SlideShare une entreprise Scribd logo
1  sur  34
Thermochemistry
Chapter 6
Dr. Sa’ib Khouri
AUM- JORDAN
Chemistry
By Raymond Chang
2
Energy is the capacity to do work.
• Radiant energy comes from the sun and is earth’s
primary energy source
• Thermal energy is the energy associated with the
random motion of atoms and molecules
• Chemical energy is the energy stored within the bonds
of chemical substances
• Nuclear energy is the energy stored within the
collection of neutrons and protons in the atom
• Potential energy is the energy available by virtue of an
object’s position
3
Heat is the transfer of thermal energy between
two bodies that are at different temperatures.
Energy Changes in Chemical Reactions
Temperature is a measure of the thermal
energy.
Temperature = Thermal Energy
4
Thermochemistry is the study of heat change in chemical
reactions.
The system is the specific part of the universe that is of
interest in the study.
open
mass & energyExchange:
closed
energy
isolated
nothing
5
Exothermic process is any process that gives off heat –
transfers thermal energy from the system to the surroundings.
Endothermic process is any process in which heat has to be
supplied to the system from the surroundings.
2H2 (g) + O2 (g) 2H2O (l) + energy
H2O (g) H2O (l) + energy
energy + 2HgO (s) 2Hg (l) + O2 (g)
energy + H2O (s) H2O (l)
6
Schematic of Exothermic and Endothermic Processes
7
Thermodynamics is the scientific study of the interconversion
of heat and other kinds of energy.
State functions are properties that are determined by the state
of the system, regardless of how that condition was achieved.
Potential energy of hiker 1 and hiker 2
is the same even though they took
different paths.
energy, pressure, volume, temperature
DE = Efinal - Einitial
DP = Pfinal - Pinitial
DV = Vfinal - Vinitial
DT = Tfinal - Tinitial
8
First law of thermodynamics – energy can be
converted from one form to another, but cannot be
created or destroyed.
DEsystem + DEsurroundings = 0
or
DEsystem = -DEsurroundings
C3H8 + 5O2 3CO2 + 4H2O
Exothermic chemical reaction!
Chemical energy lost by combustion = Energy gained by the surroundings
system surroundings
9
Another form of the first law for DEsystem
DE = q + w
DE is the change in internal energy of a system
q is the heat exchange between the system and the surroundings
w is the work done on (or by) the system
w = -PDV when a gas expands against a constant external pressure
10
Work Done On the System
w = F x d
w = -P DV
P x V = x d3 = F x d = w
F
d2
DV > 0
-PDV < 0
wsys < 0
Work is
not a
state
function.
Dw = wfinal - winitial
initial final
11
A sample of nitrogen gas expands in volume from 1.6 L to 5.4 L
at constant temperature. What is the work done in joules if the
gas expands (a) against a vacuum and (b) against a constant
pressure of 3.7 atm?
w = -P DV
(a) DV = 5.4 L – 1.6 L = 3.8 L P = 0 atm
W = -0 atm x 3.8 L = 0 L•atm = 0 joules
(b) DV = 5.4 L – 1.6 L = 3.8 L P = 3.7 atm
w = -3.7 atm x 3.8 L = -14.1 L•atm
w = -14.1 L•atm x
101.3 J
1L•atm
= -1430 J
12
Chemistry in Action: Making Snow
DE = q + w
q = 0
w < 0, DE < 0
DE = CDT
DT < 0, SNOW!
13
Enthalpy and the First Law of Thermodynamics
DE = q + w
DE = DH - PDV
DH = DE + PDV
q = DH and w = -PDV
At constant pressure:
14
Enthalpy (H) is used to quantify the heat flow into or out of a
system in a process that occurs at constant pressure.
DH = H (products) – H (reactants)
DH = heat given off or absorbed during a reaction at constant pressure
Hproducts < Hreactants
DH < 0
Hproducts > Hreactants
DH > 0
15
Thermochemical Equations
H2O (s) H2O (l) DH = 6.01 kJ/mol
Is DH negative or positive?
System absorbs heat
Endothermic
DH > 0
6.01 kJ are absorbed for every 1 mole of ice that
melts at 00C and 1 atm.
16
Thermochemical Equations
CH4 (g) + 2O2 (g) CO2 (g) + 2H2O (l) DH = -890.4 kJ/mol
Is DH negative or positive?
System gives off heat
Exothermic
DH < 0
890.4 kJ are released for every 1 mole of methane
that is combusted at 250C and 1 atm.
17
H2O (s) H2O (l) DH = 6.01 kJ/mol
• The stoichiometric coefficients always refer to the number
of moles of a substance
Thermochemical Equations
• If you reverse a reaction, the sign of DH changes
H2O (l) H2O (s) DH = -6.01 kJ/mol
• If you multiply both sides of the equation by a factor n,
then DH must change by the same factor n.
2H2O (s) 2H2O (l) DH = 2 x 6.01 = 12.0 kJ
18
H2O (s) H2O (l) DH = 6.01 kJ/mol
• The physical states of all reactants and products must be
specified in thermochemical equations.
Thermochemical Equations
H2O (l) H2O (g) DH = 44.0 kJ/mol
How much heat is evolved when 266 g of white phosphorus (P4)
burn in air?
P4 (s) + 5O2 (g) P4O10 (s) DH = -3013 kJ/mol
266 g P4
1 mol P4
123.9 g P4
x
3013 kJ
1 mol P4
x = 6470 kJ
19
A Comparison of DH and DE
2Na (s) + 2H2O (l) 2NaOH (aq) + H2 (g) DH = -367.5 kJ/mol
DE = DH - PDV At 25 oC, 1 mole H2 = 24.5 L at 1 atm
PDV = 1 atm x 24.5 L = 2.5 kJ
DE = -367.5 kJ/mol – 2.5 kJ/mol = -370.0 kJ/mol
20
The specific heat (s) of a substance is the amount of heat (q)
required to raise the temperature of one gram of the
substance by one degree Celsius.
The heat capacity (C) of a substance is the amount of heat
(q) required to raise the temperature of a given quantity (m)
of the substance by one degree Celsius.
C = m x s
Heat (q) absorbed or released:
q = m x s x Dt
q = C x Dt
Dt = tfinal - tinitial
21
How much heat is given off when an 869 g iron bar cools
from 94oC to 5oC?
s of Fe = 0.444 J/g • oC
Dt = tfinal – tinitial = 5oC – 94oC = -89oC
q = msDt = 869 g x 0.444 J/g • oC x –89oC = -34,000 J
22
Constant-Volume Calorimetry
No heat enters or leaves!
qsys = qwater + qbomb + qrxn
qsys = 0
qrxn = - (qwater + qbomb)
qwater = m x s x Dt
qbomb = Cbomb x Dt
Reaction at Constant V
DH ~ qrxn
DH = qrxn
23
Constant-Pressure Calorimetry
No heat enters or leaves!
qsys = qwater + qcal + qrxn
qsys = 0
qrxn = - (qwater + qcal)
qwater = m x s x Dt
qcal = Ccal x Dt
Reaction at Constant P
DH = qrxn
24
25
Chemistry in Action:
Fuel Values of Foods and Other Substances
C6H12O6 (s) + 6O2 (g) 6CO2 (g) + 6H2O (l) DH = -2801 kJ/mol
1 cal = 4.184 J
1 Cal = 1000 cal = 4184 J
Substance DHcombustion (kJ/g)
Apple -2
Beef -8
Beer -1.5
Gasoline -34
26
Because there is no way to measure the absolute value of
the enthalpy of a substance, must I measure the enthalpy
change for every reaction of interest?
Establish an arbitrary scale with the standard enthalpy of
formation (DH0) as a reference point for all enthalpy
expressions.
f
Standard enthalpy of formation (DH0) is the heat change
that results when one mole of a compound is formed from
its elements at a pressure of 1 atm.
f
The standard enthalpy of formation of any element in its
most stable form is zero.
DH0 (O2) = 0f
DH0 (O3) = 142 kJ/molf
DH0 (C, graphite) = 0f
DH0 (C, diamond) = 1.90 kJ/molf
27
28
The standard enthalpy of reaction (DH0 ) is the enthalpy of
a reaction carried out at 1 atm.
rxn
aA + bB cC + dD
DH0
rxn dDH0 (D)fcDH0 (C)f= [ + ] - bDH0 (B)faDH0 (A)f[ + ]
DH0
rxn nDH0 (products)f= S mDH0 (reactants)fS-
Hess’s Law: When reactants are converted to products, the
change in enthalpy is the same whether the reaction takes
place in one step or in a series of steps.
(Enthalpy is a state function. It doesn’t matter how you get
there, only where you start and end.)
29
C (graphite) + 1/2O2 (g) CO (g)
CO (g) + 1/2O2 (g) CO2 (g)
C (graphite) + O2 (g) CO2 (g)
30
Calculate the standard enthalpy of formation of CS2 (l) given
that:
C(graphite) + O2 (g) CO2 (g) DH0 = -393.5 kJ/molrxn
S(rhombic) + O2 (g) SO2 (g) DH0 = -296.1 kJ/molrxn
CS2(l) + 3O2 (g) CO2 (g) + 2SO2 (g) DH0 = -1072 kJ/molrxn
1. Write the enthalpy of formation reaction for CS2
C(graphite) + 2S(rhombic) CS2 (l)
2. Add the given rxns so that the result is the desired rxn.
rxnC(graphite) + O2 (g) CO2 (g) DH0 = -393.5 kJ/mol
2S(rhombic) + 2O2 (g) 2SO2 (g) DH0 = -296.1 kJ/mol x 2rxn
CO2(g) + 2SO2 (g) CS2 (l) + 3O2 (g) DH0 = +1072 kJ/molrxn+
C(graphite) + 2S(rhombic) CS2 (l)
DH0 = -393.5 + (2x-296.1) + 1072 = 86.3 kJ/molrxn
31
Benzene (C6H6) burns in air to produce carbon dioxide and
liquid water. How much heat is released per mole of benzene
combusted? The standard enthalpy of formation of benzene is
49.04 kJ/mol.
2C6H6 (l) + 15O2 (g) 12CO2 (g) + 6H2O (l)
DH0
rxn nDH0 (products)f= S mDH0 (reactants)fS-
DH0
rxn 6DH0 (H2O)f12DH0 (CO2)f= [ + ] - 2DH0 (C6H6)f[ ]
DH0
rxn = [ 12x–393.5 + 6x–187.6 ] – [ 2x49.04 ] = -5946 kJ
-5946 kJ
2 mol
= - 2973 kJ/mol C6H6
32
Chemistry in Action: Bombardier Beetle Defense
C6H4(OH)2 (aq) + H2O2 (aq) C6H4O2 (aq) + 2H2O (l) DH0 = ?
C6H4(OH)2 (aq) C6H4O2 (aq) + H2 (g) DH0 = 177 kJ/mol
H2O2 (aq) H2O (l) + ½O2 (g) DH0 = -94.6 kJ/mol
H2 (g) + ½ O2 (g) H2O (l) DH0 = -286 kJ/mol
DH0 = 177 - 94.6 – 286 = -204 kJ/mol
Exothermic!
33
The enthalpy of solution (DHsoln) is the heat generated or
absorbed when a certain amount of solute dissolves in a
certain amount of solvent.
DHsoln = Hsoln - Hcomponents
Which substance(s) could be
used for melting ice?
Which substance(s) could be
used for a cold pack?
34
The Solution Process for NaCl
DHsoln = Step 1 + Step 2 = 788 – 784 = 4 kJ/mol

Contenu connexe

Tendances

Lect w10 abbrev_ thermochemistry_alg
Lect w10 abbrev_ thermochemistry_algLect w10 abbrev_ thermochemistry_alg
Lect w10 abbrev_ thermochemistry_alg
chelss
 
AP Chemistry Chapter 3 Outline
AP Chemistry Chapter 3 OutlineAP Chemistry Chapter 3 Outline
AP Chemistry Chapter 3 Outline
Jane Hamze
 

Tendances (19)

Chapter 5 notes
Chapter 5 notesChapter 5 notes
Chapter 5 notes
 
Pembahasan Soal2 termokimia
Pembahasan Soal2 termokimiaPembahasan Soal2 termokimia
Pembahasan Soal2 termokimia
 
Chapter 6 notes
Chapter 6 notesChapter 6 notes
Chapter 6 notes
 
Chapter 4 notes
Chapter 4 notes  Chapter 4 notes
Chapter 4 notes
 
Thermodynamics objective
Thermodynamics objectiveThermodynamics objective
Thermodynamics objective
 
8.0 thermochemistry (student's copy)
8.0 thermochemistry   (student's copy)8.0 thermochemistry   (student's copy)
8.0 thermochemistry (student's copy)
 
Energetics
EnergeticsEnergetics
Energetics
 
Chapter 1 notes
Chapter 1 notes Chapter 1 notes
Chapter 1 notes
 
Chapter 5
Chapter 5Chapter 5
Chapter 5
 
Physical chemi gases
Physical chemi gasesPhysical chemi gases
Physical chemi gases
 
Chapter 4 Thermochemistry
Chapter 4 ThermochemistryChapter 4 Thermochemistry
Chapter 4 Thermochemistry
 
Lect w10 abbrev_ thermochemistry_alg
Lect w10 abbrev_ thermochemistry_algLect w10 abbrev_ thermochemistry_alg
Lect w10 abbrev_ thermochemistry_alg
 
Chapter 5
Chapter 5Chapter 5
Chapter 5
 
Chemistry zimsec chapter 6 chemical energetics
Chemistry zimsec chapter 6 chemical energeticsChemistry zimsec chapter 6 chemical energetics
Chemistry zimsec chapter 6 chemical energetics
 
AP Chemistry Chapter 3 Outline
AP Chemistry Chapter 3 OutlineAP Chemistry Chapter 3 Outline
AP Chemistry Chapter 3 Outline
 
Chapter 14
Chapter 14Chapter 14
Chapter 14
 
Fundamentals of Thermo-Chemistry
Fundamentals of Thermo-ChemistryFundamentals of Thermo-Chemistry
Fundamentals of Thermo-Chemistry
 
Energetics
EnergeticsEnergetics
Energetics
 
Chapter4
Chapter4Chapter4
Chapter4
 

Similaire à Ch6 Thermochemistry (old version)

ch6.pptx
ch6.pptxch6.pptx
ch6.pptx
aliabdolkhani4
 
Chemistry- JIB Topic 9 Thermochemistry
Chemistry- JIB Topic 9 ThermochemistryChemistry- JIB Topic 9 Thermochemistry
Chemistry- JIB Topic 9 Thermochemistry
Sam Richard
 
1422 chapt-15-thermodynamics
1422 chapt-15-thermodynamics1422 chapt-15-thermodynamics
1422 chapt-15-thermodynamics
Deepak Kumar
 
Module 7 - Energy Balance chemical process calculations
Module 7 - Energy Balance chemical process calculationsModule 7 - Energy Balance chemical process calculations
Module 7 - Energy Balance chemical process calculations
balaaguywithagang1
 
New chm 151_unit_9_power_points
New chm 151_unit_9_power_pointsNew chm 151_unit_9_power_points
New chm 151_unit_9_power_points
caneman1
 
Ch6 z5e thermo
Ch6 z5e thermoCh6 z5e thermo
Ch6 z5e thermo
blachman
 
Tang 03 enthalpy of formation and combustion
Tang 03   enthalpy of formation and combustionTang 03   enthalpy of formation and combustion
Tang 03 enthalpy of formation and combustion
mrtangextrahelp
 
Ch17 thermo review_answers
Ch17 thermo review_answersCh17 thermo review_answers
Ch17 thermo review_answers
mcnewbold
 

Similaire à Ch6 Thermochemistry (old version) (20)

ch6.pptx
ch6.pptxch6.pptx
ch6.pptx
 
AP_Chem_Thermodynamics.pptx
AP_Chem_Thermodynamics.pptxAP_Chem_Thermodynamics.pptx
AP_Chem_Thermodynamics.pptx
 
Thermochemistry
ThermochemistryThermochemistry
Thermochemistry
 
Chemistry- JIB Topic 9 Thermochemistry
Chemistry- JIB Topic 9 ThermochemistryChemistry- JIB Topic 9 Thermochemistry
Chemistry- JIB Topic 9 Thermochemistry
 
C H5
C H5C H5
C H5
 
Causes of change
Causes of changeCauses of change
Causes of change
 
1422 chapt-15-thermodynamics
1422 chapt-15-thermodynamics1422 chapt-15-thermodynamics
1422 chapt-15-thermodynamics
 
Chemical Reactions: Thermochemistry
Chemical Reactions: ThermochemistryChemical Reactions: Thermochemistry
Chemical Reactions: Thermochemistry
 
F y b. sc. ii. chemical energetics
F y b. sc. ii. chemical energeticsF y b. sc. ii. chemical energetics
F y b. sc. ii. chemical energetics
 
Thermochemistry
Thermochemistry  Thermochemistry
Thermochemistry
 
#21 Key
#21 Key#21 Key
#21 Key
 
Module 7 - Energy Balance chemical process calculations
Module 7 - Energy Balance chemical process calculationsModule 7 - Energy Balance chemical process calculations
Module 7 - Energy Balance chemical process calculations
 
Enthalpy change
Enthalpy changeEnthalpy change
Enthalpy change
 
New chm 151_unit_9_power_points
New chm 151_unit_9_power_pointsNew chm 151_unit_9_power_points
New chm 151_unit_9_power_points
 
Notes for Unit 17 of AP Chemistry (Thermodynamics)
Notes for Unit 17 of AP Chemistry (Thermodynamics)Notes for Unit 17 of AP Chemistry (Thermodynamics)
Notes for Unit 17 of AP Chemistry (Thermodynamics)
 
Ch6 z5e thermo
Ch6 z5e thermoCh6 z5e thermo
Ch6 z5e thermo
 
Tang 03 enthalpy of formation and combustion
Tang 03   enthalpy of formation and combustionTang 03   enthalpy of formation and combustion
Tang 03 enthalpy of formation and combustion
 
Inorganic Chemistry: Thermochemistry
Inorganic Chemistry: ThermochemistryInorganic Chemistry: Thermochemistry
Inorganic Chemistry: Thermochemistry
 
Thermodynamics STUDENT NOTES.pptx
Thermodynamics STUDENT NOTES.pptxThermodynamics STUDENT NOTES.pptx
Thermodynamics STUDENT NOTES.pptx
 
Ch17 thermo review_answers
Ch17 thermo review_answersCh17 thermo review_answers
Ch17 thermo review_answers
 

Plus de Sa'ib J. Khouri (6)

Ch9 chemical bonding i basic concepts
Ch9 chemical bonding i basic conceptsCh9 chemical bonding i basic concepts
Ch9 chemical bonding i basic concepts
 
Ch8 the periodic table
Ch8 the periodic tableCh8 the periodic table
Ch8 the periodic table
 
Ch10 chemical bonding ii
Ch10 chemical bonding iiCh10 chemical bonding ii
Ch10 chemical bonding ii
 
Ch7 quantum theory and the electronic structure of atoms
Ch7 quantum theory and the electronic structure of atomsCh7 quantum theory and the electronic structure of atoms
Ch7 quantum theory and the electronic structure of atoms
 
Ch1 chemistry the study of change
Ch1 chemistry the study of changeCh1 chemistry the study of change
Ch1 chemistry the study of change
 
Ch2 Atoms, Molecules and Ions
Ch2 Atoms, Molecules and IonsCh2 Atoms, Molecules and Ions
Ch2 Atoms, Molecules and Ions
 

Dernier

Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Sérgio Sacani
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Sérgio Sacani
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
gindu3009
 
Seismic Method Estimate velocity from seismic data.pptx
Seismic Method Estimate velocity from seismic  data.pptxSeismic Method Estimate velocity from seismic  data.pptx
Seismic Method Estimate velocity from seismic data.pptx
AlMamun560346
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
Sérgio Sacani
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
PirithiRaju
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
Sérgio Sacani
 

Dernier (20)

Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdf
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdf
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdf
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
 
Seismic Method Estimate velocity from seismic data.pptx
Seismic Method Estimate velocity from seismic  data.pptxSeismic Method Estimate velocity from seismic  data.pptx
Seismic Method Estimate velocity from seismic data.pptx
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C P
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questions
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 
Chemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfChemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdf
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 

Ch6 Thermochemistry (old version)

  • 1. Thermochemistry Chapter 6 Dr. Sa’ib Khouri AUM- JORDAN Chemistry By Raymond Chang
  • 2. 2 Energy is the capacity to do work. • Radiant energy comes from the sun and is earth’s primary energy source • Thermal energy is the energy associated with the random motion of atoms and molecules • Chemical energy is the energy stored within the bonds of chemical substances • Nuclear energy is the energy stored within the collection of neutrons and protons in the atom • Potential energy is the energy available by virtue of an object’s position
  • 3. 3 Heat is the transfer of thermal energy between two bodies that are at different temperatures. Energy Changes in Chemical Reactions Temperature is a measure of the thermal energy. Temperature = Thermal Energy
  • 4. 4 Thermochemistry is the study of heat change in chemical reactions. The system is the specific part of the universe that is of interest in the study. open mass & energyExchange: closed energy isolated nothing
  • 5. 5 Exothermic process is any process that gives off heat – transfers thermal energy from the system to the surroundings. Endothermic process is any process in which heat has to be supplied to the system from the surroundings. 2H2 (g) + O2 (g) 2H2O (l) + energy H2O (g) H2O (l) + energy energy + 2HgO (s) 2Hg (l) + O2 (g) energy + H2O (s) H2O (l)
  • 6. 6 Schematic of Exothermic and Endothermic Processes
  • 7. 7 Thermodynamics is the scientific study of the interconversion of heat and other kinds of energy. State functions are properties that are determined by the state of the system, regardless of how that condition was achieved. Potential energy of hiker 1 and hiker 2 is the same even though they took different paths. energy, pressure, volume, temperature DE = Efinal - Einitial DP = Pfinal - Pinitial DV = Vfinal - Vinitial DT = Tfinal - Tinitial
  • 8. 8 First law of thermodynamics – energy can be converted from one form to another, but cannot be created or destroyed. DEsystem + DEsurroundings = 0 or DEsystem = -DEsurroundings C3H8 + 5O2 3CO2 + 4H2O Exothermic chemical reaction! Chemical energy lost by combustion = Energy gained by the surroundings system surroundings
  • 9. 9 Another form of the first law for DEsystem DE = q + w DE is the change in internal energy of a system q is the heat exchange between the system and the surroundings w is the work done on (or by) the system w = -PDV when a gas expands against a constant external pressure
  • 10. 10 Work Done On the System w = F x d w = -P DV P x V = x d3 = F x d = w F d2 DV > 0 -PDV < 0 wsys < 0 Work is not a state function. Dw = wfinal - winitial initial final
  • 11. 11 A sample of nitrogen gas expands in volume from 1.6 L to 5.4 L at constant temperature. What is the work done in joules if the gas expands (a) against a vacuum and (b) against a constant pressure of 3.7 atm? w = -P DV (a) DV = 5.4 L – 1.6 L = 3.8 L P = 0 atm W = -0 atm x 3.8 L = 0 L•atm = 0 joules (b) DV = 5.4 L – 1.6 L = 3.8 L P = 3.7 atm w = -3.7 atm x 3.8 L = -14.1 L•atm w = -14.1 L•atm x 101.3 J 1L•atm = -1430 J
  • 12. 12 Chemistry in Action: Making Snow DE = q + w q = 0 w < 0, DE < 0 DE = CDT DT < 0, SNOW!
  • 13. 13 Enthalpy and the First Law of Thermodynamics DE = q + w DE = DH - PDV DH = DE + PDV q = DH and w = -PDV At constant pressure:
  • 14. 14 Enthalpy (H) is used to quantify the heat flow into or out of a system in a process that occurs at constant pressure. DH = H (products) – H (reactants) DH = heat given off or absorbed during a reaction at constant pressure Hproducts < Hreactants DH < 0 Hproducts > Hreactants DH > 0
  • 15. 15 Thermochemical Equations H2O (s) H2O (l) DH = 6.01 kJ/mol Is DH negative or positive? System absorbs heat Endothermic DH > 0 6.01 kJ are absorbed for every 1 mole of ice that melts at 00C and 1 atm.
  • 16. 16 Thermochemical Equations CH4 (g) + 2O2 (g) CO2 (g) + 2H2O (l) DH = -890.4 kJ/mol Is DH negative or positive? System gives off heat Exothermic DH < 0 890.4 kJ are released for every 1 mole of methane that is combusted at 250C and 1 atm.
  • 17. 17 H2O (s) H2O (l) DH = 6.01 kJ/mol • The stoichiometric coefficients always refer to the number of moles of a substance Thermochemical Equations • If you reverse a reaction, the sign of DH changes H2O (l) H2O (s) DH = -6.01 kJ/mol • If you multiply both sides of the equation by a factor n, then DH must change by the same factor n. 2H2O (s) 2H2O (l) DH = 2 x 6.01 = 12.0 kJ
  • 18. 18 H2O (s) H2O (l) DH = 6.01 kJ/mol • The physical states of all reactants and products must be specified in thermochemical equations. Thermochemical Equations H2O (l) H2O (g) DH = 44.0 kJ/mol How much heat is evolved when 266 g of white phosphorus (P4) burn in air? P4 (s) + 5O2 (g) P4O10 (s) DH = -3013 kJ/mol 266 g P4 1 mol P4 123.9 g P4 x 3013 kJ 1 mol P4 x = 6470 kJ
  • 19. 19 A Comparison of DH and DE 2Na (s) + 2H2O (l) 2NaOH (aq) + H2 (g) DH = -367.5 kJ/mol DE = DH - PDV At 25 oC, 1 mole H2 = 24.5 L at 1 atm PDV = 1 atm x 24.5 L = 2.5 kJ DE = -367.5 kJ/mol – 2.5 kJ/mol = -370.0 kJ/mol
  • 20. 20 The specific heat (s) of a substance is the amount of heat (q) required to raise the temperature of one gram of the substance by one degree Celsius. The heat capacity (C) of a substance is the amount of heat (q) required to raise the temperature of a given quantity (m) of the substance by one degree Celsius. C = m x s Heat (q) absorbed or released: q = m x s x Dt q = C x Dt Dt = tfinal - tinitial
  • 21. 21 How much heat is given off when an 869 g iron bar cools from 94oC to 5oC? s of Fe = 0.444 J/g • oC Dt = tfinal – tinitial = 5oC – 94oC = -89oC q = msDt = 869 g x 0.444 J/g • oC x –89oC = -34,000 J
  • 22. 22 Constant-Volume Calorimetry No heat enters or leaves! qsys = qwater + qbomb + qrxn qsys = 0 qrxn = - (qwater + qbomb) qwater = m x s x Dt qbomb = Cbomb x Dt Reaction at Constant V DH ~ qrxn DH = qrxn
  • 23. 23 Constant-Pressure Calorimetry No heat enters or leaves! qsys = qwater + qcal + qrxn qsys = 0 qrxn = - (qwater + qcal) qwater = m x s x Dt qcal = Ccal x Dt Reaction at Constant P DH = qrxn
  • 24. 24
  • 25. 25 Chemistry in Action: Fuel Values of Foods and Other Substances C6H12O6 (s) + 6O2 (g) 6CO2 (g) + 6H2O (l) DH = -2801 kJ/mol 1 cal = 4.184 J 1 Cal = 1000 cal = 4184 J Substance DHcombustion (kJ/g) Apple -2 Beef -8 Beer -1.5 Gasoline -34
  • 26. 26 Because there is no way to measure the absolute value of the enthalpy of a substance, must I measure the enthalpy change for every reaction of interest? Establish an arbitrary scale with the standard enthalpy of formation (DH0) as a reference point for all enthalpy expressions. f Standard enthalpy of formation (DH0) is the heat change that results when one mole of a compound is formed from its elements at a pressure of 1 atm. f The standard enthalpy of formation of any element in its most stable form is zero. DH0 (O2) = 0f DH0 (O3) = 142 kJ/molf DH0 (C, graphite) = 0f DH0 (C, diamond) = 1.90 kJ/molf
  • 27. 27
  • 28. 28 The standard enthalpy of reaction (DH0 ) is the enthalpy of a reaction carried out at 1 atm. rxn aA + bB cC + dD DH0 rxn dDH0 (D)fcDH0 (C)f= [ + ] - bDH0 (B)faDH0 (A)f[ + ] DH0 rxn nDH0 (products)f= S mDH0 (reactants)fS- Hess’s Law: When reactants are converted to products, the change in enthalpy is the same whether the reaction takes place in one step or in a series of steps. (Enthalpy is a state function. It doesn’t matter how you get there, only where you start and end.)
  • 29. 29 C (graphite) + 1/2O2 (g) CO (g) CO (g) + 1/2O2 (g) CO2 (g) C (graphite) + O2 (g) CO2 (g)
  • 30. 30 Calculate the standard enthalpy of formation of CS2 (l) given that: C(graphite) + O2 (g) CO2 (g) DH0 = -393.5 kJ/molrxn S(rhombic) + O2 (g) SO2 (g) DH0 = -296.1 kJ/molrxn CS2(l) + 3O2 (g) CO2 (g) + 2SO2 (g) DH0 = -1072 kJ/molrxn 1. Write the enthalpy of formation reaction for CS2 C(graphite) + 2S(rhombic) CS2 (l) 2. Add the given rxns so that the result is the desired rxn. rxnC(graphite) + O2 (g) CO2 (g) DH0 = -393.5 kJ/mol 2S(rhombic) + 2O2 (g) 2SO2 (g) DH0 = -296.1 kJ/mol x 2rxn CO2(g) + 2SO2 (g) CS2 (l) + 3O2 (g) DH0 = +1072 kJ/molrxn+ C(graphite) + 2S(rhombic) CS2 (l) DH0 = -393.5 + (2x-296.1) + 1072 = 86.3 kJ/molrxn
  • 31. 31 Benzene (C6H6) burns in air to produce carbon dioxide and liquid water. How much heat is released per mole of benzene combusted? The standard enthalpy of formation of benzene is 49.04 kJ/mol. 2C6H6 (l) + 15O2 (g) 12CO2 (g) + 6H2O (l) DH0 rxn nDH0 (products)f= S mDH0 (reactants)fS- DH0 rxn 6DH0 (H2O)f12DH0 (CO2)f= [ + ] - 2DH0 (C6H6)f[ ] DH0 rxn = [ 12x–393.5 + 6x–187.6 ] – [ 2x49.04 ] = -5946 kJ -5946 kJ 2 mol = - 2973 kJ/mol C6H6
  • 32. 32 Chemistry in Action: Bombardier Beetle Defense C6H4(OH)2 (aq) + H2O2 (aq) C6H4O2 (aq) + 2H2O (l) DH0 = ? C6H4(OH)2 (aq) C6H4O2 (aq) + H2 (g) DH0 = 177 kJ/mol H2O2 (aq) H2O (l) + ½O2 (g) DH0 = -94.6 kJ/mol H2 (g) + ½ O2 (g) H2O (l) DH0 = -286 kJ/mol DH0 = 177 - 94.6 – 286 = -204 kJ/mol Exothermic!
  • 33. 33 The enthalpy of solution (DHsoln) is the heat generated or absorbed when a certain amount of solute dissolves in a certain amount of solvent. DHsoln = Hsoln - Hcomponents Which substance(s) could be used for melting ice? Which substance(s) could be used for a cold pack?
  • 34. 34 The Solution Process for NaCl DHsoln = Step 1 + Step 2 = 788 – 784 = 4 kJ/mol