SlideShare une entreprise Scribd logo
1  sur  79
Current Developments  with SRI: Other Methods, Other Crops, Mechanization, etc. Sichuan Academy of Agricultural Sciences January 18, 2010 Norman Uphoff, CIIFAD
SRI is  not yet finished ,[object Object],[object Object],[object Object],[object Object]
Interesting to see variations: ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Liu Zhibin, Meishan, Sichuan province, China, standing in  raised-bed, zero-till  SRI field; measured yield 13.4 t/ha; his SRI yield in 2001 (16 t/ha) set provincial yield record
Rainfed/upland SRI ,[object Object],[object Object],[object Object],[object Object]
Cost of cultivation & net profits Subject SRI  (Rs) Conv  (Rs) Land preparation 2,800 2,800 Seed 45 450 Labour (8) 400 750 DAP-75kg 750 750 Urea -50Kg 310 310 Weeding 600 1,000 Harvesting 420 420 Tractor hiring charges 450 450 Threshing 1,200 1,200 TOTAL COST 6,975 8,130 Irrigation - alternate (hrs) 3 7 Yield (bags) 39 32 Tons/ha 2.73 2.24 GROSS PROFIT 25,389 20,832 NET PROFIT 18,414 12,702
IWMI/India study:  67% higher income per ha, with one field yielding 15 t/ha
Direct-seeding for SRI ,[object Object],[object Object],[object Object]
Seeder Developed in Cuba
Thailand: Farmers making  direct-seeder for SRI
 
India: Southern Andhra Pradesh Direct-seeder  at KVK
 
 
 
Mechanization of SRI ,[object Object],[object Object],[object Object],[object Object],[object Object]
Mechanical transplanter in Costa Rica
8 t/ha yield vs. 4.2 t/ha before
Costa Rica – mechanized SRI crop  8 t/ha yield without fertilizer
IRAQ: Comparison trials at Al-Mishkhab Rice Research Station, Najaf
Mechanical transplanting with SRI spacing in Iraq
Pakistan, Punjab Province: Raised beds formed on  laser-leveled fields
Nursery mats made from soil, compost and rice hulls
 
Raised beds ready for transplanting
Transplanting machine – makes holes at 9 inch spacing (22.5 cm), also bands compost and fertilizer
Laborers dropping 10-day seedlings into holes; machine sprays water into holes
Transplanting machine straddling raised beds as laborers drop seedlings in holes
Weeder/soil aerator removing weeds and breaking soil crust at 9 inch (22.5cm) intervals
Mechanically  transplanted and weeded rice crop, irrigated in furrows with siphon supply
Growing crop – 90 tillers at 72 days
 
Mechanical weeder in Colombia
SRI Methods in Different Agroecosystems ,[object Object],[object Object],[object Object],[object Object]
‘ Rice Aplenty in Aceh (Indonesia)’ CARITAS NEWS Spring 2009 SRI methods were introduced in Aceh in 2005 by CARITAS Australia after  tsunami  had devastated the area – new methods raised local rice yields from 2 t/ha to 8.5 t/ha: “Using less rice seed, less water and organic compost, farmers in  Aceh have quadrupled their crop production.”
2009 Report from  Aga Khan Foundation : Baghlan Province, Afghanistan 2008: 6 farmers got  SRI yields of  10.1 t/ha  vs. 5.4 t/ha regular 2009: 42 farmers got SRI yields of  9.3 t/ha  vs. 5.6 t/ha regular 2 nd  year SRI farmers got  13.3 t/ha  vs. 5.6 t/ha 1 st  year SRI farmers got  8.7 t/ha  vs. 5.5 t/ha
AFGHANISTAN : SRI field in Baghlan Province, supported by Aga Khan Foundation Natural Resource Management program
AKF technician making field visit in Baghlan Province
SRI field at 30 days
SRI plant with 133 tillers @ 72 days after transplanting 11.56 t/ha
From  Report on SRI in Deorali Geog, Bhutan , 2009 Sangay Dorji, Jr. Extension Agent, Deorali Georg, Dagana SRI @ 25x25cm  9.5 t/ha   SRI random spacing 6.0 t/ha SRI @ 30x30cm  10.0 t/ha   Standard practice  3.6 t/ha
SRI nursery in Timbuktu region of Mali –  8-day seedlings ready for transplanting
SRI transplanting in Timbuktu, Mali
MALI:  Farmer working with Africare in Timbuktu region showing difference between regular and SRI rice plants,  2007 -- SRI yield of 8.98 t/ha
[object Object],Rice grain yield for SRI plots, control plots and farmer-practice plots, Goundam circle, Timbuktu region, Mali, 2000   SRI Control Farmer Practice Yield t/ha* 9.1 5.49 4.86 Standard Error (SE) 0.24 0.27 0.18 % Change  compared to  Control   + 66 100 - 11 % Change  compared to  Farmer Practice + 87 + 13 100 Number of Farmers 53 53 60
Importance of Soil Aeration ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Soil-aerating hand weeder in Sri Lanka costing <$10
Effect of Active Soil Aeration ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Impact of Weedings on Yield with SRI Methods Ambatovaky, Madagascar, 1997-98 Mechanical Weedings  Farmers  (N) Area  (ha) Harvest (kg) Yield  (t/ha) None 2 0.11 657 5.973 One 8 0.62 3,741 7.723 Two 27 3.54 26,102 7.373 Three 24 5.21 47,516 9.120 Four 15 5.92 69,693 11.772
Why Is Soil Aeration So Important? ,[object Object],[object Object],[object Object],[object Object],[object Object]
Microbial populations in rice rhizosphere Tamil Nadu Agricultural University research T. M. Thiyagarajan, WRRC presentation, Tsukuba, Japan, 2004 Microorganisms Conventional SRI Total bacteria 88 x 10 6 105 x 10 6 Azospirillum 8 x 10 5 31 x 10 5 Azotobacter 39 x 10 3 66 x 10 3 Phosphobacteria 33 x 10 3 59 x 10 3
Total bacteria Total diazotrophs Microbial populations  in rhizosphere soil in rice crop under different management  at active tillering, panicle initiation and flowering (SRI = yellow; conventional = red) [units are √ transformed values of population/gram of dry soil] Phosphobacteria Azotobacter
Dehydrogenase activity  (μg TPF) Urease activity  (μg NH 4 -N))   Microbial activities  in rhizosphere soil in rice crop under different management  (SRI = yellow; conventional = red) at active tillering, panicle initiation and flowering stages [units are √ transformed values of population/gram of dry soil per 24 h] Acid phosphate activity  (μg p-Nitrophenol) Nitrogenase activity  (nano mol C 2 H 4 )
Total microbes and numbers of beneficial microbes (CFU g -1 ) under conventional and SRI cultivation methods, Tanjung Sari, Bogor, Indonesia,  Feb-Aug 2009 (Iswandi et al., 2009) Cultivation method and fertilization Total microbes  (x10 5 ) Azoto-bacter (x10 3 ) Azospi- rillum (x10 3 ) P-solubilizing bacteria  (x10 4 ) Conventional crop mgmt with NPK 2.3a 1.9a 0.9a 3.3a Inorganic SRI (NPK fertilizer) 2.7a 2.2a 1.7ab 4.0a Organic SRI (compost) 3.8b 3.7b 2.8bc 5.9b Inorganic SRI + biofertilizer 4.8c 4.4b 3.3c 6.4b
 
Ascending Migration of Endophytic Rhizobia,  from Roots and Leaves, inside Rice Plants and Assessment of Benefits to Rice Growth Physiology   Feng Chi et al., Applied and Envir. Microbiology  71 (2005), 7271-7278 Rhizo-bium test strain Total plant root volume/ pot (cm 3 ) Shoot dry weight/ pot (g) Net photo-synthetic rate  (μmol -2  s -1 ) Water utilization efficiency Area (cm 2 ) of flag leaf Grain yield/ pot (g) Ac-ORS571 210  ± 36 A 63  ± 2 A 16.42  ± 1.39 A 3.62  ± 0.17 BC 17.64  ± 4.94 ABC 86  ± 5 A SM-1021 180  ± 26 A 67  ± 5 A 14.99  ± 1.64 B 4.02  ± 0.19 AB 20.03  ± 3.92 A 86  ± 4 A SM-1002 168  ± 8 AB 52  ± 4 BC 13.70  ± 0.73 B 4.15  ± 0.32 A  19.58  ± 4.47 AB 61  ± 4 B R1-2370 175  ± 23 A 61  ± 8 AB 13.85  ± 0.38 B 3.36  ± 0.41 C 18.98  ± 4.49 AB 64  ± 9 B Mh-93 193  ± 16 A 67  ± 4 A 13.86  ± 0.76 B 3.18  ± 0.25 CD 16.79  ± 3.43 BC 77  ± 5 A Control 130  ± 10 B 47  ± 6 C 10.23  ± 1.03 C 2.77  ± 0.69 D 15.24  ± 4.0 C 51  ± 4 C
Data are based on the average linear root and shoot growth of three symbiotic (dashed line) and three nonsymbiotic (solid line) plants.  Arrows indicate the times when root hair development started. Ratio of root and shoot growth in symbiotic and nonsymbiotic rice plants  --  symbiotic plant seeds were inoculated with  Fusarium culmorum   Russell J. Rodriguez et al., ‘Symbiotic regulation of  plant growth, development and reproduction,’  Communicative and Integrative Biology , 2:3 (2009).
Growth of nonsymbiotic (on left) and symbiotic (on right) rice seedlings.  On growth of endophyte (F. culmorum) and plant inoculation procedures, see Rodriguez et al.,  Communicative and Integrative Biology , 2:3 (2009).
Mechanized Systems of Crop Intensification (MSCI) 1 KM Defence Road, Bhobatian Chowk,  Raiwind Road, Lahore, Pakistan  Tel: +92 (042) 532 2205  Fax: +92 (042) 532 1509 [email_address] www.farmalltechnology.com   Solutions Provider in Farm Sector Pakistan:  Private-sector applications of SRI principles; mechanized rice production (8 ha) was  13 t/ha ; applications being made to wheat, sugar cane, potatoes, onions, etc.
Wheat Plantation on Raised Beds ,[object Object],[object Object],[object Object],[object Object]
Wheat Plantation on Raised Beds
 
Wheat Plantation on Raised Beds as of December 22, 2009
True Potato Seed (TPS) Transplantation
True Potato Seed (TPS) Transplantation as of December 22, 2009
PERFORMANCE OF SCI CROPS  DURING DROUGHT SEASON 2009 Experiences from Himachal Pradesh & Uttarakhand PEOPLE’S SCIENCE INSTITUTE, DEHRADUN
Up-scaling of SRI in Himachal Pradesh & Uttarakhand, 2006-08 Average SRI increase in grain yield has been about 70 per cent -- SRI concepts and methods now being applied to OTHER CROPS Particulars 2006 2007 2008 Conv. SRI Conv. SRI Conv. SRI No. of farmers (villages) 40 (25) 591 (133) 12,214  (496) Area (ha) - 0.95 - 15.00 252.98 Average grain yield (Q/ha) 31.5 52.5 28.5 54.0 39.5 60.5 % increase in grain yield  - 67 - 89 - 53 Average straw yield (Q/ha) 58 72.5 55 73.5 110.5 145 % increase in straw yield - 25 - 34 - 31
Alterations in SRI Practices in Drought Year  ,[object Object],Recommended  Practices Normal Year Drought Year (2009) Young seedlings 8-12 days 10-25 days Wider spacing (cm) 25 x 25 P/P : 15-25  R/R : 15-20 Single seedling / hill 1 / hill 1-3/ hill Alternative  wetting & drying  Yes Water not under control Inter-cultivation 2+ mechanical weedings 1+ mechanical and manual weeding Organic matter PAM* PAM*
SRI Comparative Crop-Cut Results, 2009 ** In this drought year, grain yields of conventional crop  decreased by 31% , as compared to a  reduction of only 13%  in the SRI crop ** Conventional yields stood close to  2.5 tons per ha  while SRI yields were  4.8 tons per ha  -- 92% higher  Normal (2006-2008) Drought (2009) Conv. SRI Conv. SRI No. of effective tillers/ plant 7 21 5 18 Average plant height (cm) 99 122 88 102 Average panicle length (cm) 18 24 19 25 Average no. of grains/panicle 93 177 90 174 Grain yield (t/ha) 3.6 5.5 2.5 4.8 Straw yield (t/ha) 11.1 14.5 5.1 8.5
SRI Crop Performance during Kharif 2009 Particulars Rainfed  Irrigated UKD HP UKD HP Conv SRI Conv SRI Conv SRI Conv SRI No. of effective tillers/ hill 3 12 4 18 5 18 8 23 Average plant height (cm)  70 86 86 98 95 108 96 112 Average panicle length (cm)  14 19 18 26 20 26 22 28 Average no. of grains /panicle  64 102 79 230 113 170 109 189 Grain yield (t/ha)  1.1 1.9 3.4 6.3 2.6 4.6 2.9 5.9 Straw yield (t/ha)  1.9 2.7 5.8 10.1 5.9 9.7 9.1 12.8 % increase in grain yield  - 73 - 74 - 77 - 103 % increase in straw yield - 42 - 78 - 64 - 41
Experiments on System of Crop Intensification (SCI), 2009 Crops Total Farmers Area (in Ha) Maize 183 10.34 Kidney bean ( Rajma ) 679 14.01 Sesame ( Til ) 22 0.41 Finger millet ( Mandwa ) 340 8.04 Black gram ( Urad ) 314 2.00 Soyabean 77 2.47 Tomato  45 4.36 French bean  44 0.35 1,704 41.98
SCI Adaptations Made for Wheat ,[object Object],Practice Conventional SWI Young seedling Broadcasting Direct seed sowing / transplanting Wider spacing - P to P  : 20 - 25cm R to R: 20 – 25 cm Single seedling / hill - 1-2 seed/seedling per hill Inter- cultivation 1+  manual weeding 2+  manual weeding and weeder  Organic matter Compost+ chemical fertilizer Compost + PAM*
Extensions of SRI to Other Crops (SCI) Rajma (kidney beans) Manduwa (millet) Crop No. of  Farmers Area (ha) Grain Yield (t/ha) % Incr. 2006 Conv. SRI Wheat Research Farm 5.0 1.6 2.2 38 Rajma 5 0.4 1.4 2.0 43 Manduwa 5 0.4 1.8 2.4 33 2007 Wheat (Irrigated) 25 0.23 2.2 4.3 95 Wheat (Unirrig.) 25 0.09 1.6 2.6 63 Rajma 113 2.26 1.8 3.0 67 Manduwa 43 0.8 1.5 2.4 60
SCI Adaptations Made for Finger Millet & Maize ,[object Object],[object Object],Practice Finger Millet Maize Conv. SCI Conv. SCI Young  Seedling Broad- Casting Transplanting @  15-20 days or direct line sowing Direct seed  sowing  Direct seed  sowing  Spacing Thinning out P to P : 20 cm  R to R: 20 cm Broadcasting P  to P : 30 cm R to R : 30 cm Single seedling/hill - 1 plant/hill or  line sowing - 1-2 seeds/hill Inter-cultivation (manual weedings) 2+  2+  1+  2+ Organic matter Compost Matka Khad , Vermi-compost, PAM* Compost Cow dung,  Matka Khad , PAM*
Results of SCI with Finger Millet & Maize, Kharif 2009 Finger Millet Maize Conv. SCI Conv. SCI Ave. ears/plant  (cobs/plant) 3 5 2 3 Average plant height (cm)  69.5 88.5 149.4 173.7 Ave. no. of grains /ear  (kernels/cob) 290 428 225 248 Grain yield (T/ha)  1.2 1.8 17.1 22.9 % increase in grain yield  - 50% - 34%
 
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Comparison of SRI and usual rice plants – Miyatty Jannah,  Crawuk village,   Ngawi, E. Java
THANK YOU ,[object Object],[object Object],[object Object]

Contenu connexe

Tendances

Effects of crop establishment methods and irrigation schedules on productivit...
Effects of crop establishment methods and irrigation schedules on productivit...Effects of crop establishment methods and irrigation schedules on productivit...
Effects of crop establishment methods and irrigation schedules on productivit...fatehsekhon
 

Tendances (20)

1005 The System of Rice Intensification
1005 The System of Rice Intensification1005 The System of Rice Intensification
1005 The System of Rice Intensification
 
1914 Towards a More Sustainable Rice Crop: System of Rice Intensification (SR...
1914 Towards a More Sustainable Rice Crop: System of Rice Intensification (SR...1914 Towards a More Sustainable Rice Crop: System of Rice Intensification (SR...
1914 Towards a More Sustainable Rice Crop: System of Rice Intensification (SR...
 
1911- Gender Responsive Smallholder Rice Production Practices and equipment
1911- Gender Responsive Smallholder Rice Production Practices and equipment1911- Gender Responsive Smallholder Rice Production Practices and equipment
1911- Gender Responsive Smallholder Rice Production Practices and equipment
 
0405 What is Being Learned about SRI in China and Other Countries
0405 What is Being Learned about SRI in China and Other Countries0405 What is Being Learned about SRI in China and Other Countries
0405 What is Being Learned about SRI in China and Other Countries
 
0430 System of Rice Intensification (SRI)
0430 System of Rice Intensification (SRI)0430 System of Rice Intensification (SRI)
0430 System of Rice Intensification (SRI)
 
0715 Preliminary Evaluation of SRI in Fiji for Enhancing Rice Production
0715 Preliminary Evaluation of SRI in Fiji for Enhancing Rice Production0715 Preliminary Evaluation of SRI in Fiji for Enhancing Rice Production
0715 Preliminary Evaluation of SRI in Fiji for Enhancing Rice Production
 
1450 - Agroecological Strategies for Raising Crop Productivity with Reduced ...
1450  - Agroecological Strategies for Raising Crop Productivity with Reduced ...1450  - Agroecological Strategies for Raising Crop Productivity with Reduced ...
1450 - Agroecological Strategies for Raising Crop Productivity with Reduced ...
 
Igkvv raipur
Igkvv raipurIgkvv raipur
Igkvv raipur
 
0740 Evaluation of the System of Rice Intensification in Bhutan
0740 Evaluation of the System of Rice Intensification in Bhutan0740 Evaluation of the System of Rice Intensification in Bhutan
0740 Evaluation of the System of Rice Intensification in Bhutan
 
1614 New Directions for the System of Rice Intensification (SRI) in Nepal: ...
1614   New Directions for the System of Rice Intensification (SRI) in Nepal: ...1614   New Directions for the System of Rice Intensification (SRI) in Nepal: ...
1614 New Directions for the System of Rice Intensification (SRI) in Nepal: ...
 
Effects of crop establishment methods and irrigation schedules on productivit...
Effects of crop establishment methods and irrigation schedules on productivit...Effects of crop establishment methods and irrigation schedules on productivit...
Effects of crop establishment methods and irrigation schedules on productivit...
 
1447 Finger Millet for Nutrition, Health and Ecological Security: SFMI
1447   Finger Millet for Nutrition, Health and Ecological Security: SFMI 1447   Finger Millet for Nutrition, Health and Ecological Security: SFMI
1447 Finger Millet for Nutrition, Health and Ecological Security: SFMI
 
1428 - Ratooning with high yield
1428 - Ratooning with high yield1428 - Ratooning with high yield
1428 - Ratooning with high yield
 
0730 Are Nematodes a Problem in SRI?
0730 Are Nematodes a Problem in SRI?0730 Are Nematodes a Problem in SRI?
0730 Are Nematodes a Problem in SRI?
 
2101 - Agroecological Opportunities with SRI and SCI
2101 - Agroecological Opportunities with SRI and SCI2101 - Agroecological Opportunities with SRI and SCI
2101 - Agroecological Opportunities with SRI and SCI
 
1170 System of Rice Intensification SRI - A Global Overview
1170 System of Rice Intensification SRI - A Global Overview1170 System of Rice Intensification SRI - A Global Overview
1170 System of Rice Intensification SRI - A Global Overview
 
1049 SRI Findings in India
1049 SRI Findings in India 1049 SRI Findings in India
1049 SRI Findings in India
 
1829 - Understanding the System of Rice Intensification (SRI) for Sustainabl...
1829 -  Understanding the System of Rice Intensification (SRI) for Sustainabl...1829 -  Understanding the System of Rice Intensification (SRI) for Sustainabl...
1829 - Understanding the System of Rice Intensification (SRI) for Sustainabl...
 
0739 Status of SRI Cultivation and its Future Prospects in India
0739 Status of SRI Cultivation and its Future Prospects in India0739 Status of SRI Cultivation and its Future Prospects in India
0739 Status of SRI Cultivation and its Future Prospects in India
 
0708 Increasing Water Productivity of Rice through Adoption of System of Rice...
0708 Increasing Water Productivity of Rice through Adoption of System of Rice...0708 Increasing Water Productivity of Rice through Adoption of System of Rice...
0708 Increasing Water Productivity of Rice through Adoption of System of Rice...
 

En vedette (13)

Short report on agricultural machinery indo- italian coc
Short report on agricultural machinery   indo- italian cocShort report on agricultural machinery   indo- italian coc
Short report on agricultural machinery indo- italian coc
 
Mechanization and Agricultural Transformation in Asia and Africa: Sharing Dev...
Mechanization and Agricultural Transformation in Asia and Africa: Sharing Dev...Mechanization and Agricultural Transformation in Asia and Africa: Sharing Dev...
Mechanization and Agricultural Transformation in Asia and Africa: Sharing Dev...
 
Appropriate mechanization of small farms
Appropriate mechanization of small farmsAppropriate mechanization of small farms
Appropriate mechanization of small farms
 
Agriculture mechanisation 12 may 2016
Agriculture mechanisation   12 may 2016Agriculture mechanisation   12 may 2016
Agriculture mechanisation 12 may 2016
 
Indian Agriculture and Mechanization
Indian Agriculture and Mechanization Indian Agriculture and Mechanization
Indian Agriculture and Mechanization
 
Teaching plan
Teaching planTeaching plan
Teaching plan
 
Farm mech. lectrz
Farm mech. lectrzFarm mech. lectrz
Farm mech. lectrz
 
Farm mechanization in India : A Status Paper
Farm mechanization in India : A Status PaperFarm mechanization in India : A Status Paper
Farm mechanization in India : A Status Paper
 
Agricultural Equipment Industry
Agricultural Equipment IndustryAgricultural Equipment Industry
Agricultural Equipment Industry
 
Scope of Farm Mechanization
Scope of Farm MechanizationScope of Farm Mechanization
Scope of Farm Mechanization
 
MECHANIZATION OF AGRICULTURE
MECHANIZATION OF AGRICULTUREMECHANIZATION OF AGRICULTURE
MECHANIZATION OF AGRICULTURE
 
Farm mechanization in india
Farm mechanization in indiaFarm mechanization in india
Farm mechanization in india
 
Presentation mechanization of horticulture in India
Presentation mechanization of horticulture in IndiaPresentation mechanization of horticulture in India
Presentation mechanization of horticulture in India
 

Similaire à 1014 Current Developments with SRI: Other Methods, Other Crops, Mechanization, etc.

Similaire à 1014 Current Developments with SRI: Other Methods, Other Crops, Mechanization, etc. (20)

0907 African Agriculture in the 21st Century: Meeting the Challenges, Makin...
0907  African Agriculture  in the 21st Century: Meeting the Challenges, Makin...0907  African Agriculture  in the 21st Century: Meeting the Challenges, Makin...
0907 African Agriculture in the 21st Century: Meeting the Challenges, Makin...
 
0409 The System of Rice Intensification (SRI): Capitalizing on Existing Yield...
0409 The System of Rice Intensification (SRI): Capitalizing on Existing Yield...0409 The System of Rice Intensification (SRI): Capitalizing on Existing Yield...
0409 The System of Rice Intensification (SRI): Capitalizing on Existing Yield...
 
0425 The System of Rice Intensification (SRI): An Overview - Part I
0425 The System of Rice Intensification (SRI):   An Overview - Part I0425 The System of Rice Intensification (SRI):   An Overview - Part I
0425 The System of Rice Intensification (SRI): An Overview - Part I
 
0950 Considering plant-microbial interactions suggested by the System of Rice...
0950 Considering plant-microbial interactions suggested by the System of Rice...0950 Considering plant-microbial interactions suggested by the System of Rice...
0950 Considering plant-microbial interactions suggested by the System of Rice...
 
1018 The Emerging Shape of a Post-Modern Agriculture: Indications from the S...
1018 The Emerging Shape of  a Post-Modern Agriculture: Indications from the S...1018 The Emerging Shape of  a Post-Modern Agriculture: Indications from the S...
1018 The Emerging Shape of a Post-Modern Agriculture: Indications from the S...
 
The System of Rice Intensification (SRI)
The System of Rice Intensification (SRI)The System of Rice Intensification (SRI)
The System of Rice Intensification (SRI)
 
The System of Rice Intensification (SRI) An Agroecological Approach to Agri...
The System of Rice Intensification (SRI) An Agroecological Approach toAgri...The System of Rice Intensification (SRI) An Agroecological Approach toAgri...
The System of Rice Intensification (SRI) An Agroecological Approach to Agri...
 
1012 Global Development Issues: The 21st Century Presents Different Challenge...
1012 Global Development Issues: The 21st Century Presents Different Challenge...1012 Global Development Issues: The 21st Century Presents Different Challenge...
1012 Global Development Issues: The 21st Century Presents Different Challenge...
 
0624 What is Being Learned from the System of Rice Intensification: An Agroec...
0624 What is Being Learned from the System of Rice Intensification: An Agroec...0624 What is Being Learned from the System of Rice Intensification: An Agroec...
0624 What is Being Learned from the System of Rice Intensification: An Agroec...
 
0942 The System of Rice Intensification (SRI): A Win-Win Opportunity for Indo...
0942 The System of Rice Intensification (SRI): A Win-Win Opportunity for Indo...0942 The System of Rice Intensification (SRI): A Win-Win Opportunity for Indo...
0942 The System of Rice Intensification (SRI): A Win-Win Opportunity for Indo...
 
0956 Increasing Both Quantity and Quality of Rice Production with Reduced Inp...
0956 Increasing Both Quantity and Quality of Rice Production with Reduced Inp...0956 Increasing Both Quantity and Quality of Rice Production with Reduced Inp...
0956 Increasing Both Quantity and Quality of Rice Production with Reduced Inp...
 
1009 Learning about positive plant-microbial interactions from the System o...
1009 Learning about positive   plant-microbial interactions from the System o...1009 Learning about positive   plant-microbial interactions from the System o...
1009 Learning about positive plant-microbial interactions from the System o...
 
1707 - Climate Smart agriculture: How modified crop/water management with SRI...
1707 - Climate Smart agriculture: How modified crop/water management with SRI...1707 - Climate Smart agriculture: How modified crop/water management with SRI...
1707 - Climate Smart agriculture: How modified crop/water management with SRI...
 
0428 An Opportunity for Africa: The System of Rice Intensification (SRI) [ l...
0428 An Opportunity for Africa: The System of Rice Intensification (SRI)  [ l...0428 An Opportunity for Africa: The System of Rice Intensification (SRI)  [ l...
0428 An Opportunity for Africa: The System of Rice Intensification (SRI) [ l...
 
0416 System of Rice Intensification: An Opportunity for Raising Productivity ...
0416 System of Rice Intensification: An Opportunity for Raising Productivity ...0416 System of Rice Intensification: An Opportunity for Raising Productivity ...
0416 System of Rice Intensification: An Opportunity for Raising Productivity ...
 
0502 The System of Rice Intensification's Potential for Food Security in Camb...
0502 The System of Rice Intensification's Potential for Food Security in Camb...0502 The System of Rice Intensification's Potential for Food Security in Camb...
0502 The System of Rice Intensification's Potential for Food Security in Camb...
 
0846 SRI Experiences in Bhutan
0846 SRI Experiences in Bhutan0846 SRI Experiences in Bhutan
0846 SRI Experiences in Bhutan
 
0955 Opportunities for Improving Asian Agriculture Agroecology: Observations ...
0955 Opportunities for Improving Asian Agriculture Agroecology: Observations ...0955 Opportunities for Improving Asian Agriculture Agroecology: Observations ...
0955 Opportunities for Improving Asian Agriculture Agroecology: Observations ...
 
Uphoff Sri
Uphoff SriUphoff Sri
Uphoff Sri
 
1312- System of Wheat Intensification
1312- System of Wheat Intensification1312- System of Wheat Intensification
1312- System of Wheat Intensification
 

Plus de SRI-Rice, Dept. of Global Development, CALS, Cornell University

Plus de SRI-Rice, Dept. of Global Development, CALS, Cornell University (20)

2205 - System of Rice Intensification in Indonesia - Research, Adoption, and ...
2205 - System of Rice Intensification in Indonesia - Research, Adoption, and ...2205 - System of Rice Intensification in Indonesia - Research, Adoption, and ...
2205 - System of Rice Intensification in Indonesia - Research, Adoption, and ...
 
2204 -System of Rice Intensification - Improving Rice Production and Saving W...
2204 -System of Rice Intensification - Improving Rice Production and Saving W...2204 -System of Rice Intensification - Improving Rice Production and Saving W...
2204 -System of Rice Intensification - Improving Rice Production and Saving W...
 
2203 - Overview of System of Rice Intensification SRI Around the World
2203 - Overview of System of Rice Intensification SRI Around the World2203 - Overview of System of Rice Intensification SRI Around the World
2203 - Overview of System of Rice Intensification SRI Around the World
 
2202 - Water Savings, Yield, and Income Benefits with SRI in Iraq.ppt
2202 - Water Savings, Yield, and Income Benefits with SRI in Iraq.ppt2202 - Water Savings, Yield, and Income Benefits with SRI in Iraq.ppt
2202 - Water Savings, Yield, and Income Benefits with SRI in Iraq.ppt
 
2201 - El Sistema Intensivo del Cultivo de Arroz
2201 - El Sistema Intensivo del Cultivo de Arroz2201 - El Sistema Intensivo del Cultivo de Arroz
2201 - El Sistema Intensivo del Cultivo de Arroz
 
2104 - El Sector Agropecuario Panameno Contribuyendo a la Lucha Frente al Cam...
2104 - El Sector Agropecuario Panameno Contribuyendo a la Lucha Frente al Cam...2104 - El Sector Agropecuario Panameno Contribuyendo a la Lucha Frente al Cam...
2104 - El Sector Agropecuario Panameno Contribuyendo a la Lucha Frente al Cam...
 
2103 - Reduced Methane Emissions Rice Production Project in Northern Nigerian...
2103 - Reduced Methane Emissions Rice Production Project in Northern Nigerian...2103 - Reduced Methane Emissions Rice Production Project in Northern Nigerian...
2103 - Reduced Methane Emissions Rice Production Project in Northern Nigerian...
 
1711 - Sistema Intensivo del Cultivo del Arroz para la Producción y Sustentab...
1711 - Sistema Intensivo del Cultivo del Arroz para la Producción y Sustentab...1711 - Sistema Intensivo del Cultivo del Arroz para la Producción y Sustentab...
1711 - Sistema Intensivo del Cultivo del Arroz para la Producción y Sustentab...
 
1615 Ecological Intensification - Lessons from SRI from Green Revolution to...
1615   Ecological Intensification - Lessons from SRI from Green Revolution to...1615   Ecological Intensification - Lessons from SRI from Green Revolution to...
1615 Ecological Intensification - Lessons from SRI from Green Revolution to...
 
2102 - Establishing an equitable SRI value chain in the Philippines
2102 - Establishing an equitable SRI value chain in the Philippines2102 - Establishing an equitable SRI value chain in the Philippines
2102 - Establishing an equitable SRI value chain in the Philippines
 
Farmers' Handbook on System of Rice Intensification - SRI (Burmese)
Farmers' Handbook on System of Rice Intensification - SRI (Burmese)Farmers' Handbook on System of Rice Intensification - SRI (Burmese)
Farmers' Handbook on System of Rice Intensification - SRI (Burmese)
 
2001 - System of Rice Intensification SRI in Iraq
2001 - System of Rice Intensification SRI in Iraq2001 - System of Rice Intensification SRI in Iraq
2001 - System of Rice Intensification SRI in Iraq
 
1913 Resuitados SRI MIDA-IICA Panama 2019
1913   Resuitados SRI MIDA-IICA Panama 2019 1913   Resuitados SRI MIDA-IICA Panama 2019
1913 Resuitados SRI MIDA-IICA Panama 2019
 
1912 - Agroecological Management of Soil Systems for Food, Water, Climate Res...
1912 - Agroecological Management of Soil Systems for Food, Water, Climate Res...1912 - Agroecological Management of Soil Systems for Food, Water, Climate Res...
1912 - Agroecological Management of Soil Systems for Food, Water, Climate Res...
 
1910 - Integrating Climate Smart Rice Agriculture in Supply Networks - Lotus ...
1910 - Integrating Climate Smart Rice Agriculture in Supply Networks - Lotus ...1910 - Integrating Climate Smart Rice Agriculture in Supply Networks - Lotus ...
1910 - Integrating Climate Smart Rice Agriculture in Supply Networks - Lotus ...
 
1908 Rice cultivation in Africa: How traditional practices relate to modern o...
1908 Rice cultivation in Africa: How traditional practices relate to modern o...1908 Rice cultivation in Africa: How traditional practices relate to modern o...
1908 Rice cultivation in Africa: How traditional practices relate to modern o...
 
1907 - The Effects of Exposure Intensity on Technology Adoption and Gains: Ex...
1907 - The Effects of Exposure Intensity on Technology Adoption and Gains: Ex...1907 - The Effects of Exposure Intensity on Technology Adoption and Gains: Ex...
1907 - The Effects of Exposure Intensity on Technology Adoption and Gains: Ex...
 
1906 - Improving Productivity of Rice under Water Scarcity in Africa: The Cas...
1906 - Improving Productivity of Rice under Water Scarcity in Africa: The Cas...1906 - Improving Productivity of Rice under Water Scarcity in Africa: The Cas...
1906 - Improving Productivity of Rice under Water Scarcity in Africa: The Cas...
 
1905 - SRI en Venezuela - Resena Historica de la Parcela 234
1905 - SRI en Venezuela - Resena Historica de la Parcela 2341905 - SRI en Venezuela - Resena Historica de la Parcela 234
1905 - SRI en Venezuela - Resena Historica de la Parcela 234
 
1904 - SRI en Venezuela - Informe Resultados SICA Parcela 75 Norte Verano Cal...
1904 - SRI en Venezuela - Informe Resultados SICA Parcela 75 Norte Verano Cal...1904 - SRI en Venezuela - Informe Resultados SICA Parcela 75 Norte Verano Cal...
1904 - SRI en Venezuela - Informe Resultados SICA Parcela 75 Norte Verano Cal...
 

1014 Current Developments with SRI: Other Methods, Other Crops, Mechanization, etc.

  • 1. Current Developments with SRI: Other Methods, Other Crops, Mechanization, etc. Sichuan Academy of Agricultural Sciences January 18, 2010 Norman Uphoff, CIIFAD
  • 2.
  • 3.
  • 4. Liu Zhibin, Meishan, Sichuan province, China, standing in raised-bed, zero-till SRI field; measured yield 13.4 t/ha; his SRI yield in 2001 (16 t/ha) set provincial yield record
  • 5.
  • 6. Cost of cultivation & net profits Subject SRI (Rs) Conv (Rs) Land preparation 2,800 2,800 Seed 45 450 Labour (8) 400 750 DAP-75kg 750 750 Urea -50Kg 310 310 Weeding 600 1,000 Harvesting 420 420 Tractor hiring charges 450 450 Threshing 1,200 1,200 TOTAL COST 6,975 8,130 Irrigation - alternate (hrs) 3 7 Yield (bags) 39 32 Tons/ha 2.73 2.24 GROSS PROFIT 25,389 20,832 NET PROFIT 18,414 12,702
  • 7. IWMI/India study: 67% higher income per ha, with one field yielding 15 t/ha
  • 8.
  • 10. Thailand: Farmers making direct-seeder for SRI
  • 11.  
  • 12. India: Southern Andhra Pradesh Direct-seeder at KVK
  • 13.  
  • 14.  
  • 15.  
  • 16.
  • 18. 8 t/ha yield vs. 4.2 t/ha before
  • 19. Costa Rica – mechanized SRI crop 8 t/ha yield without fertilizer
  • 20. IRAQ: Comparison trials at Al-Mishkhab Rice Research Station, Najaf
  • 21. Mechanical transplanting with SRI spacing in Iraq
  • 22. Pakistan, Punjab Province: Raised beds formed on laser-leveled fields
  • 23. Nursery mats made from soil, compost and rice hulls
  • 24.  
  • 25. Raised beds ready for transplanting
  • 26. Transplanting machine – makes holes at 9 inch spacing (22.5 cm), also bands compost and fertilizer
  • 27. Laborers dropping 10-day seedlings into holes; machine sprays water into holes
  • 28. Transplanting machine straddling raised beds as laborers drop seedlings in holes
  • 29. Weeder/soil aerator removing weeds and breaking soil crust at 9 inch (22.5cm) intervals
  • 30. Mechanically transplanted and weeded rice crop, irrigated in furrows with siphon supply
  • 31. Growing crop – 90 tillers at 72 days
  • 32.  
  • 34.
  • 35. ‘ Rice Aplenty in Aceh (Indonesia)’ CARITAS NEWS Spring 2009 SRI methods were introduced in Aceh in 2005 by CARITAS Australia after tsunami had devastated the area – new methods raised local rice yields from 2 t/ha to 8.5 t/ha: “Using less rice seed, less water and organic compost, farmers in Aceh have quadrupled their crop production.”
  • 36. 2009 Report from Aga Khan Foundation : Baghlan Province, Afghanistan 2008: 6 farmers got SRI yields of 10.1 t/ha vs. 5.4 t/ha regular 2009: 42 farmers got SRI yields of 9.3 t/ha vs. 5.6 t/ha regular 2 nd year SRI farmers got 13.3 t/ha vs. 5.6 t/ha 1 st year SRI farmers got 8.7 t/ha vs. 5.5 t/ha
  • 37. AFGHANISTAN : SRI field in Baghlan Province, supported by Aga Khan Foundation Natural Resource Management program
  • 38. AKF technician making field visit in Baghlan Province
  • 39. SRI field at 30 days
  • 40. SRI plant with 133 tillers @ 72 days after transplanting 11.56 t/ha
  • 41. From Report on SRI in Deorali Geog, Bhutan , 2009 Sangay Dorji, Jr. Extension Agent, Deorali Georg, Dagana SRI @ 25x25cm 9.5 t/ha SRI random spacing 6.0 t/ha SRI @ 30x30cm 10.0 t/ha Standard practice 3.6 t/ha
  • 42. SRI nursery in Timbuktu region of Mali – 8-day seedlings ready for transplanting
  • 43. SRI transplanting in Timbuktu, Mali
  • 44. MALI: Farmer working with Africare in Timbuktu region showing difference between regular and SRI rice plants, 2007 -- SRI yield of 8.98 t/ha
  • 45.
  • 46.
  • 47. Soil-aerating hand weeder in Sri Lanka costing <$10
  • 48.
  • 49. Impact of Weedings on Yield with SRI Methods Ambatovaky, Madagascar, 1997-98 Mechanical Weedings Farmers (N) Area (ha) Harvest (kg) Yield (t/ha) None 2 0.11 657 5.973 One 8 0.62 3,741 7.723 Two 27 3.54 26,102 7.373 Three 24 5.21 47,516 9.120 Four 15 5.92 69,693 11.772
  • 50.
  • 51. Microbial populations in rice rhizosphere Tamil Nadu Agricultural University research T. M. Thiyagarajan, WRRC presentation, Tsukuba, Japan, 2004 Microorganisms Conventional SRI Total bacteria 88 x 10 6 105 x 10 6 Azospirillum 8 x 10 5 31 x 10 5 Azotobacter 39 x 10 3 66 x 10 3 Phosphobacteria 33 x 10 3 59 x 10 3
  • 52. Total bacteria Total diazotrophs Microbial populations in rhizosphere soil in rice crop under different management at active tillering, panicle initiation and flowering (SRI = yellow; conventional = red) [units are √ transformed values of population/gram of dry soil] Phosphobacteria Azotobacter
  • 53. Dehydrogenase activity (μg TPF) Urease activity (μg NH 4 -N)) Microbial activities in rhizosphere soil in rice crop under different management (SRI = yellow; conventional = red) at active tillering, panicle initiation and flowering stages [units are √ transformed values of population/gram of dry soil per 24 h] Acid phosphate activity (μg p-Nitrophenol) Nitrogenase activity (nano mol C 2 H 4 )
  • 54. Total microbes and numbers of beneficial microbes (CFU g -1 ) under conventional and SRI cultivation methods, Tanjung Sari, Bogor, Indonesia, Feb-Aug 2009 (Iswandi et al., 2009) Cultivation method and fertilization Total microbes (x10 5 ) Azoto-bacter (x10 3 ) Azospi- rillum (x10 3 ) P-solubilizing bacteria (x10 4 ) Conventional crop mgmt with NPK 2.3a 1.9a 0.9a 3.3a Inorganic SRI (NPK fertilizer) 2.7a 2.2a 1.7ab 4.0a Organic SRI (compost) 3.8b 3.7b 2.8bc 5.9b Inorganic SRI + biofertilizer 4.8c 4.4b 3.3c 6.4b
  • 55.  
  • 56. Ascending Migration of Endophytic Rhizobia, from Roots and Leaves, inside Rice Plants and Assessment of Benefits to Rice Growth Physiology Feng Chi et al., Applied and Envir. Microbiology 71 (2005), 7271-7278 Rhizo-bium test strain Total plant root volume/ pot (cm 3 ) Shoot dry weight/ pot (g) Net photo-synthetic rate (μmol -2 s -1 ) Water utilization efficiency Area (cm 2 ) of flag leaf Grain yield/ pot (g) Ac-ORS571 210 ± 36 A 63 ± 2 A 16.42 ± 1.39 A 3.62 ± 0.17 BC 17.64 ± 4.94 ABC 86 ± 5 A SM-1021 180 ± 26 A 67 ± 5 A 14.99 ± 1.64 B 4.02 ± 0.19 AB 20.03 ± 3.92 A 86 ± 4 A SM-1002 168 ± 8 AB 52 ± 4 BC 13.70 ± 0.73 B 4.15 ± 0.32 A 19.58 ± 4.47 AB 61 ± 4 B R1-2370 175 ± 23 A 61 ± 8 AB 13.85 ± 0.38 B 3.36 ± 0.41 C 18.98 ± 4.49 AB 64 ± 9 B Mh-93 193 ± 16 A 67 ± 4 A 13.86 ± 0.76 B 3.18 ± 0.25 CD 16.79 ± 3.43 BC 77 ± 5 A Control 130 ± 10 B 47 ± 6 C 10.23 ± 1.03 C 2.77 ± 0.69 D 15.24 ± 4.0 C 51 ± 4 C
  • 57. Data are based on the average linear root and shoot growth of three symbiotic (dashed line) and three nonsymbiotic (solid line) plants. Arrows indicate the times when root hair development started. Ratio of root and shoot growth in symbiotic and nonsymbiotic rice plants -- symbiotic plant seeds were inoculated with Fusarium culmorum Russell J. Rodriguez et al., ‘Symbiotic regulation of plant growth, development and reproduction,’ Communicative and Integrative Biology , 2:3 (2009).
  • 58. Growth of nonsymbiotic (on left) and symbiotic (on right) rice seedlings. On growth of endophyte (F. culmorum) and plant inoculation procedures, see Rodriguez et al., Communicative and Integrative Biology , 2:3 (2009).
  • 59. Mechanized Systems of Crop Intensification (MSCI) 1 KM Defence Road, Bhobatian Chowk, Raiwind Road, Lahore, Pakistan Tel: +92 (042) 532 2205 Fax: +92 (042) 532 1509 [email_address] www.farmalltechnology.com Solutions Provider in Farm Sector Pakistan: Private-sector applications of SRI principles; mechanized rice production (8 ha) was 13 t/ha ; applications being made to wheat, sugar cane, potatoes, onions, etc.
  • 60.
  • 61. Wheat Plantation on Raised Beds
  • 62.  
  • 63. Wheat Plantation on Raised Beds as of December 22, 2009
  • 64. True Potato Seed (TPS) Transplantation
  • 65. True Potato Seed (TPS) Transplantation as of December 22, 2009
  • 66. PERFORMANCE OF SCI CROPS DURING DROUGHT SEASON 2009 Experiences from Himachal Pradesh & Uttarakhand PEOPLE’S SCIENCE INSTITUTE, DEHRADUN
  • 67. Up-scaling of SRI in Himachal Pradesh & Uttarakhand, 2006-08 Average SRI increase in grain yield has been about 70 per cent -- SRI concepts and methods now being applied to OTHER CROPS Particulars 2006 2007 2008 Conv. SRI Conv. SRI Conv. SRI No. of farmers (villages) 40 (25) 591 (133) 12,214 (496) Area (ha) - 0.95 - 15.00 252.98 Average grain yield (Q/ha) 31.5 52.5 28.5 54.0 39.5 60.5 % increase in grain yield - 67 - 89 - 53 Average straw yield (Q/ha) 58 72.5 55 73.5 110.5 145 % increase in straw yield - 25 - 34 - 31
  • 68.
  • 69. SRI Comparative Crop-Cut Results, 2009 ** In this drought year, grain yields of conventional crop decreased by 31% , as compared to a reduction of only 13% in the SRI crop ** Conventional yields stood close to 2.5 tons per ha while SRI yields were 4.8 tons per ha -- 92% higher Normal (2006-2008) Drought (2009) Conv. SRI Conv. SRI No. of effective tillers/ plant 7 21 5 18 Average plant height (cm) 99 122 88 102 Average panicle length (cm) 18 24 19 25 Average no. of grains/panicle 93 177 90 174 Grain yield (t/ha) 3.6 5.5 2.5 4.8 Straw yield (t/ha) 11.1 14.5 5.1 8.5
  • 70. SRI Crop Performance during Kharif 2009 Particulars Rainfed Irrigated UKD HP UKD HP Conv SRI Conv SRI Conv SRI Conv SRI No. of effective tillers/ hill 3 12 4 18 5 18 8 23 Average plant height (cm) 70 86 86 98 95 108 96 112 Average panicle length (cm) 14 19 18 26 20 26 22 28 Average no. of grains /panicle 64 102 79 230 113 170 109 189 Grain yield (t/ha) 1.1 1.9 3.4 6.3 2.6 4.6 2.9 5.9 Straw yield (t/ha) 1.9 2.7 5.8 10.1 5.9 9.7 9.1 12.8 % increase in grain yield - 73 - 74 - 77 - 103 % increase in straw yield - 42 - 78 - 64 - 41
  • 71. Experiments on System of Crop Intensification (SCI), 2009 Crops Total Farmers Area (in Ha) Maize 183 10.34 Kidney bean ( Rajma ) 679 14.01 Sesame ( Til ) 22 0.41 Finger millet ( Mandwa ) 340 8.04 Black gram ( Urad ) 314 2.00 Soyabean 77 2.47 Tomato 45 4.36 French bean 44 0.35 1,704 41.98
  • 72.
  • 73. Extensions of SRI to Other Crops (SCI) Rajma (kidney beans) Manduwa (millet) Crop No. of Farmers Area (ha) Grain Yield (t/ha) % Incr. 2006 Conv. SRI Wheat Research Farm 5.0 1.6 2.2 38 Rajma 5 0.4 1.4 2.0 43 Manduwa 5 0.4 1.8 2.4 33 2007 Wheat (Irrigated) 25 0.23 2.2 4.3 95 Wheat (Unirrig.) 25 0.09 1.6 2.6 63 Rajma 113 2.26 1.8 3.0 67 Manduwa 43 0.8 1.5 2.4 60
  • 74.
  • 75. Results of SCI with Finger Millet & Maize, Kharif 2009 Finger Millet Maize Conv. SCI Conv. SCI Ave. ears/plant (cobs/plant) 3 5 2 3 Average plant height (cm) 69.5 88.5 149.4 173.7 Ave. no. of grains /ear (kernels/cob) 290 428 225 248 Grain yield (T/ha) 1.2 1.8 17.1 22.9 % increase in grain yield - 50% - 34%
  • 76.  
  • 77.
  • 78. Comparison of SRI and usual rice plants – Miyatty Jannah, Crawuk village, Ngawi, E. Java
  • 79.

Notes de l'éditeur

  1. This plot of Liu Zhibin’s was harvested just before my visit, with an official certificate for a yield of 13.4 t/ha. In 2001, when Liu first used SRI methods, on soil that has been kept well supplied with organic matter, he got a yield of 16 t/ha which helped to persuade Prof. Yuan Long-ping, ‘the father of hybrid rice’ in China, to become more interested in SRI. Liu is manager for the seed farm that produces hybrid seed for Prof. Yuan’s operations.
  2. Here we look just at the effect of young seedlings, on better and poorer soil, at Anjomakely. The synergistic effect of compost with aerated soil is seen in the bottom three lines. Compost with saturated soil does less well (7.7 t/ha) than NPK with aerated soil (8.77 t/ha), but compost with aerated soil does by far the best (10.35 t/ha) on better soil. The same relationship is seen on poorer soil (right-hand column).
  3. From report by Rajendra Uprety, District Agricultural Development Office, Biratnagar, Nepal – for Morang District. Available from SRI home page on the web.
  4. From report by Rajendra Uprety, District Agricultural Development Office, Biratnagar, Nepal – for Morang District. Available from SRI home page on the web.
  5. These data were reported in Prof. Robert Randriamiharisoa&apos;s paper in the Sanya conference proceedings. They give the first direct evidence to support our thinking about the contribution of soil microbes to the super-yields achieved with SRI methods. The bacterium Azospirillum was studied as an &amp;quot;indicator species&amp;quot; presumably reflecting overall levels of microbial populations and activity in and around the plant roots. Somewhat surprisingly, there was no significant difference in Azospirillum populations in the rhizosphere. But there were huge differences in the counts of Azospirillum in the roots themselves according to soil types (clay vs. loam) and cultivation practices (traditional vs. SRI) and nutrient amendments (none vs. NPK vs. compost). NPK amendments with SRI produce very good results, a yield on clay soil five times higher than traditional methods with no amendments. But compost used with SRI gives a six times higher yield. The NPK increases Azospirillum (and other) populations, but most/much of the N that produced a 9 t/ha yield is coming from inorganic sources compared to the higher 10.5 t/ha yield with compost that depends entirely on organic N. On poorer soil, SRI methods do not have much effect, but when enriched with compost, even this poor soil can give a huge increase in production, attributable to the largest of the increases in microbial activity in the roots. At least, this is how we interpret these findings. Similar research should be repeated many times, with different soils, varieties and climates. We consider these findings significant because they mirror results we have seen in other carefully measured SRI results in Madagascar. Tragically, Prof. Randriamiharisoa, who initiated this work, passed away in August, 2004, so we will no longer have his acute intelligence and probing mind to advance these frontiers of knowledge.
  6. Tefy Saina is more comfortable communicating in French language, but it can communicate in English and reads English very well. CIIFAD maintains worldwide contacts on SRI through the internet. Queries are invited, directed to CIIFAD generally or to Norman Uphoff specifically. The SRI web page maintained by CIIFAD in cooperation with Tefy Saina has recent information on SRI experience in countries around the world.