SlideShare une entreprise Scribd logo
1  sur  43
GRIHA
GREEN RATING FOR INTEGRETATED HABITAT BUILDING
PRESENTED BY:
PRAMISTHA JOSHI(70029)
RINA THAPA (70034)
ROZINA NAKARMI (70035)
SHREYA SHRESTHA(70044)
SHRISTI SHAKYA (70045)
CONTENTS
1. BACKGROUND
2. GOALS AND NEED OF GREEN BUILDING
3. BENEFITS OF GREEN BUILDING
4. INTRODUCTION OF GRIHA
5. EVOLUTION OF GRIHA
6. OBJECTIVES OF GRIHA
7. WHY CHOOSE GRIHA (COMPARE WITH LEED INDIA)
8. FIVE ‘R’ PHILOSOPHY
9. GRIHA PROCEDURE
10. GRIHA RATING SYSTEM
11. GRIHA OVERVIEW
12. GREEN BUILDING EXAMPLE USING GRIHA
13. COMPARATIVE ANALYSIS OF GRIHA WITH OTHER RATING
SYSTEM
14. CONCLUSION
BACKGROUND
WHAT IS GREEN BUILDING?
 A ‘green’ building is a building that, in its design, construction or operation,
reduces or eliminates negative impacts, and can create positive impacts, on
our climate and natural environment. Green buildings preserve precious
natural resources and improve our quality of life.
GOAL OF GREEN BUILDING
 To help to sustain the environment without disrupting the natural habitats
around it
 To promote a better planet earth, and a better place for us all to live
 Reduce trash, pollution and degradation of environment.
 Create a sound indoor environment for living and working purpose.
FEATURES WHICH CAN MAKE A BUILDING ‘GREEN’
 Efficient use of energy, water and other resources
 Use of renewable energy, such as solar energy
 Pollution and waste reduction measures, and the enabling of re-use and
recycling
 Good indoor environmental air quality
 Use of materials that are non-toxic, ethical and sustainable
 Creating resilient and flexible structures
 Consideration of the environment in design, construction and operation
 Consideration of the quality of life of occupants in design, construction
and operation
 A design that enables adaptation to a changing environment
BENEFITS OF GREEN BUILDING
 ENVIRONMENTAL BENEFITS:
 Reduce wastage of water
 Conserve and restore natural resources
 Improve air and water quality
 Enhance protect biodiversity and ecosystems
 ECONOMIC BENEFITS:
 Reduce operating costs
 Improve occupant productivity
 Create market for green product and services
 SOCIAL BENEFITS:
 Improve quality of life
 Minimize strain on local infrastructure
 Improve occupant health and comfort
WHAT IS GREEN BUILDING RATING SYSTEM?
 A rating system can be defined as a set of prerequisites and requirements
that a project team must fulfill in order to receive certification.
TYPES OF RATING SYSTEM
 BREEAM- United Kingdom
 LEED- United States
 Green globes- Canada
 Green star- Australia
 BEAM- Hong Kong
 EEWH- Taiwan
 GBCS- South Korea
 CASBEE- Japan
 GRIHA- India
GREEN BUILDING RATING SYSTEM
INTRODUCTION OF GRIHA
 WHAT IS GRIHA?
Name: GRIHA is an acronym for Green Rating for Integrated Habitat
Assessment.
Country: INDIA
Established : 2007
 GRIHA is a Sanskrit word meaning – ‘Abode’.
 A innovative tool for sustainable development by the united nations
 A tool for implementing renewable energy in the building sector by
‘The Climate Reality project’- an organization founded by Mr. Al Gore;
and UNEP-SBCI has developed the “Common Carbon Metric” (kWhr/sq
m/annum), for international building energy data collection -based on
inputs from GRIHA (among others)
There are three primary Rating systems in India:
 GRIHA (Green Rating for Integrated Habitat Assessment)
Green Rating for Integrated Habitat Assessment (GRIHA) is India’s own rating
system jointly developed by TERI and the Ministry of New and Renewable
Energy, Government of India.
 IGBC (Indian Green Building Council)
LEED is developed by the U.S. Green Building Council (USGBC), the
organization promoting sustainability through Green Buildings.
 BEE (Bureau of Energy Efficiency)
It has star based rating system: more stars mean more energy
efficiency. BEE has developed the Energy Performance Index (EPI). The unit
of Kilo watt hours per square meter per year is considered for rating the
building and especially targets air conditioned and non-air conditioned office
buildings.
EVOLUTION OF GRIHA
OBJECTIVE OF GRIHA
 Minimize a building’s resource consumption, waste
generation, and overall ecological impact
 Evaluates the environmental performance of a building
holistically over its entire life cycle, thereby providing a
definitive standard for what constitutes a ‘green building’
 Based on accepted energy and environmental principles,
seeks to strike a balance between the established practices
and emerging concepts
 Reduced energy consumption without sacrificing the comfort
level
 Reduced destruction of natural areas, habitats, and
biodiversity, and reduced soil loss from erosion etc.
WHY CHOOSE GRIHA?
 Two rating systems in India: LEED India and GRIHA
 LEED-India adapted from United States Green Building Council’s
(USGBC) is primarily based on per capita energy consumption in
developed nations like the US which does not work in India since
India’s per capita energy consumption is very low compared to
developed nations.
 GRIHA is more suited to Indian climate. Also unlike LEED, it does not
promote usage of certain products like glass and air-conditioning
equipment.
FIVE ‘R’ PHILOSOPHY
 Refuse: To blindly adopt international trends, materials,
technologies, products, etc. Especially in areas where local
substitutes are available.
 Reduce: The dependence on high energy products, systems,
processes, etc.
 Reuse: Materials, products, traditional technologies so as to reduce
the costs incurred in designing buildings.
 Recycle: All possible wastes generated from the building site, during
construction, operation and demolition.
 Reinvent: Engineering systems, designs and practices such that India
creates global examples that the world can follow rather than India
following the international examples.
GRIHA PROCEDURE
ELIGIBILITY
 Except for industrial complexes, all buildings (offices, institutions,
hotels, hospitals, housing complexes, etc.) in the pre-design/design
stage are eligible for certification under GRIHA.
 ADaRSH (Association for Development and Research of Sustainable
Habitats), GRIHA secretariat helps evaluate whether the project is
eligible for rating or not.
GRIHA PROCEDURE
REGISTRATION PROCESS
 Building project may register through the GRIHA website
(http://www.grihaindia.org)
 The registration process allows access to essential information related
to rating such as:
1. Application forms
2. List of submissions
3. Score points
4. The weightage system
5. Online documentation
GRIHA PROCEDURE
GRIHA also provides one day training session for the registered projects
which includes:
 Overview of the green building design
 Explanation of the rating system and criteria and points related to
rating
 Online access to the rating tool
 Documentation process through use of online forms
 Evaluation process
GRIHA PROCEDURE
EVALUATION PROCESS
1. Pre documentation stage: A team from ADaRSH along with the client’s
Integrated Design Team meet and determine the points being targeted by
the project.
2. Post documentation stage: All necessary proof through documents for
the points targeted under various criteria is submitted.
Evaluation by third party regional evaluators.
To determine the final rating that shall be awarded to the project.
GRIHA PROCEDURE
After the necessary documentation is uploaded, and systems commissioned on
the site, the buildings are evaluated and rated in three-tier process.
The preliminary evaluation is done by a team of experts from ADaRSH.
 Reviewing of the mandatory points and checking for compliance. The
project is rejected if mandatory criteria are not complied with.
 Evaluation of the optional criteria and estimation of the total number of
achievable points.
 All compliance documents are examined through the appraisal process as
outlined by GRIHA.
Evaluation report given to members of an evaluation committee: external
experts in building and landscape design, lighting and HVAC design, renewable
energy, water and waste management, and building materials.
The members independently review and award points, a provisional GRIHA
rating is awarded after evaluation of document is submitted.
GRIHA RATING SYSTEM
VARIANTS OF GRIHA
 SVAGRIHA FOR BUILDING AREA- 100-2499 sqm
 GRIHA FOR BUILDING AREA-2500-1,50,000 sqm
 GRIHA LD FOR BUILDING AREA-> 50 hectare site area
GRIHA VERISON 2015
 The latest version of GRIHA, GRIHA version 2015 (GRIHA V2015), was introduced
in January 2015.
 The GRIHA V 2015 rating system consists of 31 criteria
 categorized under various sections such as Site Planning, Construction
Management, Occupant Comfort and Wellbeing, Sustainable Building
Materials, Performance Monitoring and Validation, and Innovation
Eligibility
 All buildings, which are in the design stage and have built up area more than
2,500 m2, are eligible for certification under GRIHA.
GRIHA RATING CRITERIA
Criteria and their weightage
 GRIHA is a performance-oriented system where points are earned for meeting the
design and performance intent of the criteria.
 Each criterion has certain points assigned to it. It means that a project demonstrating
compliance with a criterion would achieve the associated points.
 GRIHA is a 100-point system consisting of some core points
 Different levels of certification (one star to five stars) are awarded based on the
number of points earned. The minimum points required for certification are 25.
GRIHA RATING CRITERIA
EVALUATED IN DIFFERENT STAGES
 Pre-construction stage (intra- and inter-site issues)
 Building planning and construction stages (issues of resource conservation and
reduction in resource demand, resource utilization efficiency, resource recovery and
reuse, and provisions for occupant health and well being). The prime 4 resources
that are considered in this section are land, water, energy, air, and green cover.
 Building operation and maintenance stage (issues of operation and maintenance of
building systems and processes, monitoring and recording of consumption, and
occupant health and well being, and also issues that affect the global and local
environment).
GRIHA RATING CRITERIA
GRIHA RATING CRITERIA
GRIHA OVERVIEW
The points assigned to different criteria is based on survey conducted to
better reflect current resource priorities of India. The point split of various
sections is given below:
A Paradigm of self sufficiency - INDIRA PARYAVARAN BHAWAN
 This is a project of ministry of environment
and forests for construction of new office
building at New Delhi.
 The basic design concept of the project is
to make the net zero energy green building.
Location = Jor Bagh,Delhi
Plot area = 9565 sq m
Maximum ground coverage = 30%
Far = 200
Height = 35
Built up area = 31400 sqm
Superstructure = 18726 sqm (8 storey )
Basement = 12675 sqm (3 Basement)
Year of completion = 2013
Project Leader = Mr.P.K.Gupta
Architectural Design = Mr.R.K. Koshal
Landscape Design = Mr.Sodhi
Interior Design = Kothari Associates
MEASURES FOR SITE
 Wider front setback (22m) to protect front tree line
 Preserve the integrity of the green street
 Preservation of the local ecology ,tree cutting approvals for
46,but only 19 cut,11 tress transplanted
 Excavated soil reutilized at other construction sites and the zoo
ARCHITECTURAL CONCEPT
 Effective ventillation by Orientating The Building E-W
 Optimum integration with nature Separating Out Different Blocks
with connecting corridors
 A huge Central courtyard
 Plan pedestrian axis to East ,North and West entrance without
crisscrossing vehicles
TOWARDS ENERGY POSITIVE APPROACH - RENEWABLE
 Façade has been designed to receive
70% of natural day light
 Inner courtyard serves as a light
well.
 Provision of solar photovoltaics
 Photovoltaic stepping towards the
south side
 Shades the roof
Renewable Energy
 Solar PV System of 800 kW capacity
 Total Area : 6000 m
2
 Total Area of panels : 4650 m
2
 No of panels : 2,844
 Annual Energy Generation : 14.3 lakh
unit
Façade of the building
Shadding from summer sun
while allowing in winter sun
 Central courtyard helps in air movement as natural ventilation
happens due to stack effect.
Brown and beige coloured stone
jaalis add to cross ventilation
The terrace garden utilizes preserved top
soil extracted during the initial
excavation
ENERGY POSITIVE APPROACH
ENERGY POSITIVE APPROACH
 More than 50% area
outside the building
is soft with plantation
and grassing.
 Circulation roads and
pathways soft with
grass paver blocks to
enable ground water
recharge Polymer plastics grids turn the
visual asphalt fire tender road into a
soft paved space
Preservation of existing
foliage increasing the front
set back.
SITE AND WASTE WATER MANAGEMENT
To reduce landscape water requirements
 Drip irrigation
 Use of native species of shrubs and trees
having low water demand in landscapping
 Low lawn areas so as to reduce water
demand
 Reuse of treated water for irrigation
Reduce water use in building
 Dual flushing cistern
 Low discharge fixtures
 Waste water treatment
 Reuse of treated water for irrigation and
cooling towers of HVAC
 Rain water harvesting –efficient water use
during construction
Drip
irrigation
Appropriate shading from summer sun ,while allowing in winter sun
MATERIALS AND CONSTRUCTION TECHNIQUES
 Ready Mix Concrete with PPC having more than 30% fly ash content -
Fly ash brick.
 Stone available in nearby area for Terrazzo flooring
 AAC (Aerated Autoclaved Cement ) blocks.
 Renewable bamboo jute composite material for door frames &
shutters.
 UPVC windows with hermetically sealed double using low heat
transmittance index glass.
 Use of high reflectance terrace tiles for low heat ingress.
 Avoided aluminum as it has high embedded energy
 Sandstone jaalis , stone and ferro-cement jaalis
 Grass paver blocks for ground water recharge
 Light shelves for bringing in diffused light
ENERGY CONSUMPTION ON SITE - ZERO ENERGY
 Extra efficient Solar photo voltaic (SPV) proposed (Terrace and
projections) =800 kW
 Energy produced in building/year = 14,91,000 Kwh
 Energy consumption for building/year = 14,21,000 kWH
Geo thermal heat exchange system
 180 vertical bores to the depth of 80 meter all along
the building premises.
 Minimum 3 meter distance is maintained between any
two bores.
 Each bore has HDPE pipe U-loop (32mm outer diameter)
and grouted with Bentonite Slurry.
 Each U-Loop is connected to the condenser
water pipe system in the central air conditioning plant
room.
 One U-Loop has 0.9 TR heat rejection capacity.
Combined together, 160 TR of heat rejection is
obtained without using a cooling tower.
 Water pumping and treatment costs gets eliminated.
 Saves cooling tower fan energy.
HVAC system - Chilled beam system
 160 TR of air conditioning load of the building is met
through Chilled beam system.
 Chilled beam are used from second to sixth floor. This
reduces energy use by 40 % compared to a conventional
system.
 HVAC load of the buildings is 40 m2/TR, about 50% more
efficient than ECBC requirements (20 m2/TR)
 Chilled beams save AHU/FCU fan power consumption
by approximate 50 kW.
 Fresh supply air is pre cooled from toilet exhaust air
through sensible & latent heat energy recovery wheel.
NET ZERO DESIGN
 IPB reduces energy requirements by 70% overall by conventional
 N-S orientation – Limiting WWR (Window to wall ratios )
 Insulation on wall and roof
 Extensive greenery to reduce heat load
 Maximizing day lighting to reduce lighting loads
 Extremly low lighting power density -5 w/sqm
 Planning to minimize AC loads (keeping open atrium for cross
ventilation, non conditioned lobbies)
 Efficient HVAC with screw chillers , VFD’S , Chilled beams
 Ground based heat exchanger for condenser water
 Energy efficient appliances (5 star BEE - Bureau of energy
efficiency)
S.
N.
DESCRIPTION CONVENTIO
NAL
IPB
1 Air –
conditioning
load
150 sqft
/TR
450 sqft
/TR
2 Lighting power
density
1.1 W/ sqft
(ECBC)
0.5 W/
sqft
3 Electrical load 10 W /sqft 4.3 W
/sqft.
CRITERIONS OF GRIHA FULFILLED – SITE PLANNING
NO. CRITERION POINTS POINTS
TARGETED
1 Site selection 1
2 Preserve and protect landscape during construction 5 5
3 Soil conservation (till post construction) 2 2
4 Design to include existing site features 4 4
5 Reduce hard paving on site and /or provide shaded hard –paved
surfaces
2 2
6 Enhance outdoor lighting system efficiency and use renewable
energy system for meeting outdoor lighting requirements
3 3
7 Plan utilities efficiency and optimize on site circulation
efficiency
3 3
8 Provide at least ,minimum level of sanitation /safety facilities
for construction workers
2 2
BUILDING PLANNING AND CONSTRUCTION STAGE
SN CRITERION POINTS POINTS
TARGETED
9 Reduce air pollution during construction 2 2
10 Reduce landscape water requirement 3 2
11 Reduce water use in the building 2 2
12 Efficient water use during construction 1 1
13 Optimize building design to reduce conventional energy
demand
8 7
14 Optimize energy performance of building within specified
comfort limits
16 16
15 Utilization of fly –ash in building in structure 6 4
16 Reduce volume ,weight and construction time by adopting
efficient technologies (such as pre-cast systems)
4 2
RECYCLE,RECHARGE AND REUSE
SN CRITERION POINTS POINTS
TARGETED
17 Use low energy material in interiors 4 4
18 Renewable energy utilization 5 5
19 Renewable energy based hot water systems 3 3
20 Waste water treatment 2 2
21 Water cycle and reuse(including rain water) 5 3
WASTE MANAGEMENT
22 Reduction in waste water during construction 1 1
23 Efficient waste generation 1 1
24 Storage and disposal of wastes 1 1
25 Resources recovery from waste 2 2
HEALTH AND WELL BEING
SN CRITERION POINTS POINTS
TARGETED
26 Use low –VOC paints/adhesives/sealants 3 3
27 Minimize azone depleting substances 1 1
28 Ensure water quality 2 2
29 Acceptable outdoor and indoor noise levels 2 2
30 Tobacco smoke controls 1 1
31 Provide at least the minimum level of
accessibility for persons with disabilities
1 1
32 Energy audit and validation Mandatory
33 Operation and maintenance 2 2
34 Innovation points 4 4
COMPARATIVE ANALYSIS WITH OTHER RATING SYSTEM
CONTENTS GRIHA BREEAM LEED CASBEE
MANAGING BODY TERI building
research
establishment
(BRE)
US green building Japan Sustainable Building
Consortium(JSBC)
ESTABLISHED 2007 1990 1998 2001
CATEGORIES/CREDITS •Sustainable site
•Water management
•Energy
optimization
•Waste management
•Sustainable
building materials
•Health and well
being
•Building operation
•Innovation
•Health and
well being
•Transport
•Materials
•Waste
management
•Land use and
ecology
•Innovation
•Location and
transportation
•Sustainable site
•Energy and
atmosphere
•Indoor
environment
quality
•Innovation
•Regional priority
•Built environment
•Indoor environment
•Quality of service
•Outdoor environment on
site
•Built load
•Energy resources and
material
•Off site environment
CONTENTS GRIHA BREEAM LEED CASBEE
BUILDING TYPE Commercial, residential,
institutional, courts,
educations, healthcare,
prison
Office retail,
industrial units
Health care facilities,
schools, home, entire
neighborhood
Residential, and non
residential type lf
building
GEOGRAPHICAL
FOCUS
Local, India and nearby
area
National National Global
CERTIFIATION COST <5000 sq.m-INR 1,50,000
5,001 sq.m to 50,000 sq.m-
INR 1,50,000 + INR 3.5 per
additional sq.m over &
above 5,000 sq.m
>50,001 sq.m-INR 3,10,000
$1290 each stage $1250-$17500 $3570-$4500
RESULT
REPRESENTATION
RESULT PRODUCT •certificate certificate •Award letter,
certificate and plaque
•Certificate and
website published
results
REFERENCE
 https://bharatvasandani.wordpress.com/2010/06/09/leed-vs-griha-putting-
indian-developers-in-a-quandary/
 http://www.grihaindia.org/#&home
 https://www.slideshare.net/sandeepnj7/certifcation-of-building-using-griha-
rating-system-60638755?qid=58b7d73d-14b6-4540-b694-
1f7443e491d4&v=&b=&from_search=5
 http://greencleanguide.com/national-mission-on-sustainable-habitat/
 https://www.palmexindia.com/introduction-griha-apply-indias-best-known-
green-rating-buildings/
 http://www.indiaenvironmentportal.org.in/files/national-rating-system-
green-buildings-GRIHA.pdf
 http://www.slideshare.net/supergirlanchal/indira-paryavaran-bhawan-and-
griha-49343513

Contenu connexe

Tendances

leed certified buildings examplsPresentation team work
leed certified buildings examplsPresentation team workleed certified buildings examplsPresentation team work
leed certified buildings examplsPresentation team workgatti Teja
 
CII- SOHRABJI GODREJ GREEN BUSINESS CENTER CASE STUDY PPT
CII- SOHRABJI GODREJ GREEN BUSINESS CENTER CASE STUDY PPT CII- SOHRABJI GODREJ GREEN BUSINESS CENTER CASE STUDY PPT
CII- SOHRABJI GODREJ GREEN BUSINESS CENTER CASE STUDY PPT vk78512
 
Gandhinagar town planning and master plan study
Gandhinagar town planning and master plan studyGandhinagar town planning and master plan study
Gandhinagar town planning and master plan studyAnoushka Tyagi
 
Architectural Appraisal - CII- Sohrabji Godrej Green Business Centre Hyderabad
Architectural Appraisal  - CII- Sohrabji Godrej Green Business Centre HyderabadArchitectural Appraisal  - CII- Sohrabji Godrej Green Business Centre Hyderabad
Architectural Appraisal - CII- Sohrabji Godrej Green Business Centre HyderabadPrastara Architects
 
Auroville - City Planning
Auroville - City PlanningAuroville - City Planning
Auroville - City Planningams_5686
 
Indian Green Building Council (IGBC) Green New Buildings – 2014
Indian Green Building Council (IGBC) Green New Buildings – 2014Indian Green Building Council (IGBC) Green New Buildings – 2014
Indian Green Building Council (IGBC) Green New Buildings – 2014Hrishikesh Satpute
 
RGIA, Hyderabad
RGIA, HyderabadRGIA, Hyderabad
RGIA, Hyderabadshiv404
 
buildings rated by GRIHA and LEED, sustainable buildings around the wold, gre...
buildings rated by GRIHA and LEED, sustainable buildings around the wold, gre...buildings rated by GRIHA and LEED, sustainable buildings around the wold, gre...
buildings rated by GRIHA and LEED, sustainable buildings around the wold, gre...DhvaniR2
 
Bhubaneshwar Planning
Bhubaneshwar Planning Bhubaneshwar Planning
Bhubaneshwar Planning Rajat Nainwal
 
Leed rating system with case study
Leed rating system with case studyLeed rating system with case study
Leed rating system with case studyInu shakya
 
Architecture and Planning of jaipur
Architecture and Planning of jaipurArchitecture and Planning of jaipur
Architecture and Planning of jaipursaumyakohli
 
Energy Efficiency Case Studies(India and Abroad)
Energy Efficiency Case Studies(India and Abroad)Energy Efficiency Case Studies(India and Abroad)
Energy Efficiency Case Studies(India and Abroad)Sahil Kaundal
 
Green Building in India with Case Study
Green Building in India with Case StudyGreen Building in India with Case Study
Green Building in India with Case StudyAjayashKekan
 

Tendances (20)

IGBC
IGBCIGBC
IGBC
 
IGBC
IGBCIGBC
IGBC
 
GRIHA RATING SYSTEM
GRIHA RATING SYSTEMGRIHA RATING SYSTEM
GRIHA RATING SYSTEM
 
leed certified buildings examplsPresentation team work
leed certified buildings examplsPresentation team workleed certified buildings examplsPresentation team work
leed certified buildings examplsPresentation team work
 
CII- SOHRABJI GODREJ GREEN BUSINESS CENTER CASE STUDY PPT
CII- SOHRABJI GODREJ GREEN BUSINESS CENTER CASE STUDY PPT CII- SOHRABJI GODREJ GREEN BUSINESS CENTER CASE STUDY PPT
CII- SOHRABJI GODREJ GREEN BUSINESS CENTER CASE STUDY PPT
 
Gandhinagar town planning and master plan study
Gandhinagar town planning and master plan studyGandhinagar town planning and master plan study
Gandhinagar town planning and master plan study
 
Navi mumbai
Navi mumbaiNavi mumbai
Navi mumbai
 
Architectural Appraisal - CII- Sohrabji Godrej Green Business Centre Hyderabad
Architectural Appraisal  - CII- Sohrabji Godrej Green Business Centre HyderabadArchitectural Appraisal  - CII- Sohrabji Godrej Green Business Centre Hyderabad
Architectural Appraisal - CII- Sohrabji Godrej Green Business Centre Hyderabad
 
Griha
GrihaGriha
Griha
 
Moderate climate
Moderate climateModerate climate
Moderate climate
 
Auroville - City Planning
Auroville - City PlanningAuroville - City Planning
Auroville - City Planning
 
Indian Green Building Council (IGBC) Green New Buildings – 2014
Indian Green Building Council (IGBC) Green New Buildings – 2014Indian Green Building Council (IGBC) Green New Buildings – 2014
Indian Green Building Council (IGBC) Green New Buildings – 2014
 
IGBC RATING SYSTEM
IGBC RATING SYSTEMIGBC RATING SYSTEM
IGBC RATING SYSTEM
 
RGIA, Hyderabad
RGIA, HyderabadRGIA, Hyderabad
RGIA, Hyderabad
 
buildings rated by GRIHA and LEED, sustainable buildings around the wold, gre...
buildings rated by GRIHA and LEED, sustainable buildings around the wold, gre...buildings rated by GRIHA and LEED, sustainable buildings around the wold, gre...
buildings rated by GRIHA and LEED, sustainable buildings around the wold, gre...
 
Bhubaneshwar Planning
Bhubaneshwar Planning Bhubaneshwar Planning
Bhubaneshwar Planning
 
Leed rating system with case study
Leed rating system with case studyLeed rating system with case study
Leed rating system with case study
 
Architecture and Planning of jaipur
Architecture and Planning of jaipurArchitecture and Planning of jaipur
Architecture and Planning of jaipur
 
Energy Efficiency Case Studies(India and Abroad)
Energy Efficiency Case Studies(India and Abroad)Energy Efficiency Case Studies(India and Abroad)
Energy Efficiency Case Studies(India and Abroad)
 
Green Building in India with Case Study
Green Building in India with Case StudyGreen Building in India with Case Study
Green Building in India with Case Study
 

Similaire à GRIHA RATING SYSTEM

GRIHA & Energy Efficient Material
GRIHA & Energy Efficient MaterialGRIHA & Energy Efficient Material
GRIHA & Energy Efficient MaterialGeetika Singla
 
GRIHA PPT.pptx KLEIT STUDENT FROM HUBLI DHARWAD
GRIHA PPT.pptx KLEIT STUDENT FROM HUBLI DHARWADGRIHA PPT.pptx KLEIT STUDENT FROM HUBLI DHARWAD
GRIHA PPT.pptx KLEIT STUDENT FROM HUBLI DHARWADBhimappaLakshappa
 
IRJET- An Initiative Towards Implementation of Rating System in Green Building
IRJET- An Initiative Towards Implementation of Rating System in Green BuildingIRJET- An Initiative Towards Implementation of Rating System in Green Building
IRJET- An Initiative Towards Implementation of Rating System in Green BuildingIRJET Journal
 
IRJET- A Comparative Study of Rating Systems in Green Building
IRJET- A Comparative Study of Rating Systems in Green BuildingIRJET- A Comparative Study of Rating Systems in Green Building
IRJET- A Comparative Study of Rating Systems in Green BuildingIRJET Journal
 
Environmental responsive design - Building rating systems
Environmental responsive design -  Building rating systemsEnvironmental responsive design -  Building rating systems
Environmental responsive design - Building rating systemsPavaniKaja
 
Sustainable (autosaved)
Sustainable  (autosaved)Sustainable  (autosaved)
Sustainable (autosaved)chloeesim
 
ratingsystem.pptx
ratingsystem.pptxratingsystem.pptx
ratingsystem.pptxMEGHANA S
 
A Comparative Analysis Of Rating Systems In Green Building
A Comparative Analysis Of Rating Systems In Green BuildingA Comparative Analysis Of Rating Systems In Green Building
A Comparative Analysis Of Rating Systems In Green BuildingBecky Gilbert
 
Green Buildings - Pragya Triipathi
Green Buildings - Pragya TriipathiGreen Buildings - Pragya Triipathi
Green Buildings - Pragya TriipathiPragyaTripathi28
 
leed griha copy (1).pptx kleit student h
leed griha copy (1).pptx kleit student hleed griha copy (1).pptx kleit student h
leed griha copy (1).pptx kleit student hBhimappaLakshappa
 
Methodology for Developing Criteria weights for Green Building Rating Tool Fo...
Methodology for Developing Criteria weights for Green Building Rating Tool Fo...Methodology for Developing Criteria weights for Green Building Rating Tool Fo...
Methodology for Developing Criteria weights for Green Building Rating Tool Fo...IRJET Journal
 
A Brief Overview of GRIHA and IGBC Rating Systems
A Brief Overview of GRIHA and IGBC Rating SystemsA Brief Overview of GRIHA and IGBC Rating Systems
A Brief Overview of GRIHA and IGBC Rating SystemsIRJET Journal
 
1. Green Building Concept.pptx
1. Green Building Concept.pptx1. Green Building Concept.pptx
1. Green Building Concept.pptxRajeev772867
 
Leed Plumbing Sanitary Engineering Design
Leed Plumbing Sanitary Engineering DesignLeed Plumbing Sanitary Engineering Design
Leed Plumbing Sanitary Engineering DesignJefreyAbalos
 
IRJET- Comparative Review Assessment of Leed and Griha Rating System
IRJET- Comparative Review Assessment of Leed and Griha Rating SystemIRJET- Comparative Review Assessment of Leed and Griha Rating System
IRJET- Comparative Review Assessment of Leed and Griha Rating SystemIRJET Journal
 
Green Building Index
Green Building IndexGreen Building Index
Green Building IndexBC Chew
 

Similaire à GRIHA RATING SYSTEM (20)

A7
A7A7
A7
 
GRIHA & Energy Efficient Material
GRIHA & Energy Efficient MaterialGRIHA & Energy Efficient Material
GRIHA & Energy Efficient Material
 
GRIHA PPT.pptx KLEIT STUDENT FROM HUBLI DHARWAD
GRIHA PPT.pptx KLEIT STUDENT FROM HUBLI DHARWADGRIHA PPT.pptx KLEIT STUDENT FROM HUBLI DHARWAD
GRIHA PPT.pptx KLEIT STUDENT FROM HUBLI DHARWAD
 
Griha
GrihaGriha
Griha
 
IRJET- An Initiative Towards Implementation of Rating System in Green Building
IRJET- An Initiative Towards Implementation of Rating System in Green BuildingIRJET- An Initiative Towards Implementation of Rating System in Green Building
IRJET- An Initiative Towards Implementation of Rating System in Green Building
 
GRIHA Presentation
GRIHA Presentation GRIHA Presentation
GRIHA Presentation
 
IRJET- A Comparative Study of Rating Systems in Green Building
IRJET- A Comparative Study of Rating Systems in Green BuildingIRJET- A Comparative Study of Rating Systems in Green Building
IRJET- A Comparative Study of Rating Systems in Green Building
 
Environmental responsive design - Building rating systems
Environmental responsive design -  Building rating systemsEnvironmental responsive design -  Building rating systems
Environmental responsive design - Building rating systems
 
Sustainable (autosaved)
Sustainable  (autosaved)Sustainable  (autosaved)
Sustainable (autosaved)
 
ratingsystem.pptx
ratingsystem.pptxratingsystem.pptx
ratingsystem.pptx
 
A Comparative Analysis Of Rating Systems In Green Building
A Comparative Analysis Of Rating Systems In Green BuildingA Comparative Analysis Of Rating Systems In Green Building
A Comparative Analysis Of Rating Systems In Green Building
 
Green Buildings - Pragya Triipathi
Green Buildings - Pragya TriipathiGreen Buildings - Pragya Triipathi
Green Buildings - Pragya Triipathi
 
leed griha copy (1).pptx kleit student h
leed griha copy (1).pptx kleit student hleed griha copy (1).pptx kleit student h
leed griha copy (1).pptx kleit student h
 
Methodology for Developing Criteria weights for Green Building Rating Tool Fo...
Methodology for Developing Criteria weights for Green Building Rating Tool Fo...Methodology for Developing Criteria weights for Green Building Rating Tool Fo...
Methodology for Developing Criteria weights for Green Building Rating Tool Fo...
 
A Brief Overview of GRIHA and IGBC Rating Systems
A Brief Overview of GRIHA and IGBC Rating SystemsA Brief Overview of GRIHA and IGBC Rating Systems
A Brief Overview of GRIHA and IGBC Rating Systems
 
1. Green Building Concept.pptx
1. Green Building Concept.pptx1. Green Building Concept.pptx
1. Green Building Concept.pptx
 
Leed Plumbing Sanitary Engineering Design
Leed Plumbing Sanitary Engineering DesignLeed Plumbing Sanitary Engineering Design
Leed Plumbing Sanitary Engineering Design
 
IRJET- Comparative Review Assessment of Leed and Griha Rating System
IRJET- Comparative Review Assessment of Leed and Griha Rating SystemIRJET- Comparative Review Assessment of Leed and Griha Rating System
IRJET- Comparative Review Assessment of Leed and Griha Rating System
 
LEED Module 1.pptx
LEED Module 1.pptxLEED Module 1.pptx
LEED Module 1.pptx
 
Green Building Index
Green Building IndexGreen Building Index
Green Building Index
 

Dernier

SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...Sapna Thakur
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfAyushMahapatra5
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024Janet Corral
 

Dernier (20)

SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024
 

GRIHA RATING SYSTEM

  • 1. GRIHA GREEN RATING FOR INTEGRETATED HABITAT BUILDING PRESENTED BY: PRAMISTHA JOSHI(70029) RINA THAPA (70034) ROZINA NAKARMI (70035) SHREYA SHRESTHA(70044) SHRISTI SHAKYA (70045)
  • 2. CONTENTS 1. BACKGROUND 2. GOALS AND NEED OF GREEN BUILDING 3. BENEFITS OF GREEN BUILDING 4. INTRODUCTION OF GRIHA 5. EVOLUTION OF GRIHA 6. OBJECTIVES OF GRIHA 7. WHY CHOOSE GRIHA (COMPARE WITH LEED INDIA) 8. FIVE ‘R’ PHILOSOPHY 9. GRIHA PROCEDURE 10. GRIHA RATING SYSTEM 11. GRIHA OVERVIEW 12. GREEN BUILDING EXAMPLE USING GRIHA 13. COMPARATIVE ANALYSIS OF GRIHA WITH OTHER RATING SYSTEM 14. CONCLUSION
  • 3. BACKGROUND WHAT IS GREEN BUILDING?  A ‘green’ building is a building that, in its design, construction or operation, reduces or eliminates negative impacts, and can create positive impacts, on our climate and natural environment. Green buildings preserve precious natural resources and improve our quality of life. GOAL OF GREEN BUILDING  To help to sustain the environment without disrupting the natural habitats around it  To promote a better planet earth, and a better place for us all to live  Reduce trash, pollution and degradation of environment.  Create a sound indoor environment for living and working purpose.
  • 4. FEATURES WHICH CAN MAKE A BUILDING ‘GREEN’  Efficient use of energy, water and other resources  Use of renewable energy, such as solar energy  Pollution and waste reduction measures, and the enabling of re-use and recycling  Good indoor environmental air quality  Use of materials that are non-toxic, ethical and sustainable  Creating resilient and flexible structures  Consideration of the environment in design, construction and operation  Consideration of the quality of life of occupants in design, construction and operation  A design that enables adaptation to a changing environment
  • 5. BENEFITS OF GREEN BUILDING  ENVIRONMENTAL BENEFITS:  Reduce wastage of water  Conserve and restore natural resources  Improve air and water quality  Enhance protect biodiversity and ecosystems  ECONOMIC BENEFITS:  Reduce operating costs  Improve occupant productivity  Create market for green product and services  SOCIAL BENEFITS:  Improve quality of life  Minimize strain on local infrastructure  Improve occupant health and comfort
  • 6. WHAT IS GREEN BUILDING RATING SYSTEM?  A rating system can be defined as a set of prerequisites and requirements that a project team must fulfill in order to receive certification. TYPES OF RATING SYSTEM  BREEAM- United Kingdom  LEED- United States  Green globes- Canada  Green star- Australia  BEAM- Hong Kong  EEWH- Taiwan  GBCS- South Korea  CASBEE- Japan  GRIHA- India GREEN BUILDING RATING SYSTEM
  • 7. INTRODUCTION OF GRIHA  WHAT IS GRIHA? Name: GRIHA is an acronym for Green Rating for Integrated Habitat Assessment. Country: INDIA Established : 2007  GRIHA is a Sanskrit word meaning – ‘Abode’.  A innovative tool for sustainable development by the united nations  A tool for implementing renewable energy in the building sector by ‘The Climate Reality project’- an organization founded by Mr. Al Gore; and UNEP-SBCI has developed the “Common Carbon Metric” (kWhr/sq m/annum), for international building energy data collection -based on inputs from GRIHA (among others)
  • 8. There are three primary Rating systems in India:  GRIHA (Green Rating for Integrated Habitat Assessment) Green Rating for Integrated Habitat Assessment (GRIHA) is India’s own rating system jointly developed by TERI and the Ministry of New and Renewable Energy, Government of India.  IGBC (Indian Green Building Council) LEED is developed by the U.S. Green Building Council (USGBC), the organization promoting sustainability through Green Buildings.  BEE (Bureau of Energy Efficiency) It has star based rating system: more stars mean more energy efficiency. BEE has developed the Energy Performance Index (EPI). The unit of Kilo watt hours per square meter per year is considered for rating the building and especially targets air conditioned and non-air conditioned office buildings.
  • 10.
  • 11. OBJECTIVE OF GRIHA  Minimize a building’s resource consumption, waste generation, and overall ecological impact  Evaluates the environmental performance of a building holistically over its entire life cycle, thereby providing a definitive standard for what constitutes a ‘green building’  Based on accepted energy and environmental principles, seeks to strike a balance between the established practices and emerging concepts  Reduced energy consumption without sacrificing the comfort level  Reduced destruction of natural areas, habitats, and biodiversity, and reduced soil loss from erosion etc.
  • 12. WHY CHOOSE GRIHA?  Two rating systems in India: LEED India and GRIHA  LEED-India adapted from United States Green Building Council’s (USGBC) is primarily based on per capita energy consumption in developed nations like the US which does not work in India since India’s per capita energy consumption is very low compared to developed nations.  GRIHA is more suited to Indian climate. Also unlike LEED, it does not promote usage of certain products like glass and air-conditioning equipment.
  • 13. FIVE ‘R’ PHILOSOPHY  Refuse: To blindly adopt international trends, materials, technologies, products, etc. Especially in areas where local substitutes are available.  Reduce: The dependence on high energy products, systems, processes, etc.  Reuse: Materials, products, traditional technologies so as to reduce the costs incurred in designing buildings.  Recycle: All possible wastes generated from the building site, during construction, operation and demolition.  Reinvent: Engineering systems, designs and practices such that India creates global examples that the world can follow rather than India following the international examples.
  • 14. GRIHA PROCEDURE ELIGIBILITY  Except for industrial complexes, all buildings (offices, institutions, hotels, hospitals, housing complexes, etc.) in the pre-design/design stage are eligible for certification under GRIHA.  ADaRSH (Association for Development and Research of Sustainable Habitats), GRIHA secretariat helps evaluate whether the project is eligible for rating or not.
  • 15. GRIHA PROCEDURE REGISTRATION PROCESS  Building project may register through the GRIHA website (http://www.grihaindia.org)  The registration process allows access to essential information related to rating such as: 1. Application forms 2. List of submissions 3. Score points 4. The weightage system 5. Online documentation
  • 16. GRIHA PROCEDURE GRIHA also provides one day training session for the registered projects which includes:  Overview of the green building design  Explanation of the rating system and criteria and points related to rating  Online access to the rating tool  Documentation process through use of online forms  Evaluation process
  • 17. GRIHA PROCEDURE EVALUATION PROCESS 1. Pre documentation stage: A team from ADaRSH along with the client’s Integrated Design Team meet and determine the points being targeted by the project. 2. Post documentation stage: All necessary proof through documents for the points targeted under various criteria is submitted. Evaluation by third party regional evaluators. To determine the final rating that shall be awarded to the project.
  • 18. GRIHA PROCEDURE After the necessary documentation is uploaded, and systems commissioned on the site, the buildings are evaluated and rated in three-tier process. The preliminary evaluation is done by a team of experts from ADaRSH.  Reviewing of the mandatory points and checking for compliance. The project is rejected if mandatory criteria are not complied with.  Evaluation of the optional criteria and estimation of the total number of achievable points.  All compliance documents are examined through the appraisal process as outlined by GRIHA. Evaluation report given to members of an evaluation committee: external experts in building and landscape design, lighting and HVAC design, renewable energy, water and waste management, and building materials. The members independently review and award points, a provisional GRIHA rating is awarded after evaluation of document is submitted.
  • 19. GRIHA RATING SYSTEM VARIANTS OF GRIHA  SVAGRIHA FOR BUILDING AREA- 100-2499 sqm  GRIHA FOR BUILDING AREA-2500-1,50,000 sqm  GRIHA LD FOR BUILDING AREA-> 50 hectare site area GRIHA VERISON 2015  The latest version of GRIHA, GRIHA version 2015 (GRIHA V2015), was introduced in January 2015.  The GRIHA V 2015 rating system consists of 31 criteria  categorized under various sections such as Site Planning, Construction Management, Occupant Comfort and Wellbeing, Sustainable Building Materials, Performance Monitoring and Validation, and Innovation Eligibility  All buildings, which are in the design stage and have built up area more than 2,500 m2, are eligible for certification under GRIHA.
  • 20. GRIHA RATING CRITERIA Criteria and their weightage  GRIHA is a performance-oriented system where points are earned for meeting the design and performance intent of the criteria.  Each criterion has certain points assigned to it. It means that a project demonstrating compliance with a criterion would achieve the associated points.  GRIHA is a 100-point system consisting of some core points  Different levels of certification (one star to five stars) are awarded based on the number of points earned. The minimum points required for certification are 25.
  • 21. GRIHA RATING CRITERIA EVALUATED IN DIFFERENT STAGES  Pre-construction stage (intra- and inter-site issues)  Building planning and construction stages (issues of resource conservation and reduction in resource demand, resource utilization efficiency, resource recovery and reuse, and provisions for occupant health and well being). The prime 4 resources that are considered in this section are land, water, energy, air, and green cover.  Building operation and maintenance stage (issues of operation and maintenance of building systems and processes, monitoring and recording of consumption, and occupant health and well being, and also issues that affect the global and local environment).
  • 24. GRIHA OVERVIEW The points assigned to different criteria is based on survey conducted to better reflect current resource priorities of India. The point split of various sections is given below:
  • 25. A Paradigm of self sufficiency - INDIRA PARYAVARAN BHAWAN  This is a project of ministry of environment and forests for construction of new office building at New Delhi.  The basic design concept of the project is to make the net zero energy green building. Location = Jor Bagh,Delhi Plot area = 9565 sq m Maximum ground coverage = 30% Far = 200 Height = 35 Built up area = 31400 sqm Superstructure = 18726 sqm (8 storey ) Basement = 12675 sqm (3 Basement) Year of completion = 2013 Project Leader = Mr.P.K.Gupta Architectural Design = Mr.R.K. Koshal Landscape Design = Mr.Sodhi Interior Design = Kothari Associates
  • 26. MEASURES FOR SITE  Wider front setback (22m) to protect front tree line  Preserve the integrity of the green street  Preservation of the local ecology ,tree cutting approvals for 46,but only 19 cut,11 tress transplanted  Excavated soil reutilized at other construction sites and the zoo ARCHITECTURAL CONCEPT  Effective ventillation by Orientating The Building E-W  Optimum integration with nature Separating Out Different Blocks with connecting corridors  A huge Central courtyard  Plan pedestrian axis to East ,North and West entrance without crisscrossing vehicles
  • 27. TOWARDS ENERGY POSITIVE APPROACH - RENEWABLE  Façade has been designed to receive 70% of natural day light  Inner courtyard serves as a light well.  Provision of solar photovoltaics  Photovoltaic stepping towards the south side  Shades the roof Renewable Energy  Solar PV System of 800 kW capacity  Total Area : 6000 m 2  Total Area of panels : 4650 m 2  No of panels : 2,844  Annual Energy Generation : 14.3 lakh unit Façade of the building Shadding from summer sun while allowing in winter sun
  • 28.  Central courtyard helps in air movement as natural ventilation happens due to stack effect. Brown and beige coloured stone jaalis add to cross ventilation The terrace garden utilizes preserved top soil extracted during the initial excavation ENERGY POSITIVE APPROACH
  • 29. ENERGY POSITIVE APPROACH  More than 50% area outside the building is soft with plantation and grassing.  Circulation roads and pathways soft with grass paver blocks to enable ground water recharge Polymer plastics grids turn the visual asphalt fire tender road into a soft paved space Preservation of existing foliage increasing the front set back.
  • 30. SITE AND WASTE WATER MANAGEMENT To reduce landscape water requirements  Drip irrigation  Use of native species of shrubs and trees having low water demand in landscapping  Low lawn areas so as to reduce water demand  Reuse of treated water for irrigation Reduce water use in building  Dual flushing cistern  Low discharge fixtures  Waste water treatment  Reuse of treated water for irrigation and cooling towers of HVAC  Rain water harvesting –efficient water use during construction Drip irrigation Appropriate shading from summer sun ,while allowing in winter sun
  • 31. MATERIALS AND CONSTRUCTION TECHNIQUES  Ready Mix Concrete with PPC having more than 30% fly ash content - Fly ash brick.  Stone available in nearby area for Terrazzo flooring  AAC (Aerated Autoclaved Cement ) blocks.  Renewable bamboo jute composite material for door frames & shutters.  UPVC windows with hermetically sealed double using low heat transmittance index glass.  Use of high reflectance terrace tiles for low heat ingress.  Avoided aluminum as it has high embedded energy  Sandstone jaalis , stone and ferro-cement jaalis  Grass paver blocks for ground water recharge  Light shelves for bringing in diffused light
  • 32. ENERGY CONSUMPTION ON SITE - ZERO ENERGY
  • 33.  Extra efficient Solar photo voltaic (SPV) proposed (Terrace and projections) =800 kW  Energy produced in building/year = 14,91,000 Kwh  Energy consumption for building/year = 14,21,000 kWH
  • 34. Geo thermal heat exchange system  180 vertical bores to the depth of 80 meter all along the building premises.  Minimum 3 meter distance is maintained between any two bores.  Each bore has HDPE pipe U-loop (32mm outer diameter) and grouted with Bentonite Slurry.  Each U-Loop is connected to the condenser water pipe system in the central air conditioning plant room.  One U-Loop has 0.9 TR heat rejection capacity. Combined together, 160 TR of heat rejection is obtained without using a cooling tower.  Water pumping and treatment costs gets eliminated.  Saves cooling tower fan energy.
  • 35. HVAC system - Chilled beam system  160 TR of air conditioning load of the building is met through Chilled beam system.  Chilled beam are used from second to sixth floor. This reduces energy use by 40 % compared to a conventional system.  HVAC load of the buildings is 40 m2/TR, about 50% more efficient than ECBC requirements (20 m2/TR)  Chilled beams save AHU/FCU fan power consumption by approximate 50 kW.  Fresh supply air is pre cooled from toilet exhaust air through sensible & latent heat energy recovery wheel.
  • 36. NET ZERO DESIGN  IPB reduces energy requirements by 70% overall by conventional  N-S orientation – Limiting WWR (Window to wall ratios )  Insulation on wall and roof  Extensive greenery to reduce heat load  Maximizing day lighting to reduce lighting loads  Extremly low lighting power density -5 w/sqm  Planning to minimize AC loads (keeping open atrium for cross ventilation, non conditioned lobbies)  Efficient HVAC with screw chillers , VFD’S , Chilled beams  Ground based heat exchanger for condenser water  Energy efficient appliances (5 star BEE - Bureau of energy efficiency) S. N. DESCRIPTION CONVENTIO NAL IPB 1 Air – conditioning load 150 sqft /TR 450 sqft /TR 2 Lighting power density 1.1 W/ sqft (ECBC) 0.5 W/ sqft 3 Electrical load 10 W /sqft 4.3 W /sqft.
  • 37. CRITERIONS OF GRIHA FULFILLED – SITE PLANNING NO. CRITERION POINTS POINTS TARGETED 1 Site selection 1 2 Preserve and protect landscape during construction 5 5 3 Soil conservation (till post construction) 2 2 4 Design to include existing site features 4 4 5 Reduce hard paving on site and /or provide shaded hard –paved surfaces 2 2 6 Enhance outdoor lighting system efficiency and use renewable energy system for meeting outdoor lighting requirements 3 3 7 Plan utilities efficiency and optimize on site circulation efficiency 3 3 8 Provide at least ,minimum level of sanitation /safety facilities for construction workers 2 2
  • 38. BUILDING PLANNING AND CONSTRUCTION STAGE SN CRITERION POINTS POINTS TARGETED 9 Reduce air pollution during construction 2 2 10 Reduce landscape water requirement 3 2 11 Reduce water use in the building 2 2 12 Efficient water use during construction 1 1 13 Optimize building design to reduce conventional energy demand 8 7 14 Optimize energy performance of building within specified comfort limits 16 16 15 Utilization of fly –ash in building in structure 6 4 16 Reduce volume ,weight and construction time by adopting efficient technologies (such as pre-cast systems) 4 2
  • 39. RECYCLE,RECHARGE AND REUSE SN CRITERION POINTS POINTS TARGETED 17 Use low energy material in interiors 4 4 18 Renewable energy utilization 5 5 19 Renewable energy based hot water systems 3 3 20 Waste water treatment 2 2 21 Water cycle and reuse(including rain water) 5 3 WASTE MANAGEMENT 22 Reduction in waste water during construction 1 1 23 Efficient waste generation 1 1 24 Storage and disposal of wastes 1 1 25 Resources recovery from waste 2 2
  • 40. HEALTH AND WELL BEING SN CRITERION POINTS POINTS TARGETED 26 Use low –VOC paints/adhesives/sealants 3 3 27 Minimize azone depleting substances 1 1 28 Ensure water quality 2 2 29 Acceptable outdoor and indoor noise levels 2 2 30 Tobacco smoke controls 1 1 31 Provide at least the minimum level of accessibility for persons with disabilities 1 1 32 Energy audit and validation Mandatory 33 Operation and maintenance 2 2 34 Innovation points 4 4
  • 41. COMPARATIVE ANALYSIS WITH OTHER RATING SYSTEM CONTENTS GRIHA BREEAM LEED CASBEE MANAGING BODY TERI building research establishment (BRE) US green building Japan Sustainable Building Consortium(JSBC) ESTABLISHED 2007 1990 1998 2001 CATEGORIES/CREDITS •Sustainable site •Water management •Energy optimization •Waste management •Sustainable building materials •Health and well being •Building operation •Innovation •Health and well being •Transport •Materials •Waste management •Land use and ecology •Innovation •Location and transportation •Sustainable site •Energy and atmosphere •Indoor environment quality •Innovation •Regional priority •Built environment •Indoor environment •Quality of service •Outdoor environment on site •Built load •Energy resources and material •Off site environment
  • 42. CONTENTS GRIHA BREEAM LEED CASBEE BUILDING TYPE Commercial, residential, institutional, courts, educations, healthcare, prison Office retail, industrial units Health care facilities, schools, home, entire neighborhood Residential, and non residential type lf building GEOGRAPHICAL FOCUS Local, India and nearby area National National Global CERTIFIATION COST <5000 sq.m-INR 1,50,000 5,001 sq.m to 50,000 sq.m- INR 1,50,000 + INR 3.5 per additional sq.m over & above 5,000 sq.m >50,001 sq.m-INR 3,10,000 $1290 each stage $1250-$17500 $3570-$4500 RESULT REPRESENTATION RESULT PRODUCT •certificate certificate •Award letter, certificate and plaque •Certificate and website published results
  • 43. REFERENCE  https://bharatvasandani.wordpress.com/2010/06/09/leed-vs-griha-putting- indian-developers-in-a-quandary/  http://www.grihaindia.org/#&home  https://www.slideshare.net/sandeepnj7/certifcation-of-building-using-griha- rating-system-60638755?qid=58b7d73d-14b6-4540-b694- 1f7443e491d4&v=&b=&from_search=5  http://greencleanguide.com/national-mission-on-sustainable-habitat/  https://www.palmexindia.com/introduction-griha-apply-indias-best-known- green-rating-buildings/  http://www.indiaenvironmentportal.org.in/files/national-rating-system- green-buildings-GRIHA.pdf  http://www.slideshare.net/supergirlanchal/indira-paryavaran-bhawan-and- griha-49343513