SlideShare une entreprise Scribd logo
1  sur  61
Enzyme Structure, classification
and
mechanism of action
Importance
• Enzymes play an important role in
Metabolism, Diagnosis, and Therapeutics.
• All biochemical reactions are enzyme
catalyzed in the living organism.
• Level of enzyme in blood are of diagnostic
importance e.g. it is a good indicator in
disease such as myocardial infarction.
• Enzyme can be used therapeutically such as
digestive enzymes.
• Virtually all reactions in the body are
mediated by enzymes, which are protein
catalysts, usually within cells, that increase the
rate of reactions without being changed in the
overall process
Define enzymes
(Enzymes as Biological Catalysts)
• Enzymes are proteins that increase the rate of
reaction by lowering the energy of activation
• They catalyze nearly all the chemical reactions
taking place in the cells of the body.
• Not altered or consumed during reaction.
• Reusable
NOMENCLATURE
• Each enzyme is assigned two names. The first
is its short, recommended name, convenient
for everyday use.
• The second is the more complete systematic
name, which is used when an enzyme must be
identified without ambiguity
Recommended name
Most commonly used enzyme names have the
suffix “-ase” attached to the substrate of the
reaction, such as glucosidase and urease. Names
of other enzymes include a description of the
action performed, for example, lactate
dehydrogenase (LDH) and adenylyl cyclase. Some
enzymes retain their original trivial names, which
give no hint of the associated enzymatic reaction,
for example, trypsin and pepsin.
Systematic name
• In the systematic naming system, enzymes are
divided into six major classes each with
numerous subgroups. For a given enzyme, the
suffix -ase is attached to a fairly complete
description of the chemical reaction catalyzed,
including the names of all the substrates, for
example, lactate:nicotinamide adenine
dinucleotide (NAD+) oxidoreductase.
ACTIVE SITES
• Enzyme molecules contain a special pocket or
cleft called the active sites.
Lock-and-Key Model
• In the lock-and-key model of enzyme action:
- the active site has a rigid shape
- only substrates with the matching shape can fit
- the substrate is a key that fits the lock of the
active site
This explains enzyme
specificity
This explains the loss
of activity when
enzymes denature
APOENZYME and HOLOENZYME
• The enzyme without its non protein moiety is termed
as apoenzyme and it is inactive.
• Holoenzyme is an active enzyme with its non protein
component.
Important Terms to Understand
Biochemical Nature
And Activity of Enzymes
• Cofactor:
–A cofactor is a non-protein chemical
compound that is bound (either tightly or
loosely) to an enzyme and is required for
catalysis.
–Types of Cofactors:
• Coenzymes.
• Prosthetic groups.
Types of Cofactors
• Coenzyme:
The non-protein component, loosely bound to apoenzyme
by non-covalent bond. Coenzymes or cosubstrates only
transiently associate with the enzyme and dissociate from the
enzyme in an altered state (for example, NAD+).
• Examples : vitamins or compound derived from vitamins.
• Prosthetic group
The non-protein component, tightly bound to the
apoenzyme by covalent bonds is called a Prosthetic group.
• permanently associated with the enzyme
Enzyme Specificity
• Enzymes have varying degrees of specificity
for substrates
• Enzymes may recognize and catalyze:
- a single substrate
- a group of similar substrates
- a particular type of bond
Important Terms to Understand
Biochemical Nature
And Activity of Enzymes
Activation energy or Energy of Activation:
• All chemical reactions require some amount of
energy to get them started.
OR
• It is First push to start reaction.
This energy is called activation energy.
Mechanism of Action of Enzymes
• Enzymes increase reaction rates by
decreasing the Activation energy:
• Enzyme-Substrate Interactions:
‒Formation of Enzyme substrate
complex by:
‒Lock-and-Key Model
‒Induced Fit Model
Enzymes
Lower a
Reaction’s
Activation
Energy
Lock-and-Key Model
• In the lock-and-key model of enzyme action:
- the active site has a rigid shape
- only substrates with the matching shape can fit
- the substrate is a key that fits the lock of the active site
• This is an older model, however, and does not work for all
enzymes
Induced Fit Model
• In the induced-fit model of enzyme action:
- the active site is flexible, not rigid
- the shapes of the enzyme, active site, and substrate adjust
to maximumize the fit, which improves catalysis
- there is a greater range of substrate specificity
• This model is more consistent with a wider range of enzymes
Enzyme-substrate complex
• Step 1:
• Enzyme and substrate combine to form
complex
• E + S ES
• Enzyme Substrate Complex
+
Enzyme-product complex
• Step 2:
• An enzyme-product complex is formed.
• ES EP
ES EP
transition
state
Product
• The enzyme and product separate
• EP E + P The product
is made
Enzyme is
ready
for
another
substrate.
EP
28
What Affects Enzyme Activity?
• Three factors:
1. Environmental Conditions
2. Cofactors and Coenzymes
3. Enzyme Inhibitors
29
1. Environmental Conditions
1. Extreme Temperature are the most
dangerous
- high temps may denature (unfold) the
enzyme.
2. pH (most like 6 - 8 pH near neutral)
3. substrate concentration .
30
2. Cofactors and Coenzymes
• Inorganic substances (zinc, iron) and
vitamins (respectively) are sometimes need
for proper enzymatic activity.
• Example:
Iron must be present in the quaternary
structure - hemoglobin in order for it to
pick up oxygen.
Environmental factors
• Optimum temperature The temp at which
enzymatic reaction occur fastest.
Environmental factors
• pH also affects the rate of enzyme-
substrate complexes
–Most enzymes have an optimum pH of
around 7 (neutral)
• However, some prefer acidic or basic conditions
Substrate Concentration and Reaction Rate
• The rate of reaction increases as substrate
concentration increases (at constant enzyme
concentration)
• Maximum activity occurs when the enzyme is
saturated (when all enzymes are binding substrate)
Michaelis-Menten equation
Michaelis-Menten Kinetics
V
[S]
V = Reaction velocity
Rate of P formation
Vmax
V = Vm* [S]
Km + [S]
Michaelis-Menten Kinetics
• Adding S  More P formation  Faster V
• Eventually, reach Vmax
Vmax
Vmax
More Enzyme
Enzyme Kinetics
• 1. Km characteristics: Km, the Michaelis constant, is characteristic of an enzyme
and its particular substrate and reflects the affinity of the enzyme for that
substrate. Km is numerically equal to the substrate concentration at which the
reaction velocity is equal to one half Vmax. Km does not vary
with enzyme concentration.
• a. Small Km: A numerically small (low) Km reflects a high affinity of the enzyme for
substrate, because a low concentration of substrate is needed to half-saturate the
enzyme—that is, to reach a velocity that is one half Vmax .
• b. Large Km: A numerically large (high) Km reflects a low affinity of enzyme for
substrate because a high concentration of substrate is needed to half saturate the
enzyme.
Michaelis Constant (Km)
V = Vm * [S]
Km + [S]
Key Points:
1.Km has same units as [S]
2.At some point on graph, Km must equal [S]
V = Vm * [S] = Vm * [S] = Vm
[S] + [S] 2 [S] 2
When V = Vm/2
[S] = Km
Vmax
V = Vm* [S]
Km + [S]
Km
[S]
V = Vm* [S]
Km + [S]
• Small Km  Vm reached at low concentration [S]
• Large Km  Vm reached at high concentration [S]
Vmax
Vmax/2
Km
[S]
V = Vm* [S]
Km + [S]
Michaelis Constant (Km)
• Small Km  Substrate binds easily at low [S]
• High affinity substrate for enzyme
• Large Km  Low affinity substrate for enzyme
Vmax
Vmax/2
Key Points
• Km is characteristic of each substrate/enzyme
• Vm depends on amount of enzyme present
• Can determine Vm/Km from
• Michaelis Menten plot V vs. [S]
• Lineweaver Burk plot 1/V vs. 1/[S]
Lineweaver Burk Plot
V = Vm* [S]
Km + [S]
1 = Km + [S] =
V Vm [S]
Km + [S]
Vm [S] Vm[S]
1 = C * 1 + 1
V [S] Vm
LineweaverBurk Plot
1
V
Enzyme Inhibitors
S
I
E
Competitive
Competes for same site as S
Lots of S will overcome this
S
E
P
Non-competitive
Binds different site S
Changes S binding site S
cannot overcome this
Effect similar to no
enzyme
I
Competitive Inhibitor
[S]
Vmax
Vmax/2
Km
Normal
Km
Same Vm
Higher Km
Inhibitor
Vmax
With inhibitor
Vmax
Vmax/2
Vmax/2
Lower Vm
Same Km
Km
[S]
Non-competitive Inhibitor
Enzyme Inhibitors
• Competive - mimic substrate, may block active site, but
may dislodge it.
Enzyme Inhibitors
• Noncompetitive
Competitive inhibition
• This type of inhibition occurs when the inhibitor binds reversibly to the
same site that the substrate would normally occupy and, therefore,
competes with the substrate for binding to the enzyme active site.
• 1. Effect on Vmax: The effect of a competitive inhibitor is reversed by
increasing the concentration of substrate. At a sufficiently high [S], the
reaction velocity reaches the Vmax observed in the absence of inhibitor,
that is, Vmax is unchanged in the presence of a competitive inhibitor
• 2. Effect on Km: A competitive inhibitor increases the apparent Km for a
given substrate. This means that, in the presence of a competitive
inhibitor, more substrate is needed to achieve half Vmax.
Noncompetitive inhibition
• This type of inhibition is recognized by its characteristic effect causing a
decrease in Vmax. Noncompetitive inhibition occurs when the inhibitor
and substrate bind at different sites on the enzyme. The noncompetitive
inhibitor can bind either free enzyme or the ES complex, thereby
preventing the reaction from occurring
• 1. Effect on Vmax: Effects of a noncompetitive inhibitor cannot b
overcome by increasing the concentration of substrate. Therefore,
noncompetitive inhibitors decrease the apparent Vmax of the reaction.
• 2. Effect on Km: Noncompetitive inhibitors do not interfere with the
binding of substrate to enzyme. Therefore, the enzyme shows the same
Km in the presence or absence of the noncompetitive inhibitor, that is, Km
is unchanged in the presence of a noncompetitive inhibitor
Naming Enzymes
• The name of an enzyme in many cases end in –ase
• For example, sucrase catalyzes the hydrolysis of sucrose
• The name describes the function of the enzyme
For example, oxidases catalyze oxidation reactions
• Sometimes common names are used, particularly for the
digestion enzymes such as pepsin and trypsin
• Some names describe both the substrate and the function
• For example, alcohol dehydrogenase oxides ethanol
Enzymes Are Classified into six functional
Classes (EC number Classification) by the
International Union of Biochemists (I.U.B.).
on the Basis of the Types of
Reactions That They Catalyze
• EC 1. Oxidoreductases
• EC 2. Transferases
• EC 3. Hydrolases
• EC 4. Lyases
• EC 5. Isomerases
• EC 6. Ligases
Principle of the international
classification
Each enzyme has classification number
consisting of four digits:
Example, EC: (2.7.1.1) HEXOKINASE
• EC: (2.7.1.1) these components indicate the following
groups of enzymes:
• 2. IS CLASS (TRANSFERASE)
• 7. IS SUBCLASS (TRANSFER OF PHOSPHATE)
• 1. IS SUB-SUB CLASS (ALCOHOL IS PHOSPHATE
ACCEPTOR)
• 1. SPECIFIC NAME
ATP,D-HEXOSE-6-PHOSPHOTRANSFERASE (Hexokinase)
H O
OH
H
OH
H
OH
CH2OH
H
OH
H H O
OH
H
OH
H
OH
CH2OPO3
2
H
OH
H
2
3
4
5
6
1 1
6
5
4
3 2
ATP ADP
Mg2+
glucose glucose-6-phosphate
Hexokinase
1. Hexokinase catalyzes:
Glucose + ATP  glucose-6-P + ADP
Oxidoreductases, Transferases and Hydrolases
Lyases, Isomerases and Ligases
Blood plasma enzyme levels in
disease states
• Many diseases cause tissue damage that includes the rupture of plasma
membranes and lysis of cells in the tissue. As a result, the damaged cells
release their contents into fluids, including the blood plasma, causing an
increased concentration of the enzymes in the plasma.
• These enzymes are normally intracellular and cannot catalyze reactions
when present outside their normal cellular location. However, these
enzymes are routinely measured in patient’s blood samples for diagnostic
purposes.
• The level of specific enzyme activity in the plasma frequently correlates
with the extent of tissue damage. Therefore, determining the extent of
elevation of a particular enzyme activity in the blood plasma is often
useful in evaluating the extent of tissue damage, response to therapies,
and the prognosis for the patient.
• Some enzymes show relatively high activity in only one or a few
tissues. Therefore, the presence of increased levels of these
enzymes in blood plasma reflects damage to the corresponding
tissue. For example, the enzyme alanine aminotransferase (ALT) is
one of many enzymes that are abundant in the liver. The
appearance of elevated levels of ALT in plasma signals possible
damage to hepatic tissue.
• Measurement of ALT released into a patient’s blood from dying cells
is part of the liver function test panel. Increases in plasma levels of
enzymes with a wide tissue distribution provide a less specific
indication of the site of cellular injury and limits their diagnostic
value.
enzymes.ppt

Contenu connexe

Tendances

Amino acids abhishek sharma
Amino acids   abhishek sharmaAmino acids   abhishek sharma
Amino acids abhishek sharma
anjali kotwal
 
Amino acids structure and function
Amino acids structure and functionAmino acids structure and function
Amino acids structure and function
Ebrahim Ragab
 
Characteristics and Properties of Amino Acids (AA)
Characteristics and Properties of Amino Acids (AA)Characteristics and Properties of Amino Acids (AA)
Characteristics and Properties of Amino Acids (AA)
Mohamed Hassanien
 
Inhibitors of oxidative phosphorylationppt
Inhibitors of oxidative phosphorylationpptInhibitors of oxidative phosphorylationppt
Inhibitors of oxidative phosphorylationppt
Genevia Vincent
 
Digestion of protein
Digestion of proteinDigestion of protein
Digestion of protein
Lyndsae Drury
 

Tendances (20)

Amino acids and Protein chemistry by Dr. Anurag Yadav
Amino acids and Protein chemistry by Dr. Anurag YadavAmino acids and Protein chemistry by Dr. Anurag Yadav
Amino acids and Protein chemistry by Dr. Anurag Yadav
 
Modification of Carbohydrates.ppt
Modification of Carbohydrates.pptModification of Carbohydrates.ppt
Modification of Carbohydrates.ppt
 
Amino acids abhishek sharma
Amino acids   abhishek sharmaAmino acids   abhishek sharma
Amino acids abhishek sharma
 
Amino acid types by Mohammadali Kharodiya
Amino acid types by Mohammadali KharodiyaAmino acid types by Mohammadali Kharodiya
Amino acid types by Mohammadali Kharodiya
 
Amino acid metabolism
Amino acid metabolismAmino acid metabolism
Amino acid metabolism
 
Amino acid
Amino acidAmino acid
Amino acid
 
Amino acids structure and function
Amino acids structure and functionAmino acids structure and function
Amino acids structure and function
 
Metabolism of Glycine. .
Metabolism of Glycine. .Metabolism of Glycine. .
Metabolism of Glycine. .
 
Characteristics and Properties of Amino Acids (AA)
Characteristics and Properties of Amino Acids (AA)Characteristics and Properties of Amino Acids (AA)
Characteristics and Properties of Amino Acids (AA)
 
Lipids
LipidsLipids
Lipids
 
Amino acid classification
Amino acid classificationAmino acid classification
Amino acid classification
 
Amino acid pool And Nitrogen Balance
Amino acid  pool And Nitrogen BalanceAmino acid  pool And Nitrogen Balance
Amino acid pool And Nitrogen Balance
 
Amino acid
Amino acid Amino acid
Amino acid
 
Inhibitors of oxidative phosphorylationppt
Inhibitors of oxidative phosphorylationpptInhibitors of oxidative phosphorylationppt
Inhibitors of oxidative phosphorylationppt
 
Fatty acids ppt - nomenclature & properties- By Sumati Hajela
Fatty acids ppt - nomenclature & properties- By Sumati HajelaFatty acids ppt - nomenclature & properties- By Sumati Hajela
Fatty acids ppt - nomenclature & properties- By Sumati Hajela
 
Deamination and transamination
Deamination and transaminationDeamination and transamination
Deamination and transamination
 
Digestion of protein
Digestion of proteinDigestion of protein
Digestion of protein
 
Classification of amino acids
Classification of amino acidsClassification of amino acids
Classification of amino acids
 
Amino acids metabolism new
Amino acids metabolism newAmino acids metabolism new
Amino acids metabolism new
 
Chemistry of Amino Acids
Chemistry of Amino AcidsChemistry of Amino Acids
Chemistry of Amino Acids
 

Similaire à enzymes.ppt

ENZYME INHIBITION & FACTORS AFFECTING THE VELOCITY OF ENZYME ACTION
ENZYME INHIBITION & FACTORS AFFECTING THE VELOCITY OF ENZYME ACTIONENZYME INHIBITION & FACTORS AFFECTING THE VELOCITY OF ENZYME ACTION
ENZYME INHIBITION & FACTORS AFFECTING THE VELOCITY OF ENZYME ACTION
YESANNA
 
D. Pharm BIOCHEMISTRY AND CLINICAL PATHOLOGY Enzyme
D. Pharm BIOCHEMISTRY AND CLINICAL PATHOLOGY EnzymeD. Pharm BIOCHEMISTRY AND CLINICAL PATHOLOGY Enzyme
D. Pharm BIOCHEMISTRY AND CLINICAL PATHOLOGY Enzyme
Arun Kumar
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
Sayali Powar
 

Similaire à enzymes.ppt (20)

ENZYMES.pptx
ENZYMES.pptxENZYMES.pptx
ENZYMES.pptx
 
Enzymes-Biochemistry part-2
Enzymes-Biochemistry part-2Enzymes-Biochemistry part-2
Enzymes-Biochemistry part-2
 
ENZYMES.pptx
ENZYMES.pptxENZYMES.pptx
ENZYMES.pptx
 
51196538 enzymes chapter 3
51196538 enzymes chapter 351196538 enzymes chapter 3
51196538 enzymes chapter 3
 
ENZYME INHIBITION & FACTORS AFFECTING THE VELOCITY OF ENZYME ACTION
ENZYME INHIBITION & FACTORS AFFECTING THE VELOCITY OF ENZYME ACTIONENZYME INHIBITION & FACTORS AFFECTING THE VELOCITY OF ENZYME ACTION
ENZYME INHIBITION & FACTORS AFFECTING THE VELOCITY OF ENZYME ACTION
 
Enzyme notes biochemistry Satyanarayan.pdf
Enzyme notes biochemistry Satyanarayan.pdfEnzyme notes biochemistry Satyanarayan.pdf
Enzyme notes biochemistry Satyanarayan.pdf
 
D. Pharm BIOCHEMISTRY AND CLINICAL PATHOLOGY Enzyme
D. Pharm BIOCHEMISTRY AND CLINICAL PATHOLOGY EnzymeD. Pharm BIOCHEMISTRY AND CLINICAL PATHOLOGY Enzyme
D. Pharm BIOCHEMISTRY AND CLINICAL PATHOLOGY Enzyme
 
Enzymes
EnzymesEnzymes
Enzymes
 
Enzymes
EnzymesEnzymes
Enzymes
 
Biochemistry lecture notes enzymes
Biochemistry lecture notes enzymesBiochemistry lecture notes enzymes
Biochemistry lecture notes enzymes
 
enzyyyyyyyymessss.pdf
enzyyyyyyyymessss.pdfenzyyyyyyyymessss.pdf
enzyyyyyyyymessss.pdf
 
2.Enzymjvohxutzohcoyfpufoyfpuffpupfoyf85s0utdputses I II.pptx
2.Enzymjvohxutzohcoyfpufoyfpuffpupfoyf85s0utdputses I II.pptx2.Enzymjvohxutzohcoyfpufoyfpuffpupfoyf85s0utdputses I II.pptx
2.Enzymjvohxutzohcoyfpufoyfpuffpupfoyf85s0utdputses I II.pptx
 
2.Enzymjvohxutzohcoyfpufoyfpuffpupfoyf85s0utdputses I II.pptx
2.Enzymjvohxutzohcoyfpufoyfpuffpupfoyf85s0utdputses I II.pptx2.Enzymjvohxutzohcoyfpufoyfpuffpupfoyf85s0utdputses I II.pptx
2.Enzymjvohxutzohcoyfpufoyfpuffpupfoyf85s0utdputses I II.pptx
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Kinetics of Enzyme Action Enzyme kinetics
Kinetics of Enzyme Action Enzyme kineticsKinetics of Enzyme Action Enzyme kinetics
Kinetics of Enzyme Action Enzyme kinetics
 
Enzyme. defination ,classification and application
Enzyme. defination ,classification and applicationEnzyme. defination ,classification and application
Enzyme. defination ,classification and application
 
Enzymes
EnzymesEnzymes
Enzymes
 
Enzymes 2019
Enzymes 2019Enzymes 2019
Enzymes 2019
 
Enzymes
EnzymesEnzymes
Enzymes
 
2017-2018محاضرات الانزيمات
 2017-2018محاضرات الانزيمات 2017-2018محاضرات الانزيمات
2017-2018محاضرات الانزيمات
 

Plus de RusudanTchighvaria (10)

BIOCHEMISTRY 2
BIOCHEMISTRY 2BIOCHEMISTRY 2
BIOCHEMISTRY 2
 
purine metabolism.ppt
purine metabolism.pptpurine metabolism.ppt
purine metabolism.ppt
 
pyrimidine metabolism.pptx
pyrimidine metabolism.pptxpyrimidine metabolism.pptx
pyrimidine metabolism.pptx
 
metabolism (1).ppt
metabolism (1).pptmetabolism (1).ppt
metabolism (1).ppt
 
neoplasia.pptx
neoplasia.pptxneoplasia.pptx
neoplasia.pptx
 
Extracellular Matrix.pptx
Extracellular Matrix.pptxExtracellular Matrix.pptx
Extracellular Matrix.pptx
 
enzymes pres.ppt
enzymes pres.pptenzymes pres.ppt
enzymes pres.ppt
 
Fat -soluble vitamins.pptx
Fat -soluble  vitamins.pptxFat -soluble  vitamins.pptx
Fat -soluble vitamins.pptx
 
apoptosis cancer biology.pptx
apoptosis cancer biology.pptxapoptosis cancer biology.pptx
apoptosis cancer biology.pptx
 
collagen.pptx
collagen.pptxcollagen.pptx
collagen.pptx
 

Dernier

Russian Call Girls Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service...
Russian Call Girls Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service...Russian Call Girls Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service...
Russian Call Girls Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service...
adilkhan87451
 
Call Girl In Pune 👉 Just CALL ME: 9352988975 💋 Call Out Call Both With High p...
Call Girl In Pune 👉 Just CALL ME: 9352988975 💋 Call Out Call Both With High p...Call Girl In Pune 👉 Just CALL ME: 9352988975 💋 Call Out Call Both With High p...
Call Girl In Pune 👉 Just CALL ME: 9352988975 💋 Call Out Call Both With High p...
chetankumar9855
 
🌹Attapur⬅️ Vip Call Girls Hyderabad 📱9352852248 Book Well Trand Call Girls In...
🌹Attapur⬅️ Vip Call Girls Hyderabad 📱9352852248 Book Well Trand Call Girls In...🌹Attapur⬅️ Vip Call Girls Hyderabad 📱9352852248 Book Well Trand Call Girls In...
🌹Attapur⬅️ Vip Call Girls Hyderabad 📱9352852248 Book Well Trand Call Girls In...
Call Girls In Delhi Whatsup 9873940964 Enjoy Unlimited Pleasure
 
Call Girl in Indore 8827247818 {LowPrice} ❤️ (ahana) Indore Call Girls * UPA...
Call Girl in Indore 8827247818 {LowPrice} ❤️ (ahana) Indore Call Girls  * UPA...Call Girl in Indore 8827247818 {LowPrice} ❤️ (ahana) Indore Call Girls  * UPA...
Call Girl in Indore 8827247818 {LowPrice} ❤️ (ahana) Indore Call Girls * UPA...
mahaiklolahd
 

Dernier (20)

Call Girls Jaipur Just Call 9521753030 Top Class Call Girl Service Available
Call Girls Jaipur Just Call 9521753030 Top Class Call Girl Service AvailableCall Girls Jaipur Just Call 9521753030 Top Class Call Girl Service Available
Call Girls Jaipur Just Call 9521753030 Top Class Call Girl Service Available
 
Premium Bangalore Call Girls Jigani Dail 6378878445 Escort Service For Hot Ma...
Premium Bangalore Call Girls Jigani Dail 6378878445 Escort Service For Hot Ma...Premium Bangalore Call Girls Jigani Dail 6378878445 Escort Service For Hot Ma...
Premium Bangalore Call Girls Jigani Dail 6378878445 Escort Service For Hot Ma...
 
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
 
Model Call Girls In Chennai WhatsApp Booking 7427069034 call girl service 24 ...
Model Call Girls In Chennai WhatsApp Booking 7427069034 call girl service 24 ...Model Call Girls In Chennai WhatsApp Booking 7427069034 call girl service 24 ...
Model Call Girls In Chennai WhatsApp Booking 7427069034 call girl service 24 ...
 
Russian Call Girls Service Jaipur {8445551418} ❤️PALLAVI VIP Jaipur Call Gir...
Russian Call Girls Service  Jaipur {8445551418} ❤️PALLAVI VIP Jaipur Call Gir...Russian Call Girls Service  Jaipur {8445551418} ❤️PALLAVI VIP Jaipur Call Gir...
Russian Call Girls Service Jaipur {8445551418} ❤️PALLAVI VIP Jaipur Call Gir...
 
Russian Call Girls Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service...
Russian Call Girls Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service...Russian Call Girls Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service...
Russian Call Girls Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service...
 
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
 
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
 
Low Rate Call Girls Bangalore {7304373326} ❤️VVIP NISHA Call Girls in Bangalo...
Low Rate Call Girls Bangalore {7304373326} ❤️VVIP NISHA Call Girls in Bangalo...Low Rate Call Girls Bangalore {7304373326} ❤️VVIP NISHA Call Girls in Bangalo...
Low Rate Call Girls Bangalore {7304373326} ❤️VVIP NISHA Call Girls in Bangalo...
 
8980367676 Call Girls In Ahmedabad Escort Service Available 24×7 In Ahmedabad
8980367676 Call Girls In Ahmedabad Escort Service Available 24×7 In Ahmedabad8980367676 Call Girls In Ahmedabad Escort Service Available 24×7 In Ahmedabad
8980367676 Call Girls In Ahmedabad Escort Service Available 24×7 In Ahmedabad
 
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any TimeTop Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
 
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 9332606886 𖠋 Will You Mis...
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 9332606886 𖠋 Will You Mis...The Most Attractive Hyderabad Call Girls Kothapet 𖠋 9332606886 𖠋 Will You Mis...
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 9332606886 𖠋 Will You Mis...
 
9630942363 Genuine Call Girls In Ahmedabad Gujarat Call Girls Service
9630942363 Genuine Call Girls In Ahmedabad Gujarat Call Girls Service9630942363 Genuine Call Girls In Ahmedabad Gujarat Call Girls Service
9630942363 Genuine Call Girls In Ahmedabad Gujarat Call Girls Service
 
Call Girls Rishikesh Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Rishikesh Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Rishikesh Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Rishikesh Just Call 8250077686 Top Class Call Girl Service Available
 
Call Girl In Pune 👉 Just CALL ME: 9352988975 💋 Call Out Call Both With High p...
Call Girl In Pune 👉 Just CALL ME: 9352988975 💋 Call Out Call Both With High p...Call Girl In Pune 👉 Just CALL ME: 9352988975 💋 Call Out Call Both With High p...
Call Girl In Pune 👉 Just CALL ME: 9352988975 💋 Call Out Call Both With High p...
 
Models Call Girls In Hyderabad 9630942363 Hyderabad Call Girl & Hyderabad Esc...
Models Call Girls In Hyderabad 9630942363 Hyderabad Call Girl & Hyderabad Esc...Models Call Girls In Hyderabad 9630942363 Hyderabad Call Girl & Hyderabad Esc...
Models Call Girls In Hyderabad 9630942363 Hyderabad Call Girl & Hyderabad Esc...
 
🌹Attapur⬅️ Vip Call Girls Hyderabad 📱9352852248 Book Well Trand Call Girls In...
🌹Attapur⬅️ Vip Call Girls Hyderabad 📱9352852248 Book Well Trand Call Girls In...🌹Attapur⬅️ Vip Call Girls Hyderabad 📱9352852248 Book Well Trand Call Girls In...
🌹Attapur⬅️ Vip Call Girls Hyderabad 📱9352852248 Book Well Trand Call Girls In...
 
Call Girls Service Jaipur {9521753030 } ❤️VVIP BHAWNA Call Girl in Jaipur Raj...
Call Girls Service Jaipur {9521753030 } ❤️VVIP BHAWNA Call Girl in Jaipur Raj...Call Girls Service Jaipur {9521753030 } ❤️VVIP BHAWNA Call Girl in Jaipur Raj...
Call Girls Service Jaipur {9521753030 } ❤️VVIP BHAWNA Call Girl in Jaipur Raj...
 
Independent Call Girls Service Mohali Sector 116 | 6367187148 | Call Girl Ser...
Independent Call Girls Service Mohali Sector 116 | 6367187148 | Call Girl Ser...Independent Call Girls Service Mohali Sector 116 | 6367187148 | Call Girl Ser...
Independent Call Girls Service Mohali Sector 116 | 6367187148 | Call Girl Ser...
 
Call Girl in Indore 8827247818 {LowPrice} ❤️ (ahana) Indore Call Girls * UPA...
Call Girl in Indore 8827247818 {LowPrice} ❤️ (ahana) Indore Call Girls  * UPA...Call Girl in Indore 8827247818 {LowPrice} ❤️ (ahana) Indore Call Girls  * UPA...
Call Girl in Indore 8827247818 {LowPrice} ❤️ (ahana) Indore Call Girls * UPA...
 

enzymes.ppt

  • 2. Importance • Enzymes play an important role in Metabolism, Diagnosis, and Therapeutics. • All biochemical reactions are enzyme catalyzed in the living organism. • Level of enzyme in blood are of diagnostic importance e.g. it is a good indicator in disease such as myocardial infarction. • Enzyme can be used therapeutically such as digestive enzymes.
  • 3. • Virtually all reactions in the body are mediated by enzymes, which are protein catalysts, usually within cells, that increase the rate of reactions without being changed in the overall process
  • 4. Define enzymes (Enzymes as Biological Catalysts) • Enzymes are proteins that increase the rate of reaction by lowering the energy of activation • They catalyze nearly all the chemical reactions taking place in the cells of the body. • Not altered or consumed during reaction. • Reusable
  • 5. NOMENCLATURE • Each enzyme is assigned two names. The first is its short, recommended name, convenient for everyday use. • The second is the more complete systematic name, which is used when an enzyme must be identified without ambiguity
  • 6. Recommended name Most commonly used enzyme names have the suffix “-ase” attached to the substrate of the reaction, such as glucosidase and urease. Names of other enzymes include a description of the action performed, for example, lactate dehydrogenase (LDH) and adenylyl cyclase. Some enzymes retain their original trivial names, which give no hint of the associated enzymatic reaction, for example, trypsin and pepsin.
  • 7. Systematic name • In the systematic naming system, enzymes are divided into six major classes each with numerous subgroups. For a given enzyme, the suffix -ase is attached to a fairly complete description of the chemical reaction catalyzed, including the names of all the substrates, for example, lactate:nicotinamide adenine dinucleotide (NAD+) oxidoreductase.
  • 8. ACTIVE SITES • Enzyme molecules contain a special pocket or cleft called the active sites.
  • 9. Lock-and-Key Model • In the lock-and-key model of enzyme action: - the active site has a rigid shape - only substrates with the matching shape can fit - the substrate is a key that fits the lock of the active site This explains enzyme specificity This explains the loss of activity when enzymes denature
  • 10. APOENZYME and HOLOENZYME • The enzyme without its non protein moiety is termed as apoenzyme and it is inactive. • Holoenzyme is an active enzyme with its non protein component.
  • 11. Important Terms to Understand Biochemical Nature And Activity of Enzymes • Cofactor: –A cofactor is a non-protein chemical compound that is bound (either tightly or loosely) to an enzyme and is required for catalysis. –Types of Cofactors: • Coenzymes. • Prosthetic groups.
  • 12. Types of Cofactors • Coenzyme: The non-protein component, loosely bound to apoenzyme by non-covalent bond. Coenzymes or cosubstrates only transiently associate with the enzyme and dissociate from the enzyme in an altered state (for example, NAD+). • Examples : vitamins or compound derived from vitamins. • Prosthetic group The non-protein component, tightly bound to the apoenzyme by covalent bonds is called a Prosthetic group. • permanently associated with the enzyme
  • 13. Enzyme Specificity • Enzymes have varying degrees of specificity for substrates • Enzymes may recognize and catalyze: - a single substrate - a group of similar substrates - a particular type of bond
  • 14.
  • 15. Important Terms to Understand Biochemical Nature And Activity of Enzymes Activation energy or Energy of Activation: • All chemical reactions require some amount of energy to get them started. OR • It is First push to start reaction. This energy is called activation energy.
  • 16. Mechanism of Action of Enzymes • Enzymes increase reaction rates by decreasing the Activation energy: • Enzyme-Substrate Interactions: ‒Formation of Enzyme substrate complex by: ‒Lock-and-Key Model ‒Induced Fit Model
  • 18.
  • 19. Lock-and-Key Model • In the lock-and-key model of enzyme action: - the active site has a rigid shape - only substrates with the matching shape can fit - the substrate is a key that fits the lock of the active site • This is an older model, however, and does not work for all enzymes
  • 20. Induced Fit Model • In the induced-fit model of enzyme action: - the active site is flexible, not rigid - the shapes of the enzyme, active site, and substrate adjust to maximumize the fit, which improves catalysis - there is a greater range of substrate specificity • This model is more consistent with a wider range of enzymes
  • 21. Enzyme-substrate complex • Step 1: • Enzyme and substrate combine to form complex • E + S ES • Enzyme Substrate Complex +
  • 22. Enzyme-product complex • Step 2: • An enzyme-product complex is formed. • ES EP ES EP transition state
  • 23. Product • The enzyme and product separate • EP E + P The product is made Enzyme is ready for another substrate. EP
  • 24. 28 What Affects Enzyme Activity? • Three factors: 1. Environmental Conditions 2. Cofactors and Coenzymes 3. Enzyme Inhibitors
  • 25. 29 1. Environmental Conditions 1. Extreme Temperature are the most dangerous - high temps may denature (unfold) the enzyme. 2. pH (most like 6 - 8 pH near neutral) 3. substrate concentration .
  • 26. 30 2. Cofactors and Coenzymes • Inorganic substances (zinc, iron) and vitamins (respectively) are sometimes need for proper enzymatic activity. • Example: Iron must be present in the quaternary structure - hemoglobin in order for it to pick up oxygen.
  • 27. Environmental factors • Optimum temperature The temp at which enzymatic reaction occur fastest.
  • 28. Environmental factors • pH also affects the rate of enzyme- substrate complexes –Most enzymes have an optimum pH of around 7 (neutral) • However, some prefer acidic or basic conditions
  • 29. Substrate Concentration and Reaction Rate • The rate of reaction increases as substrate concentration increases (at constant enzyme concentration) • Maximum activity occurs when the enzyme is saturated (when all enzymes are binding substrate)
  • 31. Michaelis-Menten Kinetics V [S] V = Reaction velocity Rate of P formation Vmax V = Vm* [S] Km + [S]
  • 32. Michaelis-Menten Kinetics • Adding S  More P formation  Faster V • Eventually, reach Vmax
  • 34. • 1. Km characteristics: Km, the Michaelis constant, is characteristic of an enzyme and its particular substrate and reflects the affinity of the enzyme for that substrate. Km is numerically equal to the substrate concentration at which the reaction velocity is equal to one half Vmax. Km does not vary with enzyme concentration. • a. Small Km: A numerically small (low) Km reflects a high affinity of the enzyme for substrate, because a low concentration of substrate is needed to half-saturate the enzyme—that is, to reach a velocity that is one half Vmax . • b. Large Km: A numerically large (high) Km reflects a low affinity of enzyme for substrate because a high concentration of substrate is needed to half saturate the enzyme.
  • 35. Michaelis Constant (Km) V = Vm * [S] Km + [S] Key Points: 1.Km has same units as [S] 2.At some point on graph, Km must equal [S]
  • 36. V = Vm * [S] = Vm * [S] = Vm [S] + [S] 2 [S] 2 When V = Vm/2 [S] = Km
  • 37. Vmax V = Vm* [S] Km + [S] Km [S]
  • 38. V = Vm* [S] Km + [S] • Small Km  Vm reached at low concentration [S] • Large Km  Vm reached at high concentration [S] Vmax Vmax/2 Km [S]
  • 39. V = Vm* [S] Km + [S] Michaelis Constant (Km) • Small Km  Substrate binds easily at low [S] • High affinity substrate for enzyme • Large Km  Low affinity substrate for enzyme Vmax Vmax/2
  • 40. Key Points • Km is characteristic of each substrate/enzyme • Vm depends on amount of enzyme present • Can determine Vm/Km from • Michaelis Menten plot V vs. [S] • Lineweaver Burk plot 1/V vs. 1/[S]
  • 41. Lineweaver Burk Plot V = Vm* [S] Km + [S] 1 = Km + [S] = V Vm [S] Km + [S] Vm [S] Vm[S] 1 = C * 1 + 1 V [S] Vm
  • 43. Enzyme Inhibitors S I E Competitive Competes for same site as S Lots of S will overcome this S E P Non-competitive Binds different site S Changes S binding site S cannot overcome this Effect similar to no enzyme I
  • 45. Vmax With inhibitor Vmax Vmax/2 Vmax/2 Lower Vm Same Km Km [S] Non-competitive Inhibitor
  • 46. Enzyme Inhibitors • Competive - mimic substrate, may block active site, but may dislodge it.
  • 48. Competitive inhibition • This type of inhibition occurs when the inhibitor binds reversibly to the same site that the substrate would normally occupy and, therefore, competes with the substrate for binding to the enzyme active site. • 1. Effect on Vmax: The effect of a competitive inhibitor is reversed by increasing the concentration of substrate. At a sufficiently high [S], the reaction velocity reaches the Vmax observed in the absence of inhibitor, that is, Vmax is unchanged in the presence of a competitive inhibitor • 2. Effect on Km: A competitive inhibitor increases the apparent Km for a given substrate. This means that, in the presence of a competitive inhibitor, more substrate is needed to achieve half Vmax.
  • 49. Noncompetitive inhibition • This type of inhibition is recognized by its characteristic effect causing a decrease in Vmax. Noncompetitive inhibition occurs when the inhibitor and substrate bind at different sites on the enzyme. The noncompetitive inhibitor can bind either free enzyme or the ES complex, thereby preventing the reaction from occurring • 1. Effect on Vmax: Effects of a noncompetitive inhibitor cannot b overcome by increasing the concentration of substrate. Therefore, noncompetitive inhibitors decrease the apparent Vmax of the reaction. • 2. Effect on Km: Noncompetitive inhibitors do not interfere with the binding of substrate to enzyme. Therefore, the enzyme shows the same Km in the presence or absence of the noncompetitive inhibitor, that is, Km is unchanged in the presence of a noncompetitive inhibitor
  • 50. Naming Enzymes • The name of an enzyme in many cases end in –ase • For example, sucrase catalyzes the hydrolysis of sucrose • The name describes the function of the enzyme For example, oxidases catalyze oxidation reactions • Sometimes common names are used, particularly for the digestion enzymes such as pepsin and trypsin • Some names describe both the substrate and the function • For example, alcohol dehydrogenase oxides ethanol
  • 51. Enzymes Are Classified into six functional Classes (EC number Classification) by the International Union of Biochemists (I.U.B.). on the Basis of the Types of Reactions That They Catalyze • EC 1. Oxidoreductases • EC 2. Transferases • EC 3. Hydrolases • EC 4. Lyases • EC 5. Isomerases • EC 6. Ligases
  • 52. Principle of the international classification Each enzyme has classification number consisting of four digits: Example, EC: (2.7.1.1) HEXOKINASE
  • 53. • EC: (2.7.1.1) these components indicate the following groups of enzymes: • 2. IS CLASS (TRANSFERASE) • 7. IS SUBCLASS (TRANSFER OF PHOSPHATE) • 1. IS SUB-SUB CLASS (ALCOHOL IS PHOSPHATE ACCEPTOR) • 1. SPECIFIC NAME ATP,D-HEXOSE-6-PHOSPHOTRANSFERASE (Hexokinase)
  • 54. H O OH H OH H OH CH2OH H OH H H O OH H OH H OH CH2OPO3 2 H OH H 2 3 4 5 6 1 1 6 5 4 3 2 ATP ADP Mg2+ glucose glucose-6-phosphate Hexokinase 1. Hexokinase catalyzes: Glucose + ATP  glucose-6-P + ADP
  • 57.
  • 58.
  • 59. Blood plasma enzyme levels in disease states • Many diseases cause tissue damage that includes the rupture of plasma membranes and lysis of cells in the tissue. As a result, the damaged cells release their contents into fluids, including the blood plasma, causing an increased concentration of the enzymes in the plasma. • These enzymes are normally intracellular and cannot catalyze reactions when present outside their normal cellular location. However, these enzymes are routinely measured in patient’s blood samples for diagnostic purposes. • The level of specific enzyme activity in the plasma frequently correlates with the extent of tissue damage. Therefore, determining the extent of elevation of a particular enzyme activity in the blood plasma is often useful in evaluating the extent of tissue damage, response to therapies, and the prognosis for the patient.
  • 60. • Some enzymes show relatively high activity in only one or a few tissues. Therefore, the presence of increased levels of these enzymes in blood plasma reflects damage to the corresponding tissue. For example, the enzyme alanine aminotransferase (ALT) is one of many enzymes that are abundant in the liver. The appearance of elevated levels of ALT in plasma signals possible damage to hepatic tissue. • Measurement of ALT released into a patient’s blood from dying cells is part of the liver function test panel. Increases in plasma levels of enzymes with a wide tissue distribution provide a less specific indication of the site of cellular injury and limits their diagnostic value.