SlideShare une entreprise Scribd logo
1  sur  65
Télécharger pour lire hors ligne
Bio-materials characterization with NIR
Anna Sandak & Jakub Sandak
2
Outline
Why spectroscopy?
Tendencies in biomaterials
developmnet
NIR in bio-materials characterization
Trends in NIR applications
3
Goals
• to exploit the potential of near infrared
spectroscopy
• to demonstrate its capabilities for bio-based
materials characterization
• to highlight the potential of the NIR as a tool
capable of providing complementary
information to other techniques
• to present current trends in NIR developments
4
Bio-materials in construction sector
• In Italy 1 on 12 buildings is made of wood and
growing tendency is observed nowadays
• Bio-based materials are often used for
retrofitting of existing structures, upward
construction or vertical gardens
• Buildings that use bio-materials are not just
sustainable, strong and durable;
they are also beautiful
5
Development priorities
• Structural components
(need for developed wood products -
Engineered Wood Products, high strength wood,
moisture resistant sills, light-weight
beams/joists/studs of bio-composites, sandwich
panels for exterior walls)
• Insulation
(need for compactable bats of cellulose
insulation, environmentally friendly fire
impregnation, high-performance insulation that
provides thinner walls, insulation, optimized for
soundproofing)
• Barrier Materials
(need for bio-based wind and vapor barrier for
moisture-proof exterior walls, waterproofing for
wet areas, façade and roofing materials with
improved durability/serviceability
Source: Per-Erik Eriksson: Future sustainable biobased buildings
6
Durability and performance
7
Surface properties
roughness
color
brighntess
surface free energy
wetability
gloss
pattern
temperaturesoftiness
hardness
touch experience
facture
waviness
chemical activity
contamination
resistance to dirt
outlook
resistance to scratch
resistance to abrassion
adhesion
soft feel
aseptic
durability
leveling
water repellency
matting effect
8
How to assess properties?
9
Why NIR spectroscopy?
 No need special sample preparation
 Non-destructive testing
 Relatively fast measurement
 No residues/solvents to waste
 Determination of many components simultaneously
 High degree of precision and accuracy
 Direct measurement with very low cost
 Not self standing technology
 Overlapping of spectral peaks
 Not straightforward interpretation
 Needs statistics methods for data analysis
10
chemical industry, microanalysis,
pharmaceutical analysis, soil,
polymers, food and beverages,
surface science, fuels, textile
industry, art conservation,
forensics, PAT, remote sensing
and also wood and paper
industry
NIR applications
11
…but what can we see in wood?
http://www.ifb.ethz.ch/research/sinergia
12
Cellulose (40-50%)
• linear polymer
• long chain
(DP 5000-10000)
• Β-D-Glucopyranose
units
• 1,4-glycosidic bonds
• hydroxyl groups
bonds
• different kind in
wood:
• - amorphous,
- semi-crystalline,
- crystalline
methylene groups
hydroxyl groups
13
Lignin (20-30%)
Softwood (guaiacyl units) Hardwood (guaiacyl + syringyl units)
methoxyl groups
phenolic hydroxyl groups
aldehyde groups
carbonyl groups
14
Hemicellulose (25-35%)
xylan
• hetero-polysaccharides
• short chain
(DP 150-200)
• amorphous
• high reactivity
• various composition
for hardwood and
softwood
acetyl groups
hydroxyl groups
15
NIR & biomaterials characterization
• Chemical compositions
(cellulose, lignin, extractives)
• Physical and anatomical characterization
(density, moisture, calorific value, microfibryl angle, defects
detection, sapwood/heartwood detection)
• Mechanical properties
(compression, tension, MOE, MOR)
• Identification and monitoring others properties of wood
(decay monitoring, weathering, waterlogging, thermal
treatment, chemical modifications)
• Paper industry
(weight, thickness, moisture, Kappa number, mechanical
resistance, type of pulp/paper)
16
Virgin wood
• Species recognition
• Wood provenance
• Exotic wood evaluation
• Biomass characterization
• Clones recognition
17
Recognition of wood species
1 21 31 9
41 1
51 61 71
81 91 10 11 121 131 9
141 9
151 161 171 181 191 20
softwood hardwood exotic wood
01- Picea abies, 02-Abies alba, 03-Pinus cembra, 04-Larix decidua, 05-Pinus sylvestris, 06-Pinus ponderosa, 07-
Tsuga, 08- Thuja sp., 09-Quercus robur, 10-Robinia pseudoacacia, 11-Castanea sativa, 12-Iroko, 13-Afrormosia,
14-Okumè, 15-Sipo, 16-Meranti, 17-Wengè, 18-Azobè, 19-Ipè, 20-Itauba, 21-Pau Rosado, 22-Teck, 23-Bangkirai
18
Use of CA for species classification
Picea abies Pinus cembra Larix sp. Thuja plicata Abies alba Pinus silvestris Tsuga sp.
investigatedsample
19
Wood provenance & NIRS
2163 trees of Norway spruce
from 75 location
in 14 European countries
2163 samples measured
x 5 spectra/sample
= 10815 spectra
20
Differentation of origin
samples form 14 countries (75 locations); totally 10815 spectra was analyzed and evaluated
 Austria ▲ Bulgaria ▼ Czech Republic ■ Croatia ■ Estonia  Finland  France
 Germany  Hungary  Italy  Norway  Poland  Romania  Sweden
21
Italy
TRENTO
Moena
Cavalese












Garda lake
22






Principal Component Analysis
PCA of spectra of wooden samples coming from six different locations (14 sites) in
Trentino region
Note: second derivative, vector normalization, method: factorization (5 factors)
region: 9590-5250cm-1, 5100-4160cm-1
 Strada Alta Valcigolera
 Strada Orti Forestali,
 Juribello
 Paneveggio
 Cadino 06
 Cadino 43
 Cadino 49
 Folgaria 04
 Folgaria 22
 Monte Sover 7
 Monte Sover 11
 Monte Sover 14
 Monte Sover 69
 Caoria Valsorda
23
Cluster Analysis
CADINO  CADINO CADINO 
CA – wooden samples from 3 different districts of Cadino valley 
Note: second derivative, vector normalization, Ward’s algorithm, region: 7089-5072cm-1
24
coconut shell tamarind grass
Identification of agricultural residues
Particleboards characterization
25
A
B
C
Raw resources: Eastern redcedar (Juniperus virginiana L.)
Single- and three-layers panels
manufactured from raw material using 9% urea formaldehyde, combination of 15%
modified corn starch and 2% urea formaldehyde adhesive
12345678910111213141516171819
-0,008
0
0,008
40004500500055006000650070007500
wavenumber (cm-1)
PC2,PC3
PC2
PC3
26
Selection of biomass
for optimal bio-conversion process
PCA of willow clones. Note: pre-processing:
2nd derivative + vector normalization,
17 smoothing points, region: 6869-5847 cm-1,
method: factorization, 3 factors
duotur
sprint
turbo
wodtur
monoturstart
oltur
tur PC3
PC4
PC2
27
Willows utilization
willows
thermo-chemical
conversion
chemical
conversion
mechanical-chemical
conversion
combustion pyrolysis gasification fermentation
anaerobic
digestion
estrificationpulping
panel
production
heat syngas pulp&paper fiber-panel ethanol biogas biodieselcharcoalsyngasbio-oil
high lignin content high carbohydrate content
high fiber
content
extraction
high extractives content acumulation of heavy metalsfast
resprouting
manufacturing environmental
engineering
phytominig
phyto-
remediation
biofiltrationfurniturebasketry
metalsclean soilclean waterchairscontainers
cosmetic foodpharmaceutic
cream
anti-
phlogistic
anti-
pyretic preservative
anti-
oxidantshampoo
cultivation
apiculture
honeypollination
construction
green
architecture
fencesroadmats
fast growingearly flowering
28
Suggested conversion path
thermo-
chemical
mechano-
chemical
chemical
pharmaceut
ical
phytoremediation
#1 
0.93

0.07

0.13

0.96

0.19

-0.10

0.00
#2 
0.98

0.04

-0.01

0.98

0.44

-0.03

0.02
#3 
0.97

0.13

0.01

1.02

0.57

0.88

0.33
#4 
1.05

-0.07

1.04

0.99

0.61

0.99

0.20
#5 
0.89

0.13

0.19

0.80

0.57

-0.06

0.19
#6 
0.05

-0.05

-0.13

1.14

0.68

0.15

0.42
#7 
-0.08

0.78

0.02

0.03

0.33

-0.07

0.50
#8 
0.09

1.10

-0.07

-0.11

0.06

0.00

-0.03
#9 
-0.05

0.90

-0.06

0.02

0.28

0.15

0.30
#10 
-0.03

0.04

0.07

0.03

0.09

0.14

-0.11
#11 
-0.02

-0.05

1.01

-0.06

1.19

0.84

0.31
#12 
-0.04

-0.07

1.05

-0.04

1.32

-0.15

0.22
#13 
-0.02

-0.04

0.93

0.08

1.22

0.32

0.35
#14 
-0.04

-0.04

0.92

0.10

1.00

0.86

0.66
#15 
1.11

0.95

0.84

0.00

1.04

0.09

0.11
#16 
0.16

1.12

-0.02

0.06

1.31

1.12

0.60
#17 
0.06

0.06

1.07

0.01

1.10

-0.14

-0.05
high content of: high accumulation of:
Discrimin
ation rule
high HHV
cellulose
hemicelluos
e
extractives Zn Pb Cu
Threshold
rule
HHVexp>20.0 Xc>38% Xhe>34% Xe>11% XZn>55ppb XPb>8ppb XCu>8ppb
Average
prediction
error
0.06 0.08 0.07 0.06 0.29 0.11 0.29http://www.seco.cpa.state.tx.us/publications/renewenergy/biom
assenergy.php
29
Chemical analysis
• cellulose (by Browning)
• holocellulose (by Browning)
• lignin (T 222 om-06 TAPPI)
• pentosans (T 223 cm-01 TAPPI)
• hot water extractives (T 207 cm-08 TAPPI)
• cold water extractives (T 207 cm-08 TAPPI)
• 1% NaOH extractives (T 212 om-07 TAPPI)
• organic solvent extractives (T 204 cm-07 TAPPI)
30
NIR PLS calibration models #1
of willows chemical composition (pilot study)
22
23
24
25
26
27
28
22 23 24 25 26 27 28
lignin measured (%)
ligninpredicted(%)
42
43
44
45
46
47
48
49
50
51
52
42 43 44 45 46 47 48 49 50 51 52
cellulose measured (%)
cellulosepredicted(%)
17
18
19
20
21
17 18 19 20 21
pentosans measured (%)
pentosanspredicted(%)
70
71
72
73
74
75
76
77
78
79
80
70 71 72 73 74 75 76 77 78 79 80
holocellulose measured (%)
holocellulosepredicted(%)
lignin
r2
= 0.969
RMSECV = 0.24
RPD = 5.7
cellulose
r2
= 0.9 82
RMSECV = 0. 39
RPD = 7.4
pentosans
r2
= 0.96 7
RMSECV = 0.11
RPD = 5.5
holocellulose
r2
= 0.968
RMSECV = 0.33
RPD = 5.6
31
NIR PLS calibration models #2
of willows chemical composition (pilot study)
18
19
20
21
22
23
24
25
26
27
28
18 19 20 21 22 23 24 25 26 27 28
soluble in 10% NaOH measured (%)
solublein10%NaOHpredicted(%)
2
3
4
5
6
2 3 4 5 6
soluble in organic measured (%)
solubleinorganicpredicted(%)
0
1
2
3
4
0 1 2 3 4
soluble in cold water measured (%)
solubleincoldwaterpredicted(%)
0
1
2
3
4
5
6
7
0 1 2 3 4 5 6 7
soluble in hot water measured (%)
solubleinhotwaterpredicted(%)
soluble in cold water
r2
= 0.983
RMSECV = 0.20
RPD = 7.7
soluble in hot water
r2
= 0.983
RMSECV = 0.12
RPD = 7.6
soluble in organic solvents
r2
= 0.981
RMSECV = 0.12
RPD = 7.2
soluble in 10% NaOH
r2
= 0.965
RMSECV = 0.37
RPD = 5.4
18
19
20
21
22
23
24
25
26
27
28
18 19 20 21 22 23 24 25 26 27 28
soluble in 10% NaOH measured (%)
solublein10%NaOHpredicted(%)
18
19
20
21
22
23
24
25
26
27
28
18 19 20 21 22 23 24 25 26 27 28
soluble in 10% NaOH measured (%)
solublein10%NaOHpredicted(%)
2
3
4
5
6
2 3 4 5 6
soluble in organic measured (%)
solubleinorganicpredicted(%)
2
3
4
5
6
2 3 4 5 6
soluble in organic measured (%)
solubleinorganicpredicted(%)
0
1
2
3
4
0 1 2 3 4
soluble in cold water measured (%)
solubleincoldwaterpredicted(%)
0
1
2
3
4
5
6
7
0 1 2 3 4 5 6 7
soluble in hot water measured (%)
solubleinhotwaterpredicted(%)
soluble in cold water
r2
= 0.983
RMSECV = 0.20
RPD = 7.7
soluble in hot water
r2
= 0.983
RMSECV = 0.12
RPD = 7.6
soluble in organic solvents
r2
= 0.981
RMSECV = 0.12
RPD = 7.2
soluble in 10% NaOH
r2
= 0.965
RMSECV = 0.37
RPD = 5.4
0
1
2
3
4
0 1 2 3 4
soluble in cold water measured (%)
solubleincoldwaterpredicted(%)
0
1
2
3
4
0 1 2 3 4
soluble in cold water measured (%)
solubleincoldwaterpredicted(%)
0
1
2
3
4
5
6
7
0 1 2 3 4 5 6 7
soluble in hot water measured (%)
solubleinhotwaterpredicted(%)
0
1
2
3
4
5
6
7
0 1 2 3 4 5 6 7
soluble in hot water measured (%)
solubleinhotwaterpredicted(%)
soluble in cold water
r2
= 0.983
RMSECV = 0.20
RPD = 7.7
soluble in hot water
r2
= 0.983
RMSECV = 0.12
RPD = 7.6
soluble in organic solvents
r2
= 0.981
RMSECV = 0.12
RPD = 7.2
soluble in 10% NaOH
r2
= 0.965
RMSECV = 0.37
RPD = 5.4
32
Wood modifications & NIRS
• Thermal treatment
• Decay
• ISPM-15
• Densification
• Mechanical testing
• Wood after wood machining
• Coatings
• Weathering
• Service life prediction
• …
33
Wood thermal treatment
fir spruce larch
parameter ML EMC ML EMC ML EMC
range (cm-1) 7502-6098
5450-4246
6102-4246 10996-10098
9303-8501
5018-4435
8505-4435 9403-5446 9403-7498
6102-5446
pre-processing 1der +MSC 1 der + VN VN 1 der + VN 1 der + VN 1 der +MSC
r2 98.67 97.58 98.48 98.83 97.88 97.69
RMSECV 0.26 0.25 0.25 0.17 0.39 0.19
RPD 8.66 6.42 8.11 9.42 6.87 6.58
rank 3 3 3 4 4 5
Termovuoto: open system:
(volatile products of the process are
continuously removed from the kiln by
means of a vacuum pump)
The treatment time: 3 hours
Pressure: 0.2 bar
treatment temperatures of 160, 180,
200 and 220ºC.
+
5hardwoods…
195 samples measured x 5 spectra/sample = 975 spectra
34
New spectra presentation
Wild cherry
(Prunus avium)
no treated 160ºC 180ºC 200ºC 220ºC
-1,25
-1
-0,75
-0,5
-0,25
0
am. cell OH
cell CH CH2
cell CH2
cell CO OH CH2
cell OH
cell OH CH CH2
cell OH CO
cryst. cell OH
cryst. cell CH
cryst. cell OH CH
cell hemi CH
cell hemi CH CH2 OH CO
cell hemi OH CH
cell hemi lig CH
extr. CH
hemi C=O
hemi CH
hemi CH
hemi OH
hemi CH
hemi lig extr. CH C=C C=O
lig CH
lig CH
lig CH
lig
lig OH
H2O
H2O
xylograms
35
Xylograms; different species
-1,25
-1
-0,75
-0,5
-0,25
0
am. cell OH
cell CH CH2
cell CH2
cell CO OH CH2
cell OH
cell OH CH CH2
cell OH CO
cryst. cell OH
cryst. cell CH
cryst. cell OH CH
cell hemi CH
cell hemi CH CH2 OH CO
cell hemi OH CH
cell hemi lig CH
extr. CH
hemi C=O
hemi CH
hemi CH
hemi OH
hemi CH
hemi lig extr. CH C=C C=O
lig CH
lig CH
lig CH
lig
lig OH
H2O
H2O
-1,25
-1
-0,75
-0,5
-0,25
0
am. cell OH
cell CH CH2
cell CH2
cell CO OH CH2
cell OH
cell OH CH CH2
cell OH CO
cryst. cell OH
cryst. cell CH
cryst. cell OH CH
cell hemi CH
cell hemi CH CH2 OH CO
cell hemi OH CH
cell hemi lig CH
extr. CH
hemi C=O
hemi CH
hemi CH
hemi OH
hemi CH
hemi lig extr. CH C=C C=O
lig CH
lig CH
lig CH
lig
lig OH
H2O
H2O
-1,25
-1
-0,75
-0,5
-0,25
0
am. cell OH
cell CH CH2
cell CH2
cell CO OH CH2
cell OH
cell OH CH CH2
cell OH CO
cryst. cell OH
cryst. cell CH
cryst. cell OH CH
cell hemi CH
cell hemi CH CH2 OH CO
cell hemi OH CH
cell hemi lig CH
extr. CH
hemi C=O
hemi CH
hemi CH
hemi OH
hemi CH
hemi lig extr. CH C=C C=O
lig CH
lig CH
lig CH
lig
lig OH
H2O
H2O
-1,25
-1
-0,75
-0,5
-0,25
0
am. cell OH
cell CH CH2
cell CH2
cell CO OH CH2
cell OH
cell OH CH CH2
cell OH CO
cryst. cell OH
cryst. cell CH
cryst. cell OH CH
cell hemi CH
cell hemi CH CH2 OH CO
cell hemi OH CH
cell hemi lig CH
extr. CH
hemi C=O
hemi CH
hemi CH
hemi OH
hemi CH
hemi lig extr. CH C=C C=O
lig CH
lig CH
lig CH
lig
lig OH
H2O
H2O
Black locust
(Robinia pseudoacacia)
no treated 160ºC 180ºC 200ºC 220ºC
Norway spruce
(Picea abies)
no treated 160ºC 180ºC 200ºC 220ºC
Silver fir
(Abies alba)
no treated 160ºC 180ºC 200ºC 220ºC
European larch
(Larix decidua)
no treated 160ºC 180ºC 200ºC 220ºC
Wild cherry
(Prunus avium)
no treated 160ºC 180ºC 200ºC 220ºC
European beech
(Fagus silvatica)
no treated 160ºC 180ºC 200ºC 220ºC
European ash
(Fraxinus excelsior)
no treated 160ºC 180ºC 200ºC 220ºC
-1,25
-1
-0,75
-0,5
-0,25
0
am. cell OH
cell CH CH2
cell CH2
cell CO OH CH2
cell OH
cell OH CH CH2
cell OH CO
cryst. cell OH
cryst. cell CH
cryst. cell OH CH
cell hemi CH
cell hemi CH CH2 OH CO
cell hemi OH CH
cell hemi lig CH
extr. CH
hemi C=O
hemi CH
hemi CH
hemi OH
hemi CH
hemi lig extr. CH C=C C=O
lig CH
lig CH
lig CH
lig
lig OH
H2O
H2O
-1,25
-1
-0,75
-0,5
-0,25
0
am. cell OH
cell CH CH2
cell CH2
cell CO OH CH2
cell OH
cell OH CH CH2
cell OH CO
cryst. cell OH
cryst. cell CH
cryst. cell OH CH
cell hemi CH
cell hemi CH CH2 OH CO
cell hemi OH CH
cell hemi lig CH
extr. CH
hemi C=O
hemi CH
hemi CH
hemi OH
hemi CH
hemi lig extr. CH C=C C=O
lig CH
lig CH
lig CH
lig
lig OH
H2O
H2O
-1,25
-1
-0,75
-0,5
-0,25
0
am. cell OH
cell CH CH2
cell CH2
cell CO OH CH2
cell OH
cell OH CH CH2
cell OH CO
cryst. cell OH
cryst. cell CH
cryst. cell OH CH
cell hemi CH
cell hemi CH CH2 OH CO
cell hemi OH CH
cell hemi lig CH
extr. CH
hemi C=O
hemi CH
hemi CH
hemi OH
hemi CH
hemi lig extr. CH C=C C=O
lig CH
lig CH
lig CH
lig
lig OH
H2O
H2O
-1,25
-1
-0,75
-0,5
-0,25
0
am. cell OH
cell CH CH2
cell CH2
cell CO OH CH2
cell OH
cell OH CH CH2
cell OH CO
cryst. cell OH
cryst. cell CH
cryst. cell OH CH
cell hemi CH
cell hemi CH CH2 OH CO
cell hemi OH CH
cell hemi lig CH
extr. CH
hemi C=O
hemi CH
hemi CH
hemi OH
hemi CH
hemi lig extr. CH C=C C=O
lig CH
lig CH
lig CH
lig
lig OH
H2O
H2O
Sessile oak
(Quercus peraea)
no treated 160ºC 180ºC 200ºC 220ºC
36
PLS models for TM softwoods
 
y = 0.9522x - 0.1186
R
2
= 0.944
-10
-8
-6
-4
-2
0
2
-10 -8 -6 -4 -2 0 2
reference
estimated
y = 0.9782x + 0.218
R
2
= 0.9662
6
7
8
9
10
11
12
13
6 7 8 9 10 11 12 13
reference
estimated
Mass loss Equilibrium Moisture Content
37
TM of poplar veneers
78910111213141516171819
-0,00001
0,000005
54505950645069507450
wavenumber (cm-1
)
2
nd
derofNIRabsorbance
NT
239ºC, 1h, 250mb
239ºC, 2h, 1000mb
240ºC, 6.6h, 250mb
#26
#0
#37
#20
#18
#9
#15
#0 NT
#26 155ºC, 1h, 250mb
#9 174ºC, 22h, 250mb
#20 210ºC, 1h, 250mb
#18 239ºC, 1h, 250mb
#15 239ºC, 2h, 1000mb
#37 240ºC, 6.6h, 250mb
38
Wood sterilization
How to detect if the wood was appropriately
thermally treated?
• standard ISPM No15;
• Temperature: 56°C in the core of wood
• Treatment time: 30minutes
39
ISPM-15
Low temperature thermal treatment of wood
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
35 40 45 50 55 60 65 70 75 80 85 90 95 100 105
treatment temperature, degC
predictedtemperature,degC
calibration
validation
• to investigate an effect of the temperature on
wood samples of different wood species:
• Spruce (softwood with resin)
• Fir (softwood without resin)
• Poplar (hardwood)
• different treatment times:
• 0.5 hours (30 minutes)
• 1 hour
• 3 hours
• 6 hours
• different treatment temperatures:
• 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95,
100°C
• three samples for repetition/statistics
• five-times spectra measurements for analysis
of weathering effect:
• Conditioned after treatment
• Measured after 1month
• Measured after 3 months
• Measured after 6 mounts
• Measured after 12 mounts
468 samples measured x 5 spectra/sample x 5 repetition/sample = 9360 spectra
40
NIR-based method for verification of the
ISPM-15 treatment*







      
      
changestothespectrachangestothespectra
NO TREATED
TREATED
Spectra
+
model
41
891011121314
-0,000015
-0,000005
0,000005
55005600570058005900600061006200630064006500
wavenumber (cm
-1
)
2
nd
derofabsorbance
spruce reference
Coniophora puteana
Trametes versicolor
Wood decay
a cb
Trametes versicolor Postia placenta Coniophora puteana
y = 0.95x + 1.97
R2
= 0.93
-10
0
10
20
30
40
50
60
-10 0 10 20 30 40 50 60
reference mass loss, %
masslosspredictedwithNIR,%
42
Decay type identification
Postia placenta
reference
Trametes versicolor
Coniphora puteana
Gloeophyllum trabeum
43
Archaeological wood
Q
1 Q
2
Q
3Q
4
Q
5 Q
6
700-2700 years old
44
Short term waterlogging
OAK
band assessment pine oak
nr
wave number (cm
-1
) wood component functional group peat water peat water
1 4195 lignin not assigned ○ ○  ◦
2 4268 cellulose CH, CH2 ○ ○ ○ ○
3 4401 cellulose, hemicelluloses CH, CH2, OH, CO ○ ○  ○
4 4546 lignin CH, C=O   ◦ 
5 4608 cellulose, hemicelluloses not assigned   ◦ 
6 4686 hemicelluloses, lignin, extractives CH, C=C, C=O    
7 4739 cellulose OH ○ ○ ○ ○
8 4808 cellulose semi-crystalline and crystalline OH, CH ○  ○ ○
9 5051 water OH   ○ ○
10 5198 water OH center of the range ○ ○ ○ ○
11 5245 hemicelluloses C=O    
12 5495 cellulose OH, CO   ◦ ◦
13 5593 cellulose semi-crystalline and crystalline CH ◦ ○  ◦
14 5666 not assigned CH, CH2   ◦ ○
15 5692 not assigned CH2    
16 5800 hemicelluloses (furanose / pyranose) CH ○ ○  
17 5865 hemicelluloses CH ○ ○ ◦ ○
18 5935 lignin CH ◦ ○ ○ ◦
19 5980 lignin CH   ○ ○
20 6126 cellulose OH ◦ ○  
21 6286 cellulose crystalline OH ◦ ◦ ◦ ◦
22 6334 cellulose OH    
23 6472 cellulose crystalline OH ◦ ◦  
24 6715 cellulose semi-crystalline OH ◦ ◦ ◦ ◦
25 7003 amorphous cellulose, water OH ◦ ◦ ◦ ◦
26 7092 lignin, extractives OH    ○
360 samples measured x 3
spectra/sample = 1080
spectra
peat water
years of exposition
0 2 4 6 8 2 4 6 8 arch
PINE
45
Paper & NIR
5% wheat
2nd day
7th day
14th day
5% rye 5% wheat 5% rye
Chaetomium globosum
Aspergillus niger,
Penicillium funiculosum, Trichoderma viride
5% wheat
2nd day
7th day
14th day
5% rye 5% wheat 5% rye
Chaetomium globosum
Aspergillus niger,
Penicillium funiculosum, Trichoderma viride
3240 samples measured
x 3 spectra/sample =
9720 spectra
46
Effect of soil type
-0,00004
-0,00003
-0,00002
-0,00001
0
0,00001
0,00002
0,00003
4100 4200 4300 4400 4500 4600 4700 4800 4900 5000 5100 5200 5300 5400 5500
wavenumber, cm-1
2
nd
derivativeofabsorbance
0 weeks
forest soil 8 weeks
agricultural soil 8 weeks
sand 8 weeks
biodegradation of the recycled paper with addition of 5% wheat bran
47
Effect of time
biodegradation of the recycled paper with addition
of 5% wheat bran in the forest soil
0
4
8
PCA analysis of NIR spectra of paper before
degradation tests and decomposed in forest soil for
4 and 8 weeks.
Note: spectral range: 11000-4150cm-1,
pre-processing: 2nd derivative + VN
-0,00004
-0,00003
-0,00002
-0,00001
0
0,00001
0,00002
0,00003
4100 4200 4300 4400 4500 4600 4700 4800 4900 5000 5100 5200 5300 5400 5500
wavenumber, cm-1
2
nd
derivativeofabsorbance
0 week
1 week
8 week
48
PLS models for paper samples
samozerwalosc
y = 0.76x + 0.77
R2
= 0.80
-1
0
1
2
3
4
5
6
7
-1 0 1 2 3 4 5 6 7
reference value (km)
estimatedvalue(km)
porost
y = 0.75x + 0.80
R2
= 0.80
0
1
2
3
0 1 2 3
reference value (3-0 scale)
estimatedvalue(3-0scale)
breaking length growth degree
49
Estimation of mechanical stress
y = 0,90x + 68,91
R
2
= 0,90
0
200
400
600
800
1000
1200
1400
1600
0 200 400 600 800 1000 1200 1400 1600
reference force (N)
predictedforce(N)
stresses
50
why does it work?
wavenumber, cm-1
wavenumber, cm-1
w
avenumber,cm
-1
w
avenumber,cm
-1
wavenumber, cm-1 wavenumber, cm-1
wavenumber,cm-1
wavenumber,cm-1
            
a) c)
b) d) in the plastic fieldin the elastic field
2D synchronous spectra during
wood tension
4062
4193
4200
4231
4266
4281
4285
4362
4401
4544
4605
4632
4683
4737
4779
4794
4806
5049
5196
5234
5242
5462
5493
5520
5593
5616
5662
5689
5774
5793
5797
5813
5863
5871
5898
5932
5948
5959
5994
6002
6125
6187
6283
6333
6449
6468
6519
6619
6657
6700
6711
6738
6754
6769
6789
6796
6873
6943
6974
7001
7089
7213
7298
7313
7321
7352
7410
8158
8247
8652
8748
nontreated
normalize
firstderivative_5
firstderivative_15
firstderivative_25
firstderivative+normalization_5
firstderivative+normalization_15
firstderivative+normalization_25
secondderivative_5
secondderivative_15
secondderivative_25
secondderivative+normalization_5
secondderivative+normalization_15
secondderivative+normalization_25
Determination
coefficients (r2)
between NIR spectra
amplitude and tension
stresses in a relation
to the spectra
preprocessing method
51
Identity test – coating recognition
Preprocessing: 2 derivative + vector
normalization, 9 smoothing points
Method: factorization
Regions (cm-1): 4135-4350, 5365-5520,
5800-6000, 6290-6480, 7000-7200
Water solvent based
products: #13, #26, #41
Organic solvent based
products: #11, #12, #42
52
band: 4200-10000cm-1, 2 derivative, 5 smoothing points, vector normalization, 2 factors
Identification of coatings
■ Resotec
● Nordwal
■ Solas
▼ Adler aquawood
● Adler pullex
▲ Adler pullex oil
Product #1
Product #2
Product #3
Product #4
Product #5
Product #6
53
natural oak waxed oak varnished oak
Falejowkaoak
Antique wooden floors
54
Monitoring of weathering
8 softwood, 3 hardwood, 12 exotic, 3 thermo modified wood
21 various water/organic based products with synthetic/natural/acrylic/alkyd resins/oils
55
Monitoring wood weathering
-0.000006
0
55005600570058005900600061006200630064006500
wavenumber (cm-1
)
2
nd
derofabsorbance
reference
1 year
2 years
3 years
4 years
-OHcristallinecelulose
-CHsemi-cristallinecelulose
-OHcristallinecelulose
-CHlignin
-CHlignin
-CHhemicellulose
-CHaliphaticchains
56
Short term weathering of wood
891011121314
-0,000002
0
0,000002
55005600570058005900600061006200630064006500
wavenumber (cm
-1
)
2
nd
derofabsorbance
-CH S-cr cell-CH He-CH Al ch-OH Cr cell -CH L -CH S-cr cell-CH He-CH Al ch-OH Cr cell -CH L
28 days
Wind
57
Service life prediction
PCA of NIR spectra
of non coated
samples exposed to
South (4 years of
natural weathering);
 Reggio Emilia
 Roma
 Loninghens
 Macerata
 Udine  Trento
 Lecce  standard
EN927-6
EN927-6
EN927-6
1year
2years
2years
2years
1year
1year
Timemachine
Timemachine
Timemachine
0years
0years
0years
4years
4years
4years
EN11507
EN11507
EN11507
3years
3years
3years
EN927-6
EN927-6
EN927-6
1year
2years
2years
2years
1year
1year
Timemachine
Timemachine
Timemachine
0years
0years
0years
4years
4years
4years
EN11507
EN11507
EN11507
3years
3years
3years
a
58
Research directions
spatial measurement
Hyperspectral Imaging
in field measurement
portable equipment
59
Weathered wood
a) b)
PCA analysis performed on not weathered (a) 
and sample after 28 days of weathering (b)
0 1 2 4 7 9 11 14 17 21 24 28
60
K-means classification
K‐means clustering on the mosaic of weathered wood after pre‐selecting 3 (a), 
4 (b) and 5 classes (c)
b) c)A B C D
E F G H
I J K L I
A B C D
E F G H
J K L
A B C D
E F G H
I J K L
a)
61
NIR for log/biomass quality index in
mountain forest
wood measurement at various harvesting moments
62
Wood defects detection
range 12500-5900cm-1
2nd derivative + VN
63
Calibration transfer
y = 0.93x + 1.86
R² = 0.93
25,0
27,0
29,0
31,0
33,0
25,0 27,0 29,0 31,0 33,0
Measured total lignin content (%)
NIR‐predicted total lignin content (%)
y = 0.93x + 1.86
R² = 0.93
y = 0,99x + 0,31
R
2
 = 0,86
25,0
27,0
29,0
31,0
33,0
25,0 27,0 29,0 31,0 33,0
Measured total lignin content (%)
NIR‐predicted total lignin content (%)
measurement of samples with 
equipment #1
measurement of selected 
samples with equipment #2equipment #2 model 
development based on samples 
measured with instrument #1
model #1 development
calculation of transfer 
matrix
selection of 
calibration samples 
by Kennard Stone 
algorithm
64
Conclussions
NIR technique has been successfully used for:
• species and provenance recognition
• estimation chemical composition, physical and mechanical
properties
• monitoring chemical changes in wood during thermal modification,
weathering, waterlogging and decay
• recognition and classification of coatings
• characterization of archeological wood and cultural heritage objects
• service life prediction of wooden elements and structures
• paper characterization
• in-field applications
Current developments in the fields of optics and electronics open
new application for NIR. Its non-destructive character and simple
measurements allows assisting experts in the estimation of
material properties in a fast and repeatable way
65
Thank you very much

Contenu connexe

En vedette

SLOPE 2nd workshop - presentation 2
SLOPE 2nd workshop - presentation 2SLOPE 2nd workshop - presentation 2
SLOPE 2nd workshop - presentation 2SLOPE Project
 
The Lotus Position: Four Degrees of Freedom
The Lotus Position: Four Degrees of FreedomThe Lotus Position: Four Degrees of Freedom
The Lotus Position: Four Degrees of FreedomRed Pill Now
 
Review: Wellness technology in the workplace
Review: Wellness technology in the workplace Review: Wellness technology in the workplace
Review: Wellness technology in the workplace Reward Gateway
 
Getting your hands on graphs
Getting your hands on graphsGetting your hands on graphs
Getting your hands on graphsRed Pill Now
 
Break Your Designer Dependency
Break Your Designer DependencyBreak Your Designer Dependency
Break Your Designer DependencyRed Pill Now
 
Assistive Technology in the Workplace
Assistive Technology in the WorkplaceAssistive Technology in the Workplace
Assistive Technology in the WorkplaceFred Hobbs
 
Best practices for optimizing performance and reducing costs when selecting a...
Best practices for optimizing performance and reducing costs when selecting a...Best practices for optimizing performance and reducing costs when selecting a...
Best practices for optimizing performance and reducing costs when selecting a...Design World
 
An Introduction to Web Components
An Introduction to Web ComponentsAn Introduction to Web Components
An Introduction to Web ComponentsRed Pill Now
 
The Lotus Position : 3 Degrees Of Freedom
The Lotus Position : 3 Degrees Of FreedomThe Lotus Position : 3 Degrees Of Freedom
The Lotus Position : 3 Degrees Of FreedomRed Pill Now
 
GL Optic Optical Spectrophotometers from Saelig
GL Optic Optical Spectrophotometers from SaeligGL Optic Optical Spectrophotometers from Saelig
GL Optic Optical Spectrophotometers from SaeligAlan Lowne
 
MEMS Sensors Overview
MEMS Sensors OverviewMEMS Sensors Overview
MEMS Sensors OverviewJennifer Chin
 
Innovate in new and exciting optical sensing applications in industrial marke...
Innovate in new and exciting optical sensing applications in industrial marke...Innovate in new and exciting optical sensing applications in industrial marke...
Innovate in new and exciting optical sensing applications in industrial marke...Design World
 
A World Without Applications
A World Without ApplicationsA World Without Applications
A World Without ApplicationsRed Pill Now
 
Poised For Growth. Digital And The Future Of A Rapidly Expanding Fitness Indu...
Poised For Growth. Digital And The Future Of A Rapidly Expanding Fitness Indu...Poised For Growth. Digital And The Future Of A Rapidly Expanding Fitness Indu...
Poised For Growth. Digital And The Future Of A Rapidly Expanding Fitness Indu...Bryan K. O'Rourke
 

En vedette (20)

SLOPE 2nd workshop - presentation 2
SLOPE 2nd workshop - presentation 2SLOPE 2nd workshop - presentation 2
SLOPE 2nd workshop - presentation 2
 
The Lotus Position: Four Degrees of Freedom
The Lotus Position: Four Degrees of FreedomThe Lotus Position: Four Degrees of Freedom
The Lotus Position: Four Degrees of Freedom
 
Review: Wellness technology in the workplace
Review: Wellness technology in the workplace Review: Wellness technology in the workplace
Review: Wellness technology in the workplace
 
Getting your hands on graphs
Getting your hands on graphsGetting your hands on graphs
Getting your hands on graphs
 
Break Your Designer Dependency
Break Your Designer DependencyBreak Your Designer Dependency
Break Your Designer Dependency
 
Rethinking Notes
Rethinking NotesRethinking Notes
Rethinking Notes
 
Assistive Technology in the Workplace
Assistive Technology in the WorkplaceAssistive Technology in the Workplace
Assistive Technology in the Workplace
 
Graphs in Action
Graphs in ActionGraphs in Action
Graphs in Action
 
Once You Go Graph
Once You Go GraphOnce You Go Graph
Once You Go Graph
 
Best practices for optimizing performance and reducing costs when selecting a...
Best practices for optimizing performance and reducing costs when selecting a...Best practices for optimizing performance and reducing costs when selecting a...
Best practices for optimizing performance and reducing costs when selecting a...
 
An Introduction to Web Components
An Introduction to Web ComponentsAn Introduction to Web Components
An Introduction to Web Components
 
Design Matters
Design MattersDesign Matters
Design Matters
 
The Lotus Position : 3 Degrees Of Freedom
The Lotus Position : 3 Degrees Of FreedomThe Lotus Position : 3 Degrees Of Freedom
The Lotus Position : 3 Degrees Of Freedom
 
GL Optic Optical Spectrophotometers from Saelig
GL Optic Optical Spectrophotometers from SaeligGL Optic Optical Spectrophotometers from Saelig
GL Optic Optical Spectrophotometers from Saelig
 
MEMS Sensors Overview
MEMS Sensors OverviewMEMS Sensors Overview
MEMS Sensors Overview
 
Blending
BlendingBlending
Blending
 
Innovate in new and exciting optical sensing applications in industrial marke...
Innovate in new and exciting optical sensing applications in industrial marke...Innovate in new and exciting optical sensing applications in industrial marke...
Innovate in new and exciting optical sensing applications in industrial marke...
 
A World Without Applications
A World Without ApplicationsA World Without Applications
A World Without Applications
 
Poised For Growth. Digital And The Future Of A Rapidly Expanding Fitness Indu...
Poised For Growth. Digital And The Future Of A Rapidly Expanding Fitness Indu...Poised For Growth. Digital And The Future Of A Rapidly Expanding Fitness Indu...
Poised For Growth. Digital And The Future Of A Rapidly Expanding Fitness Indu...
 
Beyond XPages
Beyond XPagesBeyond XPages
Beyond XPages
 

Similaire à SLOPE 3rd workshop - presentation 3

An Integrated approach to city waste management
An Integrated approach to city waste managementAn Integrated approach to city waste management
An Integrated approach to city waste managementvarunmatj
 
SLOPE 3rd workshop - presentation 2
SLOPE 3rd workshop - presentation 2SLOPE 3rd workshop - presentation 2
SLOPE 3rd workshop - presentation 2SLOPE Project
 
Sensing for Food and Agriculture in VTT Ltd
Sensing for Food and Agriculture in VTT LtdSensing for Food and Agriculture in VTT Ltd
Sensing for Food and Agriculture in VTT LtdPhilippe Monnoyer
 
1.07_Barrick_SETACPittsburgh.pdf
1.07_Barrick_SETACPittsburgh.pdf1.07_Barrick_SETACPittsburgh.pdf
1.07_Barrick_SETACPittsburgh.pdfAndrew Barrick
 
Scientific research: Apply advanced technologies in forestry
Scientific research: Apply advanced technologies in forestryScientific research: Apply advanced technologies in forestry
Scientific research: Apply advanced technologies in forestryCIFOR-ICRAF
 
SAC - Birla Cellulose 12-Oct-15
SAC - Birla Cellulose 12-Oct-15SAC - Birla Cellulose 12-Oct-15
SAC - Birla Cellulose 12-Oct-15Rohan Batra
 
Composition of solid waste management 2
Composition of solid waste management 2Composition of solid waste management 2
Composition of solid waste management 2Vaibhav Kambale
 
Hmmv jalandhar presented
Hmmv jalandhar presentedHmmv jalandhar presented
Hmmv jalandhar presentedRakesh Khandal
 
hrl: knowing your waste streams characterising techniques
hrl: knowing your waste streams characterising techniques hrl: knowing your waste streams characterising techniques
hrl: knowing your waste streams characterising techniques hrl:
 
EU CELLUWOOD Poster 2013
EU CELLUWOOD Poster 2013EU CELLUWOOD Poster 2013
EU CELLUWOOD Poster 2013torrubia
 
The Green Factor. Environmental issues on the development of the Spanish Tile...
The Green Factor. Environmental issues on the development of the Spanish Tile...The Green Factor. Environmental issues on the development of the Spanish Tile...
The Green Factor. Environmental issues on the development of the Spanish Tile...Daniel Gabadón-Estevan
 
Presentation Technolog Co Ltd.
Presentation Technolog Co Ltd.Presentation Technolog Co Ltd.
Presentation Technolog Co Ltd.chemtechnolog
 

Similaire à SLOPE 3rd workshop - presentation 3 (20)

An Integrated approach to city waste management
An Integrated approach to city waste managementAn Integrated approach to city waste management
An Integrated approach to city waste management
 
A value-chain approach - Forest-based Sector Technology Platform FTP
A value-chain approach - Forest-based Sector Technology Platform FTPA value-chain approach - Forest-based Sector Technology Platform FTP
A value-chain approach - Forest-based Sector Technology Platform FTP
 
SLOPE 3rd workshop - presentation 2
SLOPE 3rd workshop - presentation 2SLOPE 3rd workshop - presentation 2
SLOPE 3rd workshop - presentation 2
 
Sensing for Food and Agriculture in VTT Ltd
Sensing for Food and Agriculture in VTT LtdSensing for Food and Agriculture in VTT Ltd
Sensing for Food and Agriculture in VTT Ltd
 
1.07_Barrick_SETACPittsburgh.pdf
1.07_Barrick_SETACPittsburgh.pdf1.07_Barrick_SETACPittsburgh.pdf
1.07_Barrick_SETACPittsburgh.pdf
 
Scientific research: Apply advanced technologies in forestry
Scientific research: Apply advanced technologies in forestryScientific research: Apply advanced technologies in forestry
Scientific research: Apply advanced technologies in forestry
 
SAC - Birla Cellulose 12-Oct-15
SAC - Birla Cellulose 12-Oct-15SAC - Birla Cellulose 12-Oct-15
SAC - Birla Cellulose 12-Oct-15
 
Composition of solid waste management 2
Composition of solid waste management 2Composition of solid waste management 2
Composition of solid waste management 2
 
Hmmv jalandhar presented
Hmmv jalandhar presentedHmmv jalandhar presented
Hmmv jalandhar presented
 
E waste
E wasteE waste
E waste
 
Asta Partanen: Puun biojalostuksen teolliset symbioosit ja sivuvirtojen hyödy...
Asta Partanen: Puun biojalostuksen teolliset symbioosit ja sivuvirtojen hyödy...Asta Partanen: Puun biojalostuksen teolliset symbioosit ja sivuvirtojen hyödy...
Asta Partanen: Puun biojalostuksen teolliset symbioosit ja sivuvirtojen hyödy...
 
hrl: knowing your waste streams characterising techniques
hrl: knowing your waste streams characterising techniques hrl: knowing your waste streams characterising techniques
hrl: knowing your waste streams characterising techniques
 
T065B0000270015PPTE.pptx
T065B0000270015PPTE.pptxT065B0000270015PPTE.pptx
T065B0000270015PPTE.pptx
 
EU CELLUWOOD Poster 2013
EU CELLUWOOD Poster 2013EU CELLUWOOD Poster 2013
EU CELLUWOOD Poster 2013
 
The Green Factor. Environmental issues on the development of the Spanish Tile...
The Green Factor. Environmental issues on the development of the Spanish Tile...The Green Factor. Environmental issues on the development of the Spanish Tile...
The Green Factor. Environmental issues on the development of the Spanish Tile...
 
Presentation Technolog Co Ltd.
Presentation Technolog Co Ltd.Presentation Technolog Co Ltd.
Presentation Technolog Co Ltd.
 
JETIR2201285.pdf
JETIR2201285.pdfJETIR2201285.pdf
JETIR2201285.pdf
 
E-Waste
E-WasteE-Waste
E-Waste
 
EPR Role of Informal Sector
EPR Role of Informal SectorEPR Role of Informal Sector
EPR Role of Informal Sector
 
Barc dr.khandal
Barc dr.khandalBarc dr.khandal
Barc dr.khandal
 

Plus de SLOPE Project

Slope Final Review Meeting - WP8
Slope Final Review Meeting - WP8Slope Final Review Meeting - WP8
Slope Final Review Meeting - WP8SLOPE Project
 
Slope Final Review Meeting - Introduction
Slope Final Review Meeting - Introduction Slope Final Review Meeting - Introduction
Slope Final Review Meeting - Introduction SLOPE Project
 
Slope Final Review Meeting - WP7
Slope Final Review Meeting - WP7Slope Final Review Meeting - WP7
Slope Final Review Meeting - WP7SLOPE Project
 
Slope Final Review Meeting - WP6
Slope Final Review Meeting - WP6Slope Final Review Meeting - WP6
Slope Final Review Meeting - WP6SLOPE Project
 
Slope Final Review Meeting - WP5
Slope Final Review Meeting - WP5Slope Final Review Meeting - WP5
Slope Final Review Meeting - WP5SLOPE Project
 
Slope Final Review Meeting - WP4
Slope Final Review Meeting - WP4Slope Final Review Meeting - WP4
Slope Final Review Meeting - WP4SLOPE Project
 
Slope Final Review Meeting - WP3
Slope Final Review Meeting - WP3Slope Final Review Meeting - WP3
Slope Final Review Meeting - WP3SLOPE Project
 
Slope Final Review Meeting - WP2
Slope Final Review Meeting - WP2Slope Final Review Meeting - WP2
Slope Final Review Meeting - WP2SLOPE Project
 
Slope Final Review Meeting - WP1
Slope Final Review Meeting - WP1 Slope Final Review Meeting - WP1
Slope Final Review Meeting - WP1 SLOPE Project
 
SLOPE 2nd workshop - presentation 3
SLOPE 2nd workshop - presentation 3SLOPE 2nd workshop - presentation 3
SLOPE 2nd workshop - presentation 3SLOPE Project
 
SLOPE 2nd workshop - presentation 4
SLOPE 2nd workshop - presentation 4SLOPE 2nd workshop - presentation 4
SLOPE 2nd workshop - presentation 4SLOPE Project
 
SLOPE Final Conference - innovative cable yarder
SLOPE Final Conference - innovative cable yarderSLOPE Final Conference - innovative cable yarder
SLOPE Final Conference - innovative cable yarderSLOPE Project
 
SLOPE Final Conference - sensors for timber grading in forest
SLOPE Final Conference - sensors for timber grading in forestSLOPE Final Conference - sensors for timber grading in forest
SLOPE Final Conference - sensors for timber grading in forestSLOPE Project
 
SLOPE Final Conference - remote sensing systems
SLOPE Final Conference - remote sensing systemsSLOPE Final Conference - remote sensing systems
SLOPE Final Conference - remote sensing systemsSLOPE Project
 
SLOPE Final Conference - intelligent machines
SLOPE Final Conference - intelligent machinesSLOPE Final Conference - intelligent machines
SLOPE Final Conference - intelligent machinesSLOPE Project
 
SLOPE 4th workshop - presentation 5
SLOPE 4th workshop - presentation 5SLOPE 4th workshop - presentation 5
SLOPE 4th workshop - presentation 5SLOPE Project
 
SLOPE 4th workshop - presentation 4
SLOPE 4th workshop - presentation 4SLOPE 4th workshop - presentation 4
SLOPE 4th workshop - presentation 4SLOPE Project
 
SLOPE 4th workshop - presentation 2
SLOPE 4th workshop - presentation 2SLOPE 4th workshop - presentation 2
SLOPE 4th workshop - presentation 2SLOPE Project
 
SLOPE 4th workshop - presentation 1
SLOPE 4th workshop - presentation 1SLOPE 4th workshop - presentation 1
SLOPE 4th workshop - presentation 1SLOPE Project
 
SLOPE 2nd workshop - presentation 1
SLOPE 2nd workshop - presentation 1SLOPE 2nd workshop - presentation 1
SLOPE 2nd workshop - presentation 1SLOPE Project
 

Plus de SLOPE Project (20)

Slope Final Review Meeting - WP8
Slope Final Review Meeting - WP8Slope Final Review Meeting - WP8
Slope Final Review Meeting - WP8
 
Slope Final Review Meeting - Introduction
Slope Final Review Meeting - Introduction Slope Final Review Meeting - Introduction
Slope Final Review Meeting - Introduction
 
Slope Final Review Meeting - WP7
Slope Final Review Meeting - WP7Slope Final Review Meeting - WP7
Slope Final Review Meeting - WP7
 
Slope Final Review Meeting - WP6
Slope Final Review Meeting - WP6Slope Final Review Meeting - WP6
Slope Final Review Meeting - WP6
 
Slope Final Review Meeting - WP5
Slope Final Review Meeting - WP5Slope Final Review Meeting - WP5
Slope Final Review Meeting - WP5
 
Slope Final Review Meeting - WP4
Slope Final Review Meeting - WP4Slope Final Review Meeting - WP4
Slope Final Review Meeting - WP4
 
Slope Final Review Meeting - WP3
Slope Final Review Meeting - WP3Slope Final Review Meeting - WP3
Slope Final Review Meeting - WP3
 
Slope Final Review Meeting - WP2
Slope Final Review Meeting - WP2Slope Final Review Meeting - WP2
Slope Final Review Meeting - WP2
 
Slope Final Review Meeting - WP1
Slope Final Review Meeting - WP1 Slope Final Review Meeting - WP1
Slope Final Review Meeting - WP1
 
SLOPE 2nd workshop - presentation 3
SLOPE 2nd workshop - presentation 3SLOPE 2nd workshop - presentation 3
SLOPE 2nd workshop - presentation 3
 
SLOPE 2nd workshop - presentation 4
SLOPE 2nd workshop - presentation 4SLOPE 2nd workshop - presentation 4
SLOPE 2nd workshop - presentation 4
 
SLOPE Final Conference - innovative cable yarder
SLOPE Final Conference - innovative cable yarderSLOPE Final Conference - innovative cable yarder
SLOPE Final Conference - innovative cable yarder
 
SLOPE Final Conference - sensors for timber grading in forest
SLOPE Final Conference - sensors for timber grading in forestSLOPE Final Conference - sensors for timber grading in forest
SLOPE Final Conference - sensors for timber grading in forest
 
SLOPE Final Conference - remote sensing systems
SLOPE Final Conference - remote sensing systemsSLOPE Final Conference - remote sensing systems
SLOPE Final Conference - remote sensing systems
 
SLOPE Final Conference - intelligent machines
SLOPE Final Conference - intelligent machinesSLOPE Final Conference - intelligent machines
SLOPE Final Conference - intelligent machines
 
SLOPE 4th workshop - presentation 5
SLOPE 4th workshop - presentation 5SLOPE 4th workshop - presentation 5
SLOPE 4th workshop - presentation 5
 
SLOPE 4th workshop - presentation 4
SLOPE 4th workshop - presentation 4SLOPE 4th workshop - presentation 4
SLOPE 4th workshop - presentation 4
 
SLOPE 4th workshop - presentation 2
SLOPE 4th workshop - presentation 2SLOPE 4th workshop - presentation 2
SLOPE 4th workshop - presentation 2
 
SLOPE 4th workshop - presentation 1
SLOPE 4th workshop - presentation 1SLOPE 4th workshop - presentation 1
SLOPE 4th workshop - presentation 1
 
SLOPE 2nd workshop - presentation 1
SLOPE 2nd workshop - presentation 1SLOPE 2nd workshop - presentation 1
SLOPE 2nd workshop - presentation 1
 

Dernier

microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
The byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxThe byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxShobhayan Kirtania
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...anjaliyadav012327
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 

Dernier (20)

Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
The byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxThe byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptx
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 

SLOPE 3rd workshop - presentation 3

  • 1. Bio-materials characterization with NIR Anna Sandak & Jakub Sandak
  • 2. 2 Outline Why spectroscopy? Tendencies in biomaterials developmnet NIR in bio-materials characterization Trends in NIR applications
  • 3. 3 Goals • to exploit the potential of near infrared spectroscopy • to demonstrate its capabilities for bio-based materials characterization • to highlight the potential of the NIR as a tool capable of providing complementary information to other techniques • to present current trends in NIR developments
  • 4. 4 Bio-materials in construction sector • In Italy 1 on 12 buildings is made of wood and growing tendency is observed nowadays • Bio-based materials are often used for retrofitting of existing structures, upward construction or vertical gardens • Buildings that use bio-materials are not just sustainable, strong and durable; they are also beautiful
  • 5. 5 Development priorities • Structural components (need for developed wood products - Engineered Wood Products, high strength wood, moisture resistant sills, light-weight beams/joists/studs of bio-composites, sandwich panels for exterior walls) • Insulation (need for compactable bats of cellulose insulation, environmentally friendly fire impregnation, high-performance insulation that provides thinner walls, insulation, optimized for soundproofing) • Barrier Materials (need for bio-based wind and vapor barrier for moisture-proof exterior walls, waterproofing for wet areas, façade and roofing materials with improved durability/serviceability Source: Per-Erik Eriksson: Future sustainable biobased buildings
  • 7. 7 Surface properties roughness color brighntess surface free energy wetability gloss pattern temperaturesoftiness hardness touch experience facture waviness chemical activity contamination resistance to dirt outlook resistance to scratch resistance to abrassion adhesion soft feel aseptic durability leveling water repellency matting effect
  • 8. 8 How to assess properties?
  • 9. 9 Why NIR spectroscopy?  No need special sample preparation  Non-destructive testing  Relatively fast measurement  No residues/solvents to waste  Determination of many components simultaneously  High degree of precision and accuracy  Direct measurement with very low cost  Not self standing technology  Overlapping of spectral peaks  Not straightforward interpretation  Needs statistics methods for data analysis
  • 10. 10 chemical industry, microanalysis, pharmaceutical analysis, soil, polymers, food and beverages, surface science, fuels, textile industry, art conservation, forensics, PAT, remote sensing and also wood and paper industry NIR applications
  • 11. 11 …but what can we see in wood? http://www.ifb.ethz.ch/research/sinergia
  • 12. 12 Cellulose (40-50%) • linear polymer • long chain (DP 5000-10000) • Β-D-Glucopyranose units • 1,4-glycosidic bonds • hydroxyl groups bonds • different kind in wood: • - amorphous, - semi-crystalline, - crystalline methylene groups hydroxyl groups
  • 13. 13 Lignin (20-30%) Softwood (guaiacyl units) Hardwood (guaiacyl + syringyl units) methoxyl groups phenolic hydroxyl groups aldehyde groups carbonyl groups
  • 14. 14 Hemicellulose (25-35%) xylan • hetero-polysaccharides • short chain (DP 150-200) • amorphous • high reactivity • various composition for hardwood and softwood acetyl groups hydroxyl groups
  • 15. 15 NIR & biomaterials characterization • Chemical compositions (cellulose, lignin, extractives) • Physical and anatomical characterization (density, moisture, calorific value, microfibryl angle, defects detection, sapwood/heartwood detection) • Mechanical properties (compression, tension, MOE, MOR) • Identification and monitoring others properties of wood (decay monitoring, weathering, waterlogging, thermal treatment, chemical modifications) • Paper industry (weight, thickness, moisture, Kappa number, mechanical resistance, type of pulp/paper)
  • 16. 16 Virgin wood • Species recognition • Wood provenance • Exotic wood evaluation • Biomass characterization • Clones recognition
  • 17. 17 Recognition of wood species 1 21 31 9 41 1 51 61 71 81 91 10 11 121 131 9 141 9 151 161 171 181 191 20 softwood hardwood exotic wood 01- Picea abies, 02-Abies alba, 03-Pinus cembra, 04-Larix decidua, 05-Pinus sylvestris, 06-Pinus ponderosa, 07- Tsuga, 08- Thuja sp., 09-Quercus robur, 10-Robinia pseudoacacia, 11-Castanea sativa, 12-Iroko, 13-Afrormosia, 14-Okumè, 15-Sipo, 16-Meranti, 17-Wengè, 18-Azobè, 19-Ipè, 20-Itauba, 21-Pau Rosado, 22-Teck, 23-Bangkirai
  • 18. 18 Use of CA for species classification Picea abies Pinus cembra Larix sp. Thuja plicata Abies alba Pinus silvestris Tsuga sp. investigatedsample
  • 19. 19 Wood provenance & NIRS 2163 trees of Norway spruce from 75 location in 14 European countries 2163 samples measured x 5 spectra/sample = 10815 spectra
  • 20. 20 Differentation of origin samples form 14 countries (75 locations); totally 10815 spectra was analyzed and evaluated  Austria ▲ Bulgaria ▼ Czech Republic ■ Croatia ■ Estonia  Finland  France  Germany  Hungary  Italy  Norway  Poland  Romania  Sweden
  • 22. 22       Principal Component Analysis PCA of spectra of wooden samples coming from six different locations (14 sites) in Trentino region Note: second derivative, vector normalization, method: factorization (5 factors) region: 9590-5250cm-1, 5100-4160cm-1  Strada Alta Valcigolera  Strada Orti Forestali,  Juribello  Paneveggio  Cadino 06  Cadino 43  Cadino 49  Folgaria 04  Folgaria 22  Monte Sover 7  Monte Sover 11  Monte Sover 14  Monte Sover 69  Caoria Valsorda
  • 23. 23 Cluster Analysis CADINO  CADINO CADINO  CA – wooden samples from 3 different districts of Cadino valley  Note: second derivative, vector normalization, Ward’s algorithm, region: 7089-5072cm-1
  • 24. 24 coconut shell tamarind grass Identification of agricultural residues
  • 25. Particleboards characterization 25 A B C Raw resources: Eastern redcedar (Juniperus virginiana L.) Single- and three-layers panels manufactured from raw material using 9% urea formaldehyde, combination of 15% modified corn starch and 2% urea formaldehyde adhesive 12345678910111213141516171819 -0,008 0 0,008 40004500500055006000650070007500 wavenumber (cm-1) PC2,PC3 PC2 PC3
  • 26. 26 Selection of biomass for optimal bio-conversion process PCA of willow clones. Note: pre-processing: 2nd derivative + vector normalization, 17 smoothing points, region: 6869-5847 cm-1, method: factorization, 3 factors duotur sprint turbo wodtur monoturstart oltur tur PC3 PC4 PC2
  • 27. 27 Willows utilization willows thermo-chemical conversion chemical conversion mechanical-chemical conversion combustion pyrolysis gasification fermentation anaerobic digestion estrificationpulping panel production heat syngas pulp&paper fiber-panel ethanol biogas biodieselcharcoalsyngasbio-oil high lignin content high carbohydrate content high fiber content extraction high extractives content acumulation of heavy metalsfast resprouting manufacturing environmental engineering phytominig phyto- remediation biofiltrationfurniturebasketry metalsclean soilclean waterchairscontainers cosmetic foodpharmaceutic cream anti- phlogistic anti- pyretic preservative anti- oxidantshampoo cultivation apiculture honeypollination construction green architecture fencesroadmats fast growingearly flowering
  • 28. 28 Suggested conversion path thermo- chemical mechano- chemical chemical pharmaceut ical phytoremediation #1  0.93  0.07  0.13  0.96  0.19  -0.10  0.00 #2  0.98  0.04  -0.01  0.98  0.44  -0.03  0.02 #3  0.97  0.13  0.01  1.02  0.57  0.88  0.33 #4  1.05  -0.07  1.04  0.99  0.61  0.99  0.20 #5  0.89  0.13  0.19  0.80  0.57  -0.06  0.19 #6  0.05  -0.05  -0.13  1.14  0.68  0.15  0.42 #7  -0.08  0.78  0.02  0.03  0.33  -0.07  0.50 #8  0.09  1.10  -0.07  -0.11  0.06  0.00  -0.03 #9  -0.05  0.90  -0.06  0.02  0.28  0.15  0.30 #10  -0.03  0.04  0.07  0.03  0.09  0.14  -0.11 #11  -0.02  -0.05  1.01  -0.06  1.19  0.84  0.31 #12  -0.04  -0.07  1.05  -0.04  1.32  -0.15  0.22 #13  -0.02  -0.04  0.93  0.08  1.22  0.32  0.35 #14  -0.04  -0.04  0.92  0.10  1.00  0.86  0.66 #15  1.11  0.95  0.84  0.00  1.04  0.09  0.11 #16  0.16  1.12  -0.02  0.06  1.31  1.12  0.60 #17  0.06  0.06  1.07  0.01  1.10  -0.14  -0.05 high content of: high accumulation of: Discrimin ation rule high HHV cellulose hemicelluos e extractives Zn Pb Cu Threshold rule HHVexp>20.0 Xc>38% Xhe>34% Xe>11% XZn>55ppb XPb>8ppb XCu>8ppb Average prediction error 0.06 0.08 0.07 0.06 0.29 0.11 0.29http://www.seco.cpa.state.tx.us/publications/renewenergy/biom assenergy.php
  • 29. 29 Chemical analysis • cellulose (by Browning) • holocellulose (by Browning) • lignin (T 222 om-06 TAPPI) • pentosans (T 223 cm-01 TAPPI) • hot water extractives (T 207 cm-08 TAPPI) • cold water extractives (T 207 cm-08 TAPPI) • 1% NaOH extractives (T 212 om-07 TAPPI) • organic solvent extractives (T 204 cm-07 TAPPI)
  • 30. 30 NIR PLS calibration models #1 of willows chemical composition (pilot study) 22 23 24 25 26 27 28 22 23 24 25 26 27 28 lignin measured (%) ligninpredicted(%) 42 43 44 45 46 47 48 49 50 51 52 42 43 44 45 46 47 48 49 50 51 52 cellulose measured (%) cellulosepredicted(%) 17 18 19 20 21 17 18 19 20 21 pentosans measured (%) pentosanspredicted(%) 70 71 72 73 74 75 76 77 78 79 80 70 71 72 73 74 75 76 77 78 79 80 holocellulose measured (%) holocellulosepredicted(%) lignin r2 = 0.969 RMSECV = 0.24 RPD = 5.7 cellulose r2 = 0.9 82 RMSECV = 0. 39 RPD = 7.4 pentosans r2 = 0.96 7 RMSECV = 0.11 RPD = 5.5 holocellulose r2 = 0.968 RMSECV = 0.33 RPD = 5.6
  • 31. 31 NIR PLS calibration models #2 of willows chemical composition (pilot study) 18 19 20 21 22 23 24 25 26 27 28 18 19 20 21 22 23 24 25 26 27 28 soluble in 10% NaOH measured (%) solublein10%NaOHpredicted(%) 2 3 4 5 6 2 3 4 5 6 soluble in organic measured (%) solubleinorganicpredicted(%) 0 1 2 3 4 0 1 2 3 4 soluble in cold water measured (%) solubleincoldwaterpredicted(%) 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 soluble in hot water measured (%) solubleinhotwaterpredicted(%) soluble in cold water r2 = 0.983 RMSECV = 0.20 RPD = 7.7 soluble in hot water r2 = 0.983 RMSECV = 0.12 RPD = 7.6 soluble in organic solvents r2 = 0.981 RMSECV = 0.12 RPD = 7.2 soluble in 10% NaOH r2 = 0.965 RMSECV = 0.37 RPD = 5.4 18 19 20 21 22 23 24 25 26 27 28 18 19 20 21 22 23 24 25 26 27 28 soluble in 10% NaOH measured (%) solublein10%NaOHpredicted(%) 18 19 20 21 22 23 24 25 26 27 28 18 19 20 21 22 23 24 25 26 27 28 soluble in 10% NaOH measured (%) solublein10%NaOHpredicted(%) 2 3 4 5 6 2 3 4 5 6 soluble in organic measured (%) solubleinorganicpredicted(%) 2 3 4 5 6 2 3 4 5 6 soluble in organic measured (%) solubleinorganicpredicted(%) 0 1 2 3 4 0 1 2 3 4 soluble in cold water measured (%) solubleincoldwaterpredicted(%) 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 soluble in hot water measured (%) solubleinhotwaterpredicted(%) soluble in cold water r2 = 0.983 RMSECV = 0.20 RPD = 7.7 soluble in hot water r2 = 0.983 RMSECV = 0.12 RPD = 7.6 soluble in organic solvents r2 = 0.981 RMSECV = 0.12 RPD = 7.2 soluble in 10% NaOH r2 = 0.965 RMSECV = 0.37 RPD = 5.4 0 1 2 3 4 0 1 2 3 4 soluble in cold water measured (%) solubleincoldwaterpredicted(%) 0 1 2 3 4 0 1 2 3 4 soluble in cold water measured (%) solubleincoldwaterpredicted(%) 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 soluble in hot water measured (%) solubleinhotwaterpredicted(%) 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 soluble in hot water measured (%) solubleinhotwaterpredicted(%) soluble in cold water r2 = 0.983 RMSECV = 0.20 RPD = 7.7 soluble in hot water r2 = 0.983 RMSECV = 0.12 RPD = 7.6 soluble in organic solvents r2 = 0.981 RMSECV = 0.12 RPD = 7.2 soluble in 10% NaOH r2 = 0.965 RMSECV = 0.37 RPD = 5.4
  • 32. 32 Wood modifications & NIRS • Thermal treatment • Decay • ISPM-15 • Densification • Mechanical testing • Wood after wood machining • Coatings • Weathering • Service life prediction • …
  • 33. 33 Wood thermal treatment fir spruce larch parameter ML EMC ML EMC ML EMC range (cm-1) 7502-6098 5450-4246 6102-4246 10996-10098 9303-8501 5018-4435 8505-4435 9403-5446 9403-7498 6102-5446 pre-processing 1der +MSC 1 der + VN VN 1 der + VN 1 der + VN 1 der +MSC r2 98.67 97.58 98.48 98.83 97.88 97.69 RMSECV 0.26 0.25 0.25 0.17 0.39 0.19 RPD 8.66 6.42 8.11 9.42 6.87 6.58 rank 3 3 3 4 4 5 Termovuoto: open system: (volatile products of the process are continuously removed from the kiln by means of a vacuum pump) The treatment time: 3 hours Pressure: 0.2 bar treatment temperatures of 160, 180, 200 and 220ºC. + 5hardwoods… 195 samples measured x 5 spectra/sample = 975 spectra
  • 34. 34 New spectra presentation Wild cherry (Prunus avium) no treated 160ºC 180ºC 200ºC 220ºC -1,25 -1 -0,75 -0,5 -0,25 0 am. cell OH cell CH CH2 cell CH2 cell CO OH CH2 cell OH cell OH CH CH2 cell OH CO cryst. cell OH cryst. cell CH cryst. cell OH CH cell hemi CH cell hemi CH CH2 OH CO cell hemi OH CH cell hemi lig CH extr. CH hemi C=O hemi CH hemi CH hemi OH hemi CH hemi lig extr. CH C=C C=O lig CH lig CH lig CH lig lig OH H2O H2O xylograms
  • 35. 35 Xylograms; different species -1,25 -1 -0,75 -0,5 -0,25 0 am. cell OH cell CH CH2 cell CH2 cell CO OH CH2 cell OH cell OH CH CH2 cell OH CO cryst. cell OH cryst. cell CH cryst. cell OH CH cell hemi CH cell hemi CH CH2 OH CO cell hemi OH CH cell hemi lig CH extr. CH hemi C=O hemi CH hemi CH hemi OH hemi CH hemi lig extr. CH C=C C=O lig CH lig CH lig CH lig lig OH H2O H2O -1,25 -1 -0,75 -0,5 -0,25 0 am. cell OH cell CH CH2 cell CH2 cell CO OH CH2 cell OH cell OH CH CH2 cell OH CO cryst. cell OH cryst. cell CH cryst. cell OH CH cell hemi CH cell hemi CH CH2 OH CO cell hemi OH CH cell hemi lig CH extr. CH hemi C=O hemi CH hemi CH hemi OH hemi CH hemi lig extr. CH C=C C=O lig CH lig CH lig CH lig lig OH H2O H2O -1,25 -1 -0,75 -0,5 -0,25 0 am. cell OH cell CH CH2 cell CH2 cell CO OH CH2 cell OH cell OH CH CH2 cell OH CO cryst. cell OH cryst. cell CH cryst. cell OH CH cell hemi CH cell hemi CH CH2 OH CO cell hemi OH CH cell hemi lig CH extr. CH hemi C=O hemi CH hemi CH hemi OH hemi CH hemi lig extr. CH C=C C=O lig CH lig CH lig CH lig lig OH H2O H2O -1,25 -1 -0,75 -0,5 -0,25 0 am. cell OH cell CH CH2 cell CH2 cell CO OH CH2 cell OH cell OH CH CH2 cell OH CO cryst. cell OH cryst. cell CH cryst. cell OH CH cell hemi CH cell hemi CH CH2 OH CO cell hemi OH CH cell hemi lig CH extr. CH hemi C=O hemi CH hemi CH hemi OH hemi CH hemi lig extr. CH C=C C=O lig CH lig CH lig CH lig lig OH H2O H2O Black locust (Robinia pseudoacacia) no treated 160ºC 180ºC 200ºC 220ºC Norway spruce (Picea abies) no treated 160ºC 180ºC 200ºC 220ºC Silver fir (Abies alba) no treated 160ºC 180ºC 200ºC 220ºC European larch (Larix decidua) no treated 160ºC 180ºC 200ºC 220ºC Wild cherry (Prunus avium) no treated 160ºC 180ºC 200ºC 220ºC European beech (Fagus silvatica) no treated 160ºC 180ºC 200ºC 220ºC European ash (Fraxinus excelsior) no treated 160ºC 180ºC 200ºC 220ºC -1,25 -1 -0,75 -0,5 -0,25 0 am. cell OH cell CH CH2 cell CH2 cell CO OH CH2 cell OH cell OH CH CH2 cell OH CO cryst. cell OH cryst. cell CH cryst. cell OH CH cell hemi CH cell hemi CH CH2 OH CO cell hemi OH CH cell hemi lig CH extr. CH hemi C=O hemi CH hemi CH hemi OH hemi CH hemi lig extr. CH C=C C=O lig CH lig CH lig CH lig lig OH H2O H2O -1,25 -1 -0,75 -0,5 -0,25 0 am. cell OH cell CH CH2 cell CH2 cell CO OH CH2 cell OH cell OH CH CH2 cell OH CO cryst. cell OH cryst. cell CH cryst. cell OH CH cell hemi CH cell hemi CH CH2 OH CO cell hemi OH CH cell hemi lig CH extr. CH hemi C=O hemi CH hemi CH hemi OH hemi CH hemi lig extr. CH C=C C=O lig CH lig CH lig CH lig lig OH H2O H2O -1,25 -1 -0,75 -0,5 -0,25 0 am. cell OH cell CH CH2 cell CH2 cell CO OH CH2 cell OH cell OH CH CH2 cell OH CO cryst. cell OH cryst. cell CH cryst. cell OH CH cell hemi CH cell hemi CH CH2 OH CO cell hemi OH CH cell hemi lig CH extr. CH hemi C=O hemi CH hemi CH hemi OH hemi CH hemi lig extr. CH C=C C=O lig CH lig CH lig CH lig lig OH H2O H2O -1,25 -1 -0,75 -0,5 -0,25 0 am. cell OH cell CH CH2 cell CH2 cell CO OH CH2 cell OH cell OH CH CH2 cell OH CO cryst. cell OH cryst. cell CH cryst. cell OH CH cell hemi CH cell hemi CH CH2 OH CO cell hemi OH CH cell hemi lig CH extr. CH hemi C=O hemi CH hemi CH hemi OH hemi CH hemi lig extr. CH C=C C=O lig CH lig CH lig CH lig lig OH H2O H2O Sessile oak (Quercus peraea) no treated 160ºC 180ºC 200ºC 220ºC
  • 36. 36 PLS models for TM softwoods   y = 0.9522x - 0.1186 R 2 = 0.944 -10 -8 -6 -4 -2 0 2 -10 -8 -6 -4 -2 0 2 reference estimated y = 0.9782x + 0.218 R 2 = 0.9662 6 7 8 9 10 11 12 13 6 7 8 9 10 11 12 13 reference estimated Mass loss Equilibrium Moisture Content
  • 37. 37 TM of poplar veneers 78910111213141516171819 -0,00001 0,000005 54505950645069507450 wavenumber (cm-1 ) 2 nd derofNIRabsorbance NT 239ºC, 1h, 250mb 239ºC, 2h, 1000mb 240ºC, 6.6h, 250mb #26 #0 #37 #20 #18 #9 #15 #0 NT #26 155ºC, 1h, 250mb #9 174ºC, 22h, 250mb #20 210ºC, 1h, 250mb #18 239ºC, 1h, 250mb #15 239ºC, 2h, 1000mb #37 240ºC, 6.6h, 250mb
  • 38. 38 Wood sterilization How to detect if the wood was appropriately thermally treated? • standard ISPM No15; • Temperature: 56°C in the core of wood • Treatment time: 30minutes
  • 39. 39 ISPM-15 Low temperature thermal treatment of wood 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 treatment temperature, degC predictedtemperature,degC calibration validation • to investigate an effect of the temperature on wood samples of different wood species: • Spruce (softwood with resin) • Fir (softwood without resin) • Poplar (hardwood) • different treatment times: • 0.5 hours (30 minutes) • 1 hour • 3 hours • 6 hours • different treatment temperatures: • 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100°C • three samples for repetition/statistics • five-times spectra measurements for analysis of weathering effect: • Conditioned after treatment • Measured after 1month • Measured after 3 months • Measured after 6 mounts • Measured after 12 mounts 468 samples measured x 5 spectra/sample x 5 repetition/sample = 9360 spectra
  • 40. 40 NIR-based method for verification of the ISPM-15 treatment*                      changestothespectrachangestothespectra NO TREATED TREATED Spectra + model
  • 41. 41 891011121314 -0,000015 -0,000005 0,000005 55005600570058005900600061006200630064006500 wavenumber (cm -1 ) 2 nd derofabsorbance spruce reference Coniophora puteana Trametes versicolor Wood decay a cb Trametes versicolor Postia placenta Coniophora puteana y = 0.95x + 1.97 R2 = 0.93 -10 0 10 20 30 40 50 60 -10 0 10 20 30 40 50 60 reference mass loss, % masslosspredictedwithNIR,%
  • 42. 42 Decay type identification Postia placenta reference Trametes versicolor Coniphora puteana Gloeophyllum trabeum
  • 44. 44 Short term waterlogging OAK band assessment pine oak nr wave number (cm -1 ) wood component functional group peat water peat water 1 4195 lignin not assigned ○ ○  ◦ 2 4268 cellulose CH, CH2 ○ ○ ○ ○ 3 4401 cellulose, hemicelluloses CH, CH2, OH, CO ○ ○  ○ 4 4546 lignin CH, C=O   ◦  5 4608 cellulose, hemicelluloses not assigned   ◦  6 4686 hemicelluloses, lignin, extractives CH, C=C, C=O     7 4739 cellulose OH ○ ○ ○ ○ 8 4808 cellulose semi-crystalline and crystalline OH, CH ○  ○ ○ 9 5051 water OH   ○ ○ 10 5198 water OH center of the range ○ ○ ○ ○ 11 5245 hemicelluloses C=O     12 5495 cellulose OH, CO   ◦ ◦ 13 5593 cellulose semi-crystalline and crystalline CH ◦ ○  ◦ 14 5666 not assigned CH, CH2   ◦ ○ 15 5692 not assigned CH2     16 5800 hemicelluloses (furanose / pyranose) CH ○ ○   17 5865 hemicelluloses CH ○ ○ ◦ ○ 18 5935 lignin CH ◦ ○ ○ ◦ 19 5980 lignin CH   ○ ○ 20 6126 cellulose OH ◦ ○   21 6286 cellulose crystalline OH ◦ ◦ ◦ ◦ 22 6334 cellulose OH     23 6472 cellulose crystalline OH ◦ ◦   24 6715 cellulose semi-crystalline OH ◦ ◦ ◦ ◦ 25 7003 amorphous cellulose, water OH ◦ ◦ ◦ ◦ 26 7092 lignin, extractives OH    ○ 360 samples measured x 3 spectra/sample = 1080 spectra peat water years of exposition 0 2 4 6 8 2 4 6 8 arch PINE
  • 45. 45 Paper & NIR 5% wheat 2nd day 7th day 14th day 5% rye 5% wheat 5% rye Chaetomium globosum Aspergillus niger, Penicillium funiculosum, Trichoderma viride 5% wheat 2nd day 7th day 14th day 5% rye 5% wheat 5% rye Chaetomium globosum Aspergillus niger, Penicillium funiculosum, Trichoderma viride 3240 samples measured x 3 spectra/sample = 9720 spectra
  • 46. 46 Effect of soil type -0,00004 -0,00003 -0,00002 -0,00001 0 0,00001 0,00002 0,00003 4100 4200 4300 4400 4500 4600 4700 4800 4900 5000 5100 5200 5300 5400 5500 wavenumber, cm-1 2 nd derivativeofabsorbance 0 weeks forest soil 8 weeks agricultural soil 8 weeks sand 8 weeks biodegradation of the recycled paper with addition of 5% wheat bran
  • 47. 47 Effect of time biodegradation of the recycled paper with addition of 5% wheat bran in the forest soil 0 4 8 PCA analysis of NIR spectra of paper before degradation tests and decomposed in forest soil for 4 and 8 weeks. Note: spectral range: 11000-4150cm-1, pre-processing: 2nd derivative + VN -0,00004 -0,00003 -0,00002 -0,00001 0 0,00001 0,00002 0,00003 4100 4200 4300 4400 4500 4600 4700 4800 4900 5000 5100 5200 5300 5400 5500 wavenumber, cm-1 2 nd derivativeofabsorbance 0 week 1 week 8 week
  • 48. 48 PLS models for paper samples samozerwalosc y = 0.76x + 0.77 R2 = 0.80 -1 0 1 2 3 4 5 6 7 -1 0 1 2 3 4 5 6 7 reference value (km) estimatedvalue(km) porost y = 0.75x + 0.80 R2 = 0.80 0 1 2 3 0 1 2 3 reference value (3-0 scale) estimatedvalue(3-0scale) breaking length growth degree
  • 49. 49 Estimation of mechanical stress y = 0,90x + 68,91 R 2 = 0,90 0 200 400 600 800 1000 1200 1400 1600 0 200 400 600 800 1000 1200 1400 1600 reference force (N) predictedforce(N) stresses
  • 50. 50 why does it work? wavenumber, cm-1 wavenumber, cm-1 w avenumber,cm -1 w avenumber,cm -1 wavenumber, cm-1 wavenumber, cm-1 wavenumber,cm-1 wavenumber,cm-1              a) c) b) d) in the plastic fieldin the elastic field 2D synchronous spectra during wood tension 4062 4193 4200 4231 4266 4281 4285 4362 4401 4544 4605 4632 4683 4737 4779 4794 4806 5049 5196 5234 5242 5462 5493 5520 5593 5616 5662 5689 5774 5793 5797 5813 5863 5871 5898 5932 5948 5959 5994 6002 6125 6187 6283 6333 6449 6468 6519 6619 6657 6700 6711 6738 6754 6769 6789 6796 6873 6943 6974 7001 7089 7213 7298 7313 7321 7352 7410 8158 8247 8652 8748 nontreated normalize firstderivative_5 firstderivative_15 firstderivative_25 firstderivative+normalization_5 firstderivative+normalization_15 firstderivative+normalization_25 secondderivative_5 secondderivative_15 secondderivative_25 secondderivative+normalization_5 secondderivative+normalization_15 secondderivative+normalization_25 Determination coefficients (r2) between NIR spectra amplitude and tension stresses in a relation to the spectra preprocessing method
  • 51. 51 Identity test – coating recognition Preprocessing: 2 derivative + vector normalization, 9 smoothing points Method: factorization Regions (cm-1): 4135-4350, 5365-5520, 5800-6000, 6290-6480, 7000-7200 Water solvent based products: #13, #26, #41 Organic solvent based products: #11, #12, #42
  • 52. 52 band: 4200-10000cm-1, 2 derivative, 5 smoothing points, vector normalization, 2 factors Identification of coatings ■ Resotec ● Nordwal ■ Solas ▼ Adler aquawood ● Adler pullex ▲ Adler pullex oil Product #1 Product #2 Product #3 Product #4 Product #5 Product #6
  • 53. 53 natural oak waxed oak varnished oak Falejowkaoak Antique wooden floors
  • 54. 54 Monitoring of weathering 8 softwood, 3 hardwood, 12 exotic, 3 thermo modified wood 21 various water/organic based products with synthetic/natural/acrylic/alkyd resins/oils
  • 55. 55 Monitoring wood weathering -0.000006 0 55005600570058005900600061006200630064006500 wavenumber (cm-1 ) 2 nd derofabsorbance reference 1 year 2 years 3 years 4 years -OHcristallinecelulose -CHsemi-cristallinecelulose -OHcristallinecelulose -CHlignin -CHlignin -CHhemicellulose -CHaliphaticchains
  • 56. 56 Short term weathering of wood 891011121314 -0,000002 0 0,000002 55005600570058005900600061006200630064006500 wavenumber (cm -1 ) 2 nd derofabsorbance -CH S-cr cell-CH He-CH Al ch-OH Cr cell -CH L -CH S-cr cell-CH He-CH Al ch-OH Cr cell -CH L 28 days Wind
  • 57. 57 Service life prediction PCA of NIR spectra of non coated samples exposed to South (4 years of natural weathering);  Reggio Emilia  Roma  Loninghens  Macerata  Udine  Trento  Lecce  standard EN927-6 EN927-6 EN927-6 1year 2years 2years 2years 1year 1year Timemachine Timemachine Timemachine 0years 0years 0years 4years 4years 4years EN11507 EN11507 EN11507 3years 3years 3years EN927-6 EN927-6 EN927-6 1year 2years 2years 2years 1year 1year Timemachine Timemachine Timemachine 0years 0years 0years 4years 4years 4years EN11507 EN11507 EN11507 3years 3years 3years a
  • 58. 58 Research directions spatial measurement Hyperspectral Imaging in field measurement portable equipment
  • 61. 61 NIR for log/biomass quality index in mountain forest wood measurement at various harvesting moments
  • 62. 62 Wood defects detection range 12500-5900cm-1 2nd derivative + VN
  • 63. 63 Calibration transfer y = 0.93x + 1.86 R² = 0.93 25,0 27,0 29,0 31,0 33,0 25,0 27,0 29,0 31,0 33,0 Measured total lignin content (%) NIR‐predicted total lignin content (%) y = 0.93x + 1.86 R² = 0.93 y = 0,99x + 0,31 R 2  = 0,86 25,0 27,0 29,0 31,0 33,0 25,0 27,0 29,0 31,0 33,0 Measured total lignin content (%) NIR‐predicted total lignin content (%) measurement of samples with  equipment #1 measurement of selected  samples with equipment #2equipment #2 model  development based on samples  measured with instrument #1 model #1 development calculation of transfer  matrix selection of  calibration samples  by Kennard Stone  algorithm
  • 64. 64 Conclussions NIR technique has been successfully used for: • species and provenance recognition • estimation chemical composition, physical and mechanical properties • monitoring chemical changes in wood during thermal modification, weathering, waterlogging and decay • recognition and classification of coatings • characterization of archeological wood and cultural heritage objects • service life prediction of wooden elements and structures • paper characterization • in-field applications Current developments in the fields of optics and electronics open new application for NIR. Its non-destructive character and simple measurements allows assisting experts in the estimation of material properties in a fast and repeatable way