Nous avons mis à jour notre politique de confidentialité. Cliquez ici pour consulter les détails. Cliquez ici pour consulter les détails.
Activez votre essai gratuit de 30 jours pour accéder à une lecture illimitée
Activez votre essai gratuit de 30 jours pour continuer votre lecture.
Mathematicians over the last two centuries have been used to the idea of considering a collection of objects/numbers as a single entity. These entities are what are typically called sets. The technique of using the concept of a set to answer questions is hardly new. It has been in use since ancient times. However, the rigorous treatment of sets happened only in the 19-th century due to the German mathematician Georg Cantor. He was solely responsible in ensuring that sets had a home in mathematics. Cantor developed the concept of the set during his study of the trigonometric series, which is now known as the limit point or the derived set operator. He developed two types of transfinite numbers, namely, transfinite ordinals and transfinite cardinals. His new and path-breaking ideas were not well received by his contemporaries. Further, from his definition of a set, a number of contradictions and paradoxes arose. One of the most famous paradoxes is the Russell’s Paradox, due to Bertrand Russell in 1918. This paradox amongst others, opened the stage for the development of axiomatic set theory. The interested reader may refer to Katz [
Mathematicians over the last two centuries have been used to the idea of considering a collection of objects/numbers as a single entity. These entities are what are typically called sets. The technique of using the concept of a set to answer questions is hardly new. It has been in use since ancient times. However, the rigorous treatment of sets happened only in the 19-th century due to the German mathematician Georg Cantor. He was solely responsible in ensuring that sets had a home in mathematics. Cantor developed the concept of the set during his study of the trigonometric series, which is now known as the limit point or the derived set operator. He developed two types of transfinite numbers, namely, transfinite ordinals and transfinite cardinals. His new and path-breaking ideas were not well received by his contemporaries. Further, from his definition of a set, a number of contradictions and paradoxes arose. One of the most famous paradoxes is the Russell’s Paradox, due to Bertrand Russell in 1918. This paradox amongst others, opened the stage for the development of axiomatic set theory. The interested reader may refer to Katz [
Il semblerait que vous ayez déjà ajouté cette diapositive à .
Vous avez clippé votre première diapositive !
En clippant ainsi les diapos qui vous intéressent, vous pourrez les revoir plus tard. Personnalisez le nom d’un clipboard pour mettre de côté vos diapositives.La famille SlideShare vient de s'agrandir. Profitez de l'accès à des millions de livres numériques, livres audio, magazines et bien plus encore sur Scribd.
Annulez à tout moment.Lecture illimitée
Apprenez plus vite et de façon plus astucieuse avec les meilleurs spécialistes
Téléchargements illimités
Téléchargez et portez vos connaissances avec vous hors ligne et en déplacement
Vous bénéficiez également d'un accés gratuit à Scribd!
Accès instantané à des millions de livres numériques, de livres audio, de magazines, de podcasts, et bien plus encore.
Lisez et écoutez hors ligne depuis n'importe quel appareil.
Accès gratuit à des services premium tels que TuneIn, Mubi, et bien plus encore.
Nous avons mis à jour notre politique de confidentialité pour nous conformer à l'évolution des réglementations mondiales en matière de confidentialité et pour vous informer de la manière dont nous utilisons vos données de façon limitée.
Vous pouvez consulter les détails ci-dessous. En cliquant sur Accepter, vous acceptez la politique de confidentialité mise à jour.
Merci!