Ce diaporama a bien été signalé.
Le téléchargement de votre SlideShare est en cours. ×

Data lake benefits

Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Chargement dans…3
×

Consultez-les par la suite

1 sur 11 Publicité

Data lake benefits

Télécharger pour lire hors ligne

Data Lakes are early in the Gartner hype cycle, but companies are getting value from their cloud-based data lake deployments. Break through the confusion between data lakes and data warehouses and seek out the most appropriate use cases for your big data lakes.

Data Lakes are early in the Gartner hype cycle, but companies are getting value from their cloud-based data lake deployments. Break through the confusion between data lakes and data warehouses and seek out the most appropriate use cases for your big data lakes.

Publicité
Publicité

Plus De Contenu Connexe

Diaporamas pour vous (20)

Similaire à Data lake benefits (20)

Publicité

Data lake benefits

  1. 1. Strategic  Advisory Big  Data  – Cloud   -­‐ Analytics Info Strategy Fishing  in  the   big  data  lake DATA  EXPLORATION  AND  DISCOVERY  ANALYTICS   FOR  DEEPER  BUSINESS  INSIGHTS
  2. 2. InfoStrategy What  is  a  “data  lake” data  lake (plural data  lakes) A  massive,  easily  accessible  data  repository   built  on  (relatively)  inexpensive  computer   hardware  for  storing  "big  data".  Unlike  data  marts,   which  are  optimized  for  data  analysis  by  storing  only  some   attributes  and  dropping  data  below  the  level  aggregation,  a   data  lake  is  designed  to  retain  all  attributes,   especially  so  when  you  do  not  yet  know  what  the   scope  of  data  or  its  use  will  be. http://en.wiktionary.org/wiki/data_lake …  Enterprise  Data  Hub  sounds  too  boring   !
  3. 3. InfoStrategy Optimise  business  through  insights Insight Action Optimise Move  a  metric Change  a  product Change  behaviour/process Hindsight Realtime Foresight Trusted  information Act  on  insights  gained Execute  theories Measure Outcomes Sentiment Feedback Explore  datasets,  discover  correlations,  patterns. Undiscovered  facts Information  Value Data  Volumes Forecasting,  planning  &  trending Statistical  Analysis Operational  reporting,  SCADA  control Alerts  &  Events Historical  reporting, Proof  of  operation Regulatory,  statutory,  financial Uncover  previously   unknown  facts   from  enriched  data   in  the  data  lake
  4. 4. InfoStrategy Future  state  of  analytics Strategic  Intent To  improve  BI  and  Analytical  capabilities  to  a  level  where  organisations  are  able  to   access  and  analyse  information  in  a  secure,  timely  and  cost-­‐effective  manner. Gain  key  insights  to  optimise  the  operations  of  your  business,  predict  the  best   possible  outcomes  for  growth,  new  opportunities,   and  competitive  advantage   across  all  business  lines. Mission  Statement “Providing  advanced  analytics  capability  across  all  business  units,  empowering  our   people  with  the    processes  and  supporting  technologies  to  exploit  our  information   assets  for  business  benefit.” Target  Operating  Model  will  deliver: Rapid  access  to  data  to  uncover  new  facts  via  advanced  data  exploration  and   discovery  analytics. Clarity  of  who  is  responsible  and  accountable  for  maintaining  critical  information   assets  via  a  well  structured  governance  and  engagement  model. A  trusted  and  highly  secure  source  of  data  for  all  analytical  information  requirements   via  a  data  quality  assurance  program. Trawling  for  value  in  the  big  data  lake
  5. 5. InfoStrategy ‘Fish  stocks’  are  replenished  from  existing  and  future   operational  systems  plus  external  sources Core   Transactional  Data   “operational” Management   Reporting Unstructured  &   External  Data “contextual” Enterprise  Dashboards Reporting Consolidation Data  ScientistsBusiness  AnalystsBusiness  UsersCustomers Data  Extraction Discovery  Analytics   Platform Visualisation Analysis Data  Preparation Data  Collection Operational   Reporting Operational  Dashboards Real-­‐time  Reports Alerts  &  Exceptions Embedded  BI Production   Data  Repository “Data  Lake” Information  Governance Data  Management Supplier  &   Industry  Data “comparative”
  6. 6. InfoStrategy Consolidated Management Reporting Operational Supporting Capability Discovery Analytics To  meet  the  demand  for  rapid  access  to  information   users  must  adopt  a  flexible  multi-­‐platform   architecture   What  reporting  does  for  established  operations  …  discovery  analytics  does  for  new  business  development. The  trend  within  industry  is  to  move  away  from  the  single-­‐platform  monolithic  data  warehouses  towards  a  physically  distributed  environment   for  information  delivery.  Many  businesses  are  extending  their  data  warehouse  environments  to  include  new  standalone  data  platforms  that   are  conducive  to  discovery  analytics.  A  holistic  view  is  maintained  via  a  common,  single  replicated  dataset  and  an  enterprise information   management  program,  governing  delivery  and  access  to  key  information  (data  lake). Source   Applications ERP CRM HR Finance Telemetry Geospatial  GIS Documents Email Files Real-­time  Data   Capture Cleansing Loading Data  Warehouse Modelling Relational  DW Data  Marts Analysis  Cubes Analytics Delivery Cloud-­based    Service  Model Actuarial   Applications Event-­Based   Applications Reporting Production   Reporting OLAP  Analytics Ad  Hoc  Query External Data Exploration  &   Discovery Metadata  Integration Event  Processing Results Detailed  Datasets Results   Collection  and  blending Insights Portal PDF Desktop Guided   Visualisation Mobile  BI Active   Dashboards Data  Replication Historical Data  Preparation Storytelling Information  Governance Operational  Reporting   Dimensional   Modelling ProductioniseInsights
  7. 7. InfoStrategy Principles:  Easier  access  information   to  discover  new   facts  about  the  business. ◦ Described  as  a  ‘sandpit’  environment,  providing  the  ability  to  explore  and  discover  new   facts  about  the  business,  it’s  members  and  customers,  partners  and  competitive   pressures. ◦ Also  used  for  testing  a  hypothesis  or  running  scenarios  across  the  data ◦ Getting  answers  to  ‘one-­‐off’  questions  which  are  not  addressed  through  the  normal   published,  scheduled  operational  reporting  channels ◦ Data  is  replicated  from  all  operational  systems  into  a  single  landing  area,  ensuring   traceability  and  reconciliation  to  all  consuming  applications,  such  as  the  data  warehouse,   analytical  application,  and  other  business  applications. ◦ Clearly  defined  critical  business  entities/records  are  synchronised  (or  Mastered)  across   all  applications  eliminating  duplication  and  confusion.  Data  quality  attributes  are  defined   and  managed  for  each  critical  business  entity. ◦ A  fully  integrated  Member/Customer  view  is  established  across  both  analytical  and   transactional  applications. ◦ Using  the  replicated  data  to  build  more  dynamic  analytical  data  structures  for  scheduled   production  reporting  and  ah-­‐hoc  analysis ◦ Provide  users  with  the  tools  to  access    and  analyse data,  freely  explore  current  and  new   datasets,  and  visualise patterns  and  discoveries  to  gain  deep  insights. Providing  business  users  with  direct   access  to  data  to  meet  immediate   information  needs  where  the   accuracy  of  the  data  is  not  the   primary  objective.   Having  a  single  source  of  truth   across  all  business  applications  at   detailed  level  from  which  all   information  requests  are  satisfied. Improved  environment  for  more   cost  effective  and  faster  business   intelligence  delivery. Provide  business   users  with  the  ability  to  access  production  information  directly,  collect  it  as  needed,  and   prepare  the  data  for  analysis.  Exploring  the  data  to  uncover  previously   unknown  facts  about  the  business,   and   sharing  those  facts  visually  with  others.  Enrich  production  data  with  external  “context”  to  extend  insights. Key  Principles Description
  8. 8. InfoStrategy Benefits  of  Discovery  Analytics  versus  traditional   data   warehousing Classic  Data  Warehouse  Issues Discovery  Analytics Benefit Lengthy  IT  Backlog  and  lack  of  resources  to  extend the   EDW  to  support  new  business  requirements. Data  can  be  explored  and  analysed  outside  of the  EDW   environment  before  it  is  put  into  production  use. High  costs  of  supporting increasing  data  volumes  and   new  types  of  data. Data  can  be  filtered  and  transformed  before  it  is  loaded   into  the  EDW Lack  of  flexibility  in  the  EDW  data  model  to  support   constantly changing  business  requirements. Data  discovery  support  dynamic  schema  on  read   approach  which reduces  the  need  for  detailed  up-­‐front   modelling. Need  to  have  data  quality  and  governance  processes  in   place  before  user  can  access  the  EDW  data. The  investigative  nature  of data  discovery  has  lower  data   quality  and  governance  requirements Growing  use  of  personal  data  marts to  overcome  IT   barriers  and  the  performance  overheads  of  ad  hoc   processing The  flexibility  and  performance  of  data  discovery   encourages  shared  use  of  data  and  analytics. Recent  proof  of  concept  for  Discovery  Analytics  in  the  cloud  (AWS),  has  provided  some   considerable  cost  &  time  savings  in  infrastructure  and  hosting,  viz.: $55  per  day  to  host  a  960GB  data  warehouse   $32  per  day  to  host  a  Data  Integration  server  AND  a  BI  server. 2.5  weeks  to  setup  POC  environment  and  start  analysis  and  visualising  results.
  9. 9. InfoStrategy Discovery  Analytics  Target  POC  Architecture Structured   Data Unstructured   Data ERP Telemetry Web/External Replication  of  corporate  data,  enriched  with  external  data  and   content,  available  in  a  centrally  available  and  scalable  repository   ready  for  exploration,  discovery  and  predictive  analysis  to  gain   deep  insights  and  actionable  results.
  10. 10. InfoStrategy Fishing  safely  with  the  appropriate  life  vests  is   important  too. Security  and  data  management  standards  are  available International   Standard  on   Assurance   Engagements Service  Organisation   Control  framework Federal  Information   Management   Security  Act Payment  Card   Industry  –Data   Security  Standard Federal  Information   Processing  Standard International  Standards   Organisation  – Information  Security   Standard Source:  Amazon  Web  Services
  11. 11. Info Strategy To  learn  more  about  how  InfoStrategy can  help  you  develop  your  big  data   strategy  to  solve  your  big  business   problems,  or  to  arrange  a  Proof  of   Concept,  please  contact  us  today  using   the  details  below. InfoStrategy Pty  Ltd 246  Oxford  St,  Balmoral Queensland  4171 Australia Tel:  +61  7  3151  2021 Email:   contactus@infostrategy.com.au

×