromagnetic Fields and Waves - Smith Chart
Lecture Notes - EEEC6430310 Electromagnetic Fields and Waves - Smith Chart
 
Mini Project 2 - Wien Bridge Oscillator
Mini Project 2 - Wien Bridge OscillatorMini Project 2 - Wien Bridge Oscillator
Mini Project 2 - Wien Bridge Oscillator
 
Experiment 1 - Frequency Determination Using The Lissajous Polar
Experiment 1 - Frequency Determination Using The Lissajous PolarExperiment 1 - Frequency Determination Using The Lissajous Polar
Experiment 1 - Frequency Determination Using The Lissajous Polar
 
Experiment 2 - Phase Determination Using The Lissajous Polar
Experiment 2 - Phase Determination Using The Lissajous PolarExperiment 2 - Phase Determination Using The Lissajous Polar
Experiment 2 - Phase Determination Using The Lissajous Polar
 
Experiment 3 - Dynamic Characteristic of Thermistor
Experiment 3 - Dynamic Characteristic of ThermistorExperiment 3 - Dynamic Characteristic of Thermistor
Experiment 3 - Dynamic Characteristic of Thermistor
 
Mini Project 1 - Wheatstone Bridge Light Detector
Mini Project 1 - Wheatstone Bridge Light DetectorMini Project 1 - Wheatstone Bridge Light Detector
Mini Project 1 - Wheatstone Bridge Light Detector
 
Lecture Notes: EEEE6490345 RF And Microwave Electronics - Radio Communicatio...
Lecture Notes:  EEEE6490345 RF And Microwave Electronics - Radio Communicatio...Lecture Notes:  EEEE6490345 RF And Microwave Electronics - Radio Communicatio...
Lecture Notes: EEEE6490345 RF And Microwave Electronics - Radio Communicatio...
 
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Instrumentation
Lecture Notes:  EEEC6430312 Measurements And Instrumentation - InstrumentationLecture Notes:  EEEC6430312 Measurements And Instrumentation - Instrumentation
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Instrumentation
 
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Fundamentals O...
Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Fundamentals O...Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Fundamentals O...
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Fundamentals O...
 
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Instrument Typ...
Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Instrument Typ...Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Instrument Typ...
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Instrument Typ...
 
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Errors During ...
Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Errors During ...Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Errors During ...
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Errors During ...
 
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Transmission Line
Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Transmission LineLecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Transmission Line
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Transmission Line
 
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Cylindrical Ca...
Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Cylindrical Ca...Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Cylindrical Ca...
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Cylindrical Ca...
 
Lecture Notes: EEEC6440315 Communication Systems - Time Frequency Analysis -...
Lecture Notes:  EEEC6440315 Communication Systems - Time Frequency Analysis -...Lecture Notes:  EEEC6440315 Communication Systems - Time Frequency Analysis -...
Lecture Notes: EEEC6440315 Communication Systems - Time Frequency Analysis -...
 
Mini Project 1: Impedance Matching With A Single Stub Tuner
Mini Project 1:  Impedance Matching With A Single Stub TunerMini Project 1:  Impedance Matching With A Single Stub Tuner
Mini Project 1: Impedance Matching With A Single Stub Tuner
 
Lecture Notes: EEEC6440315 Communication Systems - Spectral Analysis
Lecture Notes:  EEEC6440315 Communication Systems - Spectral AnalysisLecture Notes:  EEEC6440315 Communication Systems - Spectral Analysis
Lecture Notes: EEEC6440315 Communication Systems - Spectral Analysis
 
Lecture Notes: EEEC6440315 Communication Systems - Spectral Efficiency
Lecture Notes:  EEEC6440315 Communication Systems - Spectral EfficiencyLecture Notes:  EEEC6440315 Communication Systems - Spectral Efficiency
Lecture Notes: EEEC6440315 Communication Systems - Spectral Efficiency
 

Dernier

Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...Sapna Thakur
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...PsychoTech Services
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhikauryashika82
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 

Dernier (20)

INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 

Maxwell's Equations Explained for Electromagnetic Fields and Waves

  • 1. EEEC6430310 ELECTROMAGNETIC FIELDS AND WAVES Maxwell’s Equation FACULTY OF ENGINEERING AND COMPUTER TECHNOLOGY BENG (HONS) IN ELECTRICALAND ELECTRONIC ENGINEERING Ravandran Muttiah BEng (Hons) MSc MIET
  • 2. Maxwell’s Equation I. Maxwell’s Equation For Linear Media 𝛻 × 𝑬 = −𝜇 𝜕𝑯 𝜕𝑡 Faraday′ s Law 𝛻 × 𝑯 = 𝑱 + 𝜀 𝜕𝑬 𝜕𝑡 Ampere′ s Law 𝛻 ∙ 𝑬 = 𝜌f 𝜀 Gauss′ s Law 𝛻 ∙ 𝑯 = 0 Gauss′ s Law where, 𝛻 = vector differential (del) operator 𝑬 = electric field intensity 𝑯 = magnetic field intensity 𝑱 = electric current density 𝜌f = free electric charge density 1
  • 3. 2 II. Pointing’s Theorem A. Power Flow And Electromagnetic Energy 𝛻 ∙ 𝑬 × 𝑯 = 𝑯 ∙ 𝛻 × 𝑬 − 𝑬 ∙ 𝛻 × 𝑯 = −𝜇𝑯 ∙ 𝜕𝑯 𝜕𝑡 − 𝑬 ∙ 𝑱 + 𝜀 𝜕𝑬 𝜕𝑡 = − 𝜇 2 𝜕 𝜕𝑡 𝑯 2 − 𝜀 2 𝜕 𝜕𝑡 𝑬 2 − 𝑬 ∙ 𝑱 𝛻 ∙ 𝑬 × 𝑯 + 𝜕 𝜕𝑡 1 2 𝜀 𝑬 2 + 1 2 𝜇 𝑯 2 = −𝑬 ∙ 𝑱
  • 4. 3 V 𝛻 ∙ 𝑬 × 𝑯 d𝑉 = S 𝑬 × 𝑯 ∙ d𝑺 S 𝑬 × 𝑯 ∙ d𝒂 + d d𝑡 V 1 2 𝜀 𝑬 2 + 1 2 𝜇 𝑯 2 d𝑉 = − 𝑉 𝑬 ∙ 𝑱 d𝑉 𝑺 = 𝑬 × 𝑯 Poynting Vector Watt m2 𝑊 = V 1 2 𝜀 𝑬 2 + 1 2 𝜇 𝑯 2 d𝑉 Electromagnetic Stored Energy 𝑃d = V 𝑬 ∙ 𝑱 d𝑉 Power dissipated if 𝐽 ∙ 𝑬 > 0 e.g., 𝑱 = 𝜎𝑬 ⇒ 𝐽 ∙ 𝑬 = 𝜎 𝑬 𝟐 Power source if 𝐽 ∙ 𝑬 < 0 𝑃out = S 𝑬 × 𝑯 ∙ d𝒂 = S 𝑺 ∙ d𝒂 𝑃out + d𝑊 d𝑡 = −𝑃d 𝑤e = 1 2 𝜀 𝑬 2 Electric energy density in Joules m3 𝑤m = 1 2 𝜇 𝑯 2 Magnetic energy density in Joules m3
  • 5. 4 Figure 1: The circuit power into an N terminal network 𝑘=1 𝑁 𝑉𝑘𝐼𝑘 equals the electromagnetic power flow into the surface surrounding the network, − s 𝑬 × 𝑯 · d𝑺 B. Power In Electric Circuits E H 𝑆 = 𝐸 × 𝐻 𝑉1 𝑉2 𝑉3 𝑉𝑁−1 𝑉𝑁 𝐼1 𝐼2 𝐼3 𝐼𝑁−1 𝐼𝑁 𝑆
  • 6. 5 Outside circuit elements C 𝑬 ∙ d𝒍 ≈ 0, 𝛻 × 𝑬 = 0 ⇒ 𝑬 = −𝛻Ф (Kirchoff’s Voltage Law 𝑘 𝑣𝑘 = 0) 𝛻 × 𝑯 = 𝑱 ⇒ 𝛻 ∙ 𝑱 = 0, S 𝑱 ∙ d𝑺 = 0 (Kirchoff’s Current Law 𝑘 𝑖𝑘 = 0) 𝑃in = − S 𝑬 × 𝑯 ∙ d𝑺 = − V 𝛻 ∙ 𝑬 × 𝑯 d𝑉 𝛻 ∙ 𝑬 × 𝑯 = 𝑯 ∙ 𝛻 × 𝑬 − 𝑬 ∙ 𝛻 × 𝑯 = −𝑬 ∙ 𝑱 = 𝛻Ф ∙ 𝑱 𝛻 ∙ 𝑱Ф = Ф𝛻 ∙ 𝑱 + 𝑱 ∙ 𝛻Ф 𝛻 ∙ 𝑬 × 𝑯 = 𝑱 ∙ 𝛻Ф = 𝛻 ∙ Ф𝑱 𝑃in = − V 𝛻 ∙ 𝑬 × 𝑯 d𝑉 = − V 𝛻 ∙ 𝑱Ф d𝑉 = − S 𝑱Ф ∙ d𝑺 On 𝑆, Ф = voltages on each wire, 𝑱 is non-zero only on wires. 𝑃in = − S 𝑱Ф ∙ d𝑺 = − 𝑘=1 𝑁 𝑣𝑘 S 𝑱 ∙ d𝑺 = 𝑘=1 𝑁 𝑣𝑘𝑖𝑘 0 0 −𝑖𝑘
  • 7. C. Complex Poynting’s Theorem (Sinusoidal Steady State, ej𝜔𝑡 ) 6 𝑬 𝒓, 𝑡 = Re 𝑬 𝒓 ej𝜔𝑡 = 1 2 𝑬∗ 𝒓 ej𝜔𝑡 + 𝑬∗ 𝒓 e−j𝜔𝑡 𝑯 𝒓, 𝑡 = Re 𝑯 𝒓 ej𝜔𝑡 = 1 2 𝑯∗ 𝒓 ej𝜔𝑡 + 𝑯∗ 𝒓 e−j𝜔𝑡 The real part of a complex number is one-half of the sum of the number and its complex conjugate
  • 8. 7 Maxwell’s Equations In Sinusoidal Steady State 𝛻 × 𝑬 𝒓 = −j𝜔𝜇𝑯 𝒓 𝛻 × 𝑯 𝒓 = 𝑱 𝒓 + j𝜔𝜀 𝒓 𝛻 ∙ 𝑬 𝒓 = 𝝆f 𝒓 𝜀 𝛻 ∙ 𝑯 𝒓 = 0
  • 9. 8 𝑺 𝒓, 𝑡 = 𝑬 𝒓, 𝑡 × 𝑯 𝒓, 𝑡 = 1 4 𝑬 𝒓 ej𝜔𝑡 + 𝑬 𝒓 e−j𝜔𝑡 × 𝑯 𝒓 ej𝜔𝑡 + 𝑯∗ 𝒓 e−j𝜔𝑡 = 1 4 𝑬 𝒓 × 𝑯 𝒓 e2j𝜔𝑡 +𝑬∗ 𝒓 × 𝑯 𝒓 + 𝑬 𝒓 × 𝑯∗ 𝒓 + 𝑬∗ 𝒓 × 𝑯∗ 𝒓 e−2j𝜔𝑡 𝑺 = 1 4 𝑬∗ 𝒓 × 𝑯 𝒓 + 𝑬 𝒓 × 𝑯∗ 𝒓 = 1 2 Re 𝑬 𝒓 × 𝑯∗ 𝒓 = 1 2 Re 𝑬∗ 𝒓 × 𝑯 𝒓 (A complex number plus its complex conjugate is twice the real part of that number)
  • 10. 9 𝑺 = 1 2 Re 𝑬 𝒓 × 𝑯∗ 𝒓 𝛻 ∙ 𝑺 = 𝛻 ∙ 1 2 𝑬 𝒓 × 𝑯∗ 𝒓 = 1 2 𝑯∗ 𝒓 ∙ 𝛻 × 𝑬 𝒓 − 𝑬 𝒓 ∙ 𝛻 × 𝑯∗ 𝒓 = 1 2 𝑯∗ 𝒓 −j𝜔𝜇𝑯 𝒓 − 𝑬 𝒓 ∙ 𝑱∗ 𝒓 − j𝜔𝜀𝑬∗ 𝒓 = 1 2 −j𝜔𝜇 𝑯 𝒓 2 + j𝜔𝜀 𝑬 𝒓 2 − 1 2 𝑬 𝒓 ∙ 𝑱∗ 𝒓 𝑤m = 1 4 𝜇 𝑯 𝒓 2 , 𝑤e = 1 4 𝜀 𝑬 𝒓 2 𝑷d = 1 2 𝑬 𝒓 ∙ 𝑱∗ 𝒓 𝛻 ∙ 𝑺 + 2j𝜔 𝑤m − 𝑤e = −𝑷d
  • 11. III. Transverse Electromagnetic Waves (𝑱 = 0, 𝜌f = 0) 10 The great success of Maxwell’s equations lies partly in the simple prediction of electromagnetic waves and their simple characterization of materials in terms of conductivity 𝜎, permittivity 𝜀, and permeability 𝜇. In vacuum we find 𝜎 = 0, 𝜀 = 𝜀o and 𝜇 = 𝜇o. Therefore, 𝑱 = 𝜎𝑬 = 0 and 𝜌f = 0. A. Wave Equation 𝛻 × 𝑬 = −𝜇 𝜕𝑯 𝜕𝑡 𝛻 × 𝑯 = 𝜀 𝜕𝑬 𝜕𝑡 𝛻 ∙ 𝑬 = 0 𝛻 ∙ 𝑯 = 0 In contrast the nano-structure of media can be quite complex and requires quantum mechanics and for its full explanation. Fortunately, simple classical approximations to atoms and molecules suffice to understand the origin of 𝜎, 𝜀 and 𝜇.
  • 12. 11 𝛻 × 𝛻 × 𝑬 = −𝜇 𝜕 𝜕𝑡 𝛻 × 𝐻 = −𝜇 𝜕 𝜕𝑡 𝜀 𝜕𝑬 𝜕𝑡 𝛻 × 𝛻 × 𝑬 = 𝛻 𝛻 ∙ 𝑬 − 𝛻2 𝑬 = −𝜀𝜇 𝜕2 𝑬 𝜕𝑡2 Wave equation, 𝛻2 𝑬 = 1 𝑐2 𝜕2 𝑬 𝜕𝑡2 where, 𝑐 = 1 𝜀𝜇 is the velocity of the electromagnetic wave. In free space (i.e. vacuum), 𝜇 = 𝜇o = 4π × 10−7 henries m and 𝜀 = 𝜀o ≈ 10−9 36π farads m , which leads to 𝑐o = 1 𝜀o𝜇o ≈ 3 × 108 m s . Similarly, 𝛻 × 𝛻 × 𝑯 = 𝛻 𝛻 ∙ 𝑯 − 𝛻2 𝑯 = 𝜀 𝜕 𝜕𝑡 𝛻 × 𝑬 = −𝜀𝜇 𝜕2 𝑯 𝜕𝑡2 𝛻2 𝑯 = 1 𝑐2 𝜕2 𝑯 𝜕𝑡2 , 𝑐 = 1 𝜀𝜇 0 0
  • 13. 12 x z y 𝜀1, 𝜇1 𝐸𝑥− = Re 𝑬𝑥− 𝑧 ej𝜔𝑡 𝐻𝑦− = Re 𝑯y− 𝑧 ej𝜔𝑡 𝐻𝑦+ = Re 𝑯y+ 𝑧 ej𝜔𝑡 𝐸𝑥+ = Re 𝑬𝑥+ 𝑧 ej𝜔𝑡 𝐾𝑥+ = Re 𝑲0 𝑧 ej𝜔𝑡 𝜀2, 𝜇2 B. Plane Waves 𝐸𝑥 𝑧, 𝑡 = Re 𝑬𝑥 𝑧 ej𝜔𝑡 d2 𝑬𝑥 d𝑧2 = − 𝜔2 𝑐2 𝑬𝑥 d2𝑬𝑥 d𝑧2 + 𝑘2𝑬𝑥 = 0
  • 14. 13 where we have, 𝑘2 = 𝜔2 𝑐2 = 𝜔2 𝜀𝜇 𝑘 = 2π 𝜆 is the wavenumber, 𝜆 is the wavelength 𝑘 = ± 𝜔 𝑐 ⇒ 𝜔 = 𝑘𝑐 𝜔 = 2π𝑓 = 2π 𝜆 𝑐 ⇒ 𝑓𝜆 = 𝑐 𝑬𝑥 = 𝐴1ej𝑘𝑧 + 𝐴2e−j𝑘𝑧 𝐸𝑥 = Re 𝐴1ej 𝜔𝑡+𝑘𝑧 + 𝐴2ej 𝜔𝑡−𝑘𝑧 For the wave in the −𝑧 direction we have: 𝜔𝑡 + 𝑘𝑧 = constant, 𝜔d𝑡 + 𝑘d𝑧 = 0 d𝑧 d𝑡 = − 𝜔 𝑘 = −𝑐 travelling wave in the − 𝑧 direction travelling wave in the +𝑧 direction
  • 15. 14 For the wave in the +𝑧 direction we have: 𝜔𝑡 − 𝑧 = constant, 𝜔d𝑡 − 𝑘d𝑧 = 0, d𝑧 d𝑡 = 𝜔 𝑘 = +𝑐 𝑬𝑥 𝑧 = 𝑬𝑥+e−j𝑘𝑧 𝑧 > 0 𝑬𝑥−ej𝑘𝑧 𝑧 < 0 𝛻 × 𝑬 = −𝜇 𝜕𝑯 𝜕𝑡 ⇒ d𝑬𝑥 d𝑧 = −j𝜔𝜇𝑯𝑦 ⇒ 𝑯𝑦 = − 1 j𝜔𝜇 d𝑬𝑥 d𝑧 𝛻 × 𝑯 = 𝜀 𝜕𝑬 𝜕𝑡 ⇒ d𝑯𝑦 d𝑧 = −j𝜔𝜀𝑬𝑥 𝑯𝑦 = 𝑘 𝜔𝜇 𝑬𝑥+e−j𝑘𝑧 𝑧 > 0 − 𝑘 𝜔𝜇 𝑬𝑥−ej𝑘𝑧 𝑧 < 0 𝑘 𝜔𝜇 = 𝜔 𝜀𝜇 𝜔𝜇 = 𝜀 𝜇 , 𝜂 = 𝜇 𝜀 is the wave impedance 𝑯𝑦 = 𝑬𝑥+ 𝜂 e−j𝑘𝑧 𝑧 > 0 − 𝑬𝑥− 𝜂 ej𝑘𝑧 𝑧 < 0
  • 16. 15 Now we look at the boundary conditions: 𝑬𝑥 𝑧 = 0+, 𝑡 = 𝑬𝑥 𝑧 = 0−, 𝑡 ⇒ 𝑬𝑥+ = 𝑬𝑥− 𝑯𝑦 𝑧 = 0−, 𝑡 − 𝑯𝑦 𝑧 = 0+, 𝑡 = 𝑲𝑥 𝑧 = 0, 𝑡 ⇒ −𝑬𝑥− − 𝑬𝑥+ 𝜂 = 𝑲0 𝑬𝑥+ = 𝑬𝑥− = − 𝜂𝑲0 2 𝑬𝑥 𝑧 = − 𝜂𝑲0 2 e−j𝑘𝑧 𝑧 > 0 − 𝜂𝑲0 2 ej𝑘𝑧 𝑧 < 0 𝑯𝑦 𝑧 = − 𝑲0 2 e−j𝑘𝑧 𝑧 > 0 𝑲0 2 ej𝑘𝑧 𝑧 < 0 𝑺 = 1 2 𝑬 × 𝑯∗ = 𝜂𝐾0 2 8 𝒊𝑧 𝑧 > 0 − 𝜂𝐾0 2 8 𝒊𝑧 𝑧 < 0 (𝑲0 real)
  • 17. 16 𝐸𝑥 𝑧, 𝑡 = Re 𝑬𝑥 𝑧 ej𝜔𝑡 = − 𝜂𝑲0 2 cos 𝜔𝑡 − 𝑘𝑧 𝑧 > 0 − 𝜂𝑲0 2 cos 𝜔𝑡 + 𝑘𝑧 𝑧 < 0 𝐻𝑦 𝑧, 𝑡 = Re 𝑯𝑦 𝑧 ej𝜔𝑡 = − 𝑲0 2 cos 𝜔𝑡 − 𝑘𝑧 𝑧 > 0 𝑲0 2 cos 𝜔𝑡 + 𝑘𝑧 𝑧 < 0 𝑆𝑧 = 𝐸𝑥𝐻𝑦 = 𝜂𝐾0 2 4 cos2 𝜔𝑡 − 𝑘𝑧 𝑧 > 0 − 𝜂𝐾0 2 4 cos2 𝜔𝑡 + 𝑘𝑧 𝑧 < 0 𝑆𝑧 = 𝜂𝐾0 2 8 𝑧 > 0 − 𝜂𝐾0 2 8 𝑧 < 0
  • 18. 17 C. Normal Incidence Onto A Perfect Conductor Incident Fields: 𝑬i 𝑧, 𝑡 = Re 𝑬iej 𝜔𝑡−𝑘𝑧 𝒊𝑥 𝑯i 𝑧, 𝑡 = Re 𝑬i 𝜂 ej 𝜔𝑡−𝑘𝑧 𝒊𝑦 Reflected Fields: 𝑬r 𝑧, 𝑡 = Re 𝑬rej 𝜔𝑡+𝑘𝑧 𝒊𝑥 𝑯r 𝑧, 𝑡 = Re − 𝑬r 𝜂 ej 𝜔𝑡+𝑘𝑧 𝒊𝑦 𝑘 = 𝜔 𝜀𝜇, 𝜂 = 𝜇 𝜀 The boundary conditions require that, 𝐸𝑥 𝑧 = 0, 𝑡 = 𝐸𝑥, i 𝑧 = 0, 𝑡 + 𝐸𝑥, r 𝑧 = 0, 𝑡 = 0 𝑬i + 𝑬r = 0 ⇒ 𝑬r = −𝑬i
  • 19. 18 Figure 2: Time varying electromagnetic phenomena differ only in the scaling of time (frequency) and size (wavelength). In linear dielectric media the frequency and wavelength are related as 𝑓λ = 𝑐 (𝜔 = 𝑘𝑐), where 𝑐 = 1 𝜀𝜇 is the velocity of light in the medium. sin 𝑘z 𝜆 = 2π 𝑘 𝑇 = 2π 𝜔 2π 𝑘 2π 𝜔 𝑧 𝑡 π 𝜔 π 𝑘 −1 −1 1 1 sin 𝜔𝑡 0 102 104 106 108 1010 1012 1014 1016 1018 1020 Circuit Theory Microwaves f (Hz) Visible Light Ultraviolet X-Rays Gamma Rays Power Infrared (Heat) Radio and Television AM FM 3 × 106 λ meters 3 × 104 3 × 102 3 3 × 10−2 3 × 10−4 3 × 10−6 3 × 10−8 3 × 10−10 3 × 10−12
  • 20. 19 For 𝑬i = 𝐸i real we have: 𝐸𝑥 𝑧, 𝑡 = 𝐸𝑥, i 𝑧, 𝑡 + 𝐸𝑥, r 𝑧, 𝑡 = Re 𝑬i e−j𝑘𝑧 − ej𝑘𝑧 ej𝜔𝑡 = 2𝐸i sin 𝑘𝑧 sin 𝜔𝑡 𝐻𝑦 𝑧, 𝑡 = 𝐻𝑦, i 𝑧, 𝑡 + 𝐻𝑦, r 𝑧, 𝑡 = Re 𝑬i 𝜂 e−j𝑘𝑧 − ej𝑘𝑧 ej𝜔𝑡 = 2𝐸i 𝜂 cos 𝑘𝑧 cos 𝜔𝑡 𝐾𝑧 𝑧 = 0, 𝑡 = 𝐻𝑦 𝑧 = 0, 𝑡 = 2𝐸i 𝜂 cos 𝜔𝑡 Radiation pressure in free space 𝜇 = 𝜇o, 𝜀 = 𝜀o Force𝑧 Area 𝑧=0 = 1 2 𝑲 × 𝜇o𝑯 = 1 2 𝜇o𝐾𝑥𝐻𝑦 𝑧=0 𝒊𝑧 = 1 2 𝜇o𝐻𝑦 2 𝑧 = 0 𝒊𝑧 = 2𝜇o𝐸i 2 𝜂o 2 cos2 𝜔𝑡 𝒊𝑧 = 2𝜇o 𝜂o 𝜀o 𝐸i 2 cos2 𝜔𝑡 𝒊𝑧 = 2𝜀o 𝐸i 2 cos2 𝜔𝑡 𝒊𝑧
  • 21. 20 Figure 3: A uniform plane wave normally incident upon a perfect conductor has zero electric field at the conducting surface thus requiring a reflected wave. The source of this reflected wave is the surface current at 𝑧 = 0, which equals the magnetic field there. The total electric and magnetic fields are 90° out of phase in time and space. x z y 𝐸i = Re 𝑬iej 𝜔𝑡−𝑘𝑧 𝒊𝑥 𝐻i = Re 𝑬i 𝑍o ej 𝜔𝑡−𝑘𝑧 𝒊𝑦 𝑘 = 𝜔 𝑐 𝒊𝑧 𝐻r = Re − 𝑬r 𝑍o ej 𝜔𝑡+𝑘𝑧 𝒊𝑦 𝐸r = Re 𝑬rej 𝜔𝑡+𝑘𝑧 𝒊𝑥 𝑘r = − 𝜔 c1 𝒊𝑧 𝜀o, 𝜇o 𝜂o = 𝑍o= 𝜇o 𝜀o 𝐻𝑦 𝑠, 𝑡 = 2𝑬i 𝑍o cos 𝑘𝑠 cos 𝜔𝑡 𝐸𝑥 𝑠, 𝑡 = 2𝑬isin 𝑘𝑠 sin 𝜔𝑡 𝜎 → ∞
  • 22. 21 Figure 4: A uniform plane wave normally incident upon a dielectric interface separating two different materials has part of its power reflected and part transmitted. IV. Normal Incidence Onto A Dielectric x z y 𝜀1, 𝜇1 𝜂1 = 𝑍1 = 𝜇1 𝜀1 , 𝑐1 = 1 𝜀1𝜇1 𝜀2, 𝜇2 𝑍2 = 𝜇2 𝜀2 , 𝑐2 = 1 𝜀2𝜇2 𝐸i = Re 𝑬iej 𝜔𝑡−𝑘1𝑧 𝒊𝑥 𝐸t = Re 𝑬tej 𝜔𝑡−𝑘2𝑧 𝒊𝑥 𝐻t = Re 𝑬t 𝑍2 ej 𝜔𝑡−𝑘2𝑧 𝒊𝑦 𝐻r = Re − 𝑬r 𝑍1 ej 𝜔𝑡+𝑘1𝑧 𝒊𝑦 𝐻i = Re 𝑬i 𝑍1 ej 𝜔𝑡−𝑘1𝑧 𝒊𝑦 𝐸r = Re 𝑬rej 𝜔𝑡+𝑘1𝑧 𝒊𝑥 𝑘i = 𝑘1𝒊𝑧 = 𝜔 𝑐1 𝒊𝑧 𝑘r = −𝑘1𝒊𝑧 = −𝜔 𝑐1 𝒊𝑧 𝑘t = 𝑘2𝒊𝑧 = 𝜔 𝑐2 𝒊𝑧
  • 23. 22 𝑬i 𝑧, 𝑡 = Re 𝑬iej 𝜔𝑡−𝑘1𝑧 𝑖𝑥 , 𝑘1 = 𝜔 𝜀1𝜇1 𝑯i 𝑧, 𝑡 = Re 𝑯i 𝜂1 ej 𝜔𝑡−𝑘1𝑧 𝑖𝑦 , 𝜂1 = 𝜔 𝜇1 𝜀1 𝑬r 𝑧, 𝑡 = Re 𝑬rej 𝜔𝑡+𝑘1𝑧 𝑖𝑥 𝑯r 𝑧, 𝑡 = Re − 𝑬r 𝜂1 ej 𝜔𝑡+𝑘1𝑧 𝑖𝑦 𝑬t 𝑧, 𝑡 = Re 𝑬tej 𝜔𝑡−𝑘2𝑧 𝑖𝑥 , 𝑘2 = 𝜔 𝜀2𝜇2 𝑯t 𝑧, 𝑡 = Re 𝑬t 𝜂2 ej 𝜔𝑡−𝑘2𝑧 𝑖𝑦 , 𝜂2 = 𝜔 𝜇2 𝜀2
  • 24. 23 𝐸𝑥 𝑧 = 0− = 𝐸𝑥 𝑧 = 0+ ⇒ 𝑬i + 𝑬r = 𝑬t 𝐻𝑦 𝑧 = 0− = 𝐻𝑦 𝑧 = 0+ ⇒ 𝑬i − 𝑬r 𝜂1 = 𝑬t 𝜂2 𝑅 = 𝐸r 𝐸i = 𝜂2 − 𝜂1 𝜂1 + 𝜂2 is the Reflection coefficient 𝑇 = 𝐸t 𝐸i = 2𝜂2 𝜂1 + 𝜂2 is the Transmission coefficient 1 + 𝑅 = 𝑇
  • 25. 24 𝑆𝑧, i = 1 2 Re 𝑬𝑥 𝑧 𝑯𝑦 ∗ 𝑧 = 1 2𝜂1 Re 𝑬ie−j𝑘1𝑧 + 𝑬rej𝑘1𝑧 𝑬i ∗ ej𝑘1𝑧 − 𝑬r ∗ e−j𝑘1𝑧 = 1 2𝜂1 𝑬i 2 − 𝑬r 2 + 1 2𝜂1 Re 𝑬r𝑬i ∗ e2j𝑘1𝑧 − 𝑬r ∗ 𝑬ie−2j𝑘1𝑧 = 1 2𝜂1 𝑬i 2 − 𝑬r 2 = 𝑬i 2 2𝜂1 1 − 𝑅2 𝑆𝑧, t = 1 2𝜂2 𝑬t 2 = 𝑬i 2 𝑇2 2𝜂2 = 𝑬i 2 1 − 𝑅2 2𝜂2 = 𝑆𝑧, i pure imaginary
  • 26. 25 V. Lossy Dielectrics, 𝑱 = 𝜎𝑬 Ampere′ s Law: 𝛻 × 𝑯 = 𝑱 + 𝜀 𝜕𝑬 𝜕𝑡 = 𝜎𝑬 + 𝜀 𝜕𝑬 𝜕𝑡 For ej𝜔𝑡 fields, 𝛻 × 𝑯 = j𝜔𝜀 + 𝜎 𝑬 = j𝜔𝜀 1 + 𝜎 j𝜔𝜀 𝑬 where, 𝜎 = conductivity of a medium ( Siemens m )
  • 27. 26 Define complex permittivity by 𝜺 = 𝜀 1 + 𝜎 j𝜔𝜀 . Then complex amplitude solutions are the same as real amplitude solutions if we replace 𝜀 by 𝜺: 𝑘 = 𝜔 𝜺𝜇 𝜂 = 𝜇 𝜺 = 𝜇 𝜀 1 + 𝜎 j𝜔𝜀 𝑘 = 𝜔 𝜀𝜇 1 + 𝜎 j𝜔𝜀
  • 28. 27 A. Low Loss Limit: 𝜎 𝜔𝜀 ≪ 1 𝑘 = 𝜔 𝜀𝜇 1 + 𝜎 j𝜔𝜀 ≈ 𝜔 𝜀𝜇 1 + 1 2 𝜎 j𝜔𝜀 ≈ 𝜔 𝜀𝜇 − j𝜎 2 𝜇 𝜀 ≈ 𝜔 𝜀𝜇 − j 𝜎𝜂 2 e−j𝑘𝑧 = e−j𝜔 𝜀𝜇𝑧 e −j −j 𝜎𝜂 2 𝑧 = e−j𝜔 𝜀𝜇𝑧 e− 𝜎𝜂 2 𝑧 slow exponential decay
  • 29. 28 B. Large Loss Limit: 𝜎 𝜔𝜀 ≫ 1 𝑘 = 𝜔 𝜀𝜇 1 + 𝜎 j𝜔𝜀 ≈ 𝜔 𝜀𝜇 𝜎 𝜔𝜀 −j we know that, 𝜔 𝜔 = 𝜔 ≈ 𝜔𝜇𝜎 2 1 − j ≈ 1 − j 𝛿 𝛿 = 2 𝜔𝜇𝜎 is the skin depth e−j𝑘𝑧 = e −j 1−j 𝑧 𝛿 = e −j 𝑧 𝛿 e − 𝑧 𝛿 fast exponential decay 1 − j 2
  • 30. (1) Markus Zahn, Electromagnetics and Applications, Massachusetts Institute of Technology: MIT Open Course Ware, 2005. References 29