Skillshare - Understanding extractives data

School of Data
School of DataSchool of Data
Things to understand
before diving into
Extractives Data
PRESENTED BY
Julio Lopez
@jalp_ec
Contents
1. Target Audience
2. Demystifying the extractives industry
3. Why do people even care about it?
4. So, what data are we really talking about?
5. Ok, but where can I find it?
6. Do people really use this?
Target
audience
1
Target Audience
● Data Journalists
● NGOs
● Students
● Researchers (civil society, think tanks)
● School of Data Fellows
Demystifying the
extractives
industry
2
Extractives industries
“Industries that extract natural resources (NNRR), such as oil, natural
gas, diamonds, coal, and other minerals from the ground”
NNRR are also relevant in the energy sector: primary sources that are
transformed into useful energy (crude oil to diesel to electricity / natural gas
to electricity)
Amplified Production chain
Requirements + Production chain + Benefits
Why do people
even care about
it?
2
Why is this important?
● Economic factors: Source of revenues in many countries (including
high-income and low-income)
● The environmental and social impacts: Sustainable management of
natural resources.
● Transparency and access to information could improve the quality of
governance
Why is this important?
● Highly specialized industry = enhance public understanding of this
topics.
● Opening Extractives Data could foster more innovative education and
capacity building programs.
● There is a big potential for countries to go from macro statistics to real
time local data using open data: project level data.
So, what data
are we really
talking about?
3
Extractives data ecosystem
▪ Micro data:
Project level data
▪ Macro data:
Country level
Source: NRGI
Country level (Macro data)
●Collected at the country level (aggregated variables)
●Originated at government agencies and international databases
●Most common data includes: production of the resource (oil, natural
gas, copper, etc.), exports and imports, revenues and prices.
●It is Primary data (sources)
Project level (Micro data)
●Information on projects, blocks, fields, and concessions (usually
geocoded)
●Companies also publish data on projects
●Governments disseminate maps, contracts, and lists of
blocks/fields/concessions
●Contracts are also published (sometimes they do not match with the
projects)
●Normally it is not primary data (lack of official databases)
Ok, but where
can I find it?
4
Country wide
● Government agencies dedicated to oil, gas and mining
industries
● Central Banks
● International trade offices
● Environmental agencies
International Agencies
● World Bank Development Indicator
● Inter-American Development Bank
● International Monetary Found (IMF)
● IEA (International Energy Agency) Statistics Energy Atlas
● Joint Organisations Data Initiative (IEA, OLADE, APEC,
IEF) – hydrocarbons and natural gas
International Civil Society
● Publish What You Pay (PWYP)
● Extractives Industries Transparency Iniciative (EITI)
● Natural Resource Governance Institute (NRGI)
● Open Oil
● Open Contracts
● Open Corporations
● Global Subsidies Initiative - International Institute for Sustainable
Development’
Do people
really use this?
5
Uses
● NGOs, think tanks, consultancy firms and companies and
journalists
● Data visualization as a tool to advocate
● Mapping
● Contracts – Texts
Maps – Mining in Africa
http://www.a-mla.org/index.php
Contracts
http://www.resourcecontracts.org/
Journalism
http://ojo-publico.com/77/los-secretos-detras-de-la-lista-de-
comunidades-indigenas-del-peru
Open Data Maps
http://repository.openoil.net/wiki/Main_Page
Resources & Readings
1. http://gijn.org/2014/03/05/covering-the-extractives-industry-big-data-new-
tools-and-journalism/
2. http://www.resourcegovernance.org/news/blog/extractive-industries-data-
ecosystem-database-available-data-tools-natural-resource-govern
3. http://www.evidenceondemand.info/-maximising-the-benefits-of-data-and-
extractives-industries-for-the-poor-understanding-data-demand
4. http://opendatacon.org/reversing-the-resource-curse-with-open-data/
5. https://openoil.net/exploring-oil-data/
1 sur 25

Recommandé

EC par
ECEC
ECDilip Silekar
174 vues3 diapositives
CityCamp & Hack 2014: Использование Open Refine для очистки и преобразования ... par
CityCamp & Hack 2014: Использование Open Refine для очистки и преобразования ...CityCamp & Hack 2014: Использование Open Refine для очистки и преобразования ...
CityCamp & Hack 2014: Использование Open Refine для очистки и преобразования ...Open City Foundation
378 vues18 diapositives
Использование программ Import IO и OpenRefine par
Использование программ Import IO и OpenRefineИспользование программ Import IO и OpenRefine
Использование программ Import IO и OpenRefineOlya Parkhimovich
1.7K vues46 diapositives
Использование Open refine для работы с открытыми бюджетами и гос. контрактами par
Использование Open refine для работы с открытыми бюджетами и гос. контрактамиИспользование Open refine для работы с открытыми бюджетами и гос. контрактами
Использование Open refine для работы с открытыми бюджетами и гос. контрактамиOlya Parkhimovich
1.2K vues23 diapositives
School of Data - What is it? par
School of Data - What is it?School of Data - What is it?
School of Data - What is it?School of Data
1.1K vues28 diapositives
Intro to open refine par
Intro to open refineIntro to open refine
Intro to open refineSchool of Data
1.7K vues17 diapositives

Contenu connexe

En vedette

Sikuli par
SikuliSikuli
SikuliSun Technlogies
319 vues20 diapositives
Semana de Comércio Exterior e Logística - Aplicação de ferramentas de melhori... par
Semana de Comércio Exterior e Logística - Aplicação de ferramentas de melhori...Semana de Comércio Exterior e Logística - Aplicação de ferramentas de melhori...
Semana de Comércio Exterior e Logística - Aplicação de ferramentas de melhori...Conselho Regional de Administração de São Paulo
1.5K vues111 diapositives
Aula EBD - Relacionamentos na Igreja par
Aula EBD - Relacionamentos na IgrejaAula EBD - Relacionamentos na Igreja
Aula EBD - Relacionamentos na IgrejaDilsilei Monteiro
4.7K vues29 diapositives
UI composition par
UI compositionUI composition
UI compositionJohan Cambre
54 vues1 diapositive
What is documentation and its techniques par
What is documentation and its techniquesWhat is documentation and its techniques
What is documentation and its techniquesSohail Sangi
36.4K vues16 diapositives
Healthy Food par
Healthy FoodHealthy Food
Healthy Foodwongkaiyuen
15.7K vues26 diapositives

En vedette(16)

What is documentation and its techniques par Sohail Sangi
What is documentation and its techniquesWhat is documentation and its techniques
What is documentation and its techniques
Sohail Sangi36.4K vues
6 tips of using #hashtag for marketing par Terry Tong
6 tips of using #hashtag for marketing6 tips of using #hashtag for marketing
6 tips of using #hashtag for marketing
Terry Tong200 vues
Zajednicka pozicija EU za Poglavlje 35 par gordana comic
Zajednicka pozicija EU za Poglavlje 35Zajednicka pozicija EU za Poglavlje 35
Zajednicka pozicija EU za Poglavlje 35
gordana comic1.4K vues
The Ethical Public Relations Practitioner par Barbara Nixon
The Ethical Public Relations PractitionerThe Ethical Public Relations Practitioner
The Ethical Public Relations Practitioner
Barbara Nixon7K vues
CEDEC2014 「ライブラリを作ってはいけない ~それでも作りたいあなたへのアドバイス~」 par Yoshihiro Kurohata
CEDEC2014 「ライブラリを作ってはいけない ~それでも作りたいあなたへのアドバイス~」CEDEC2014 「ライブラリを作ってはいけない ~それでも作りたいあなたへのアドバイス~」
CEDEC2014 「ライブラリを作ってはいけない ~それでも作りたいあなたへのアドバイス~」
Yoshihiro Kurohata43.5K vues
Cancer Care in a Post Truth World par Matthew Katz
Cancer Care in a Post Truth World Cancer Care in a Post Truth World
Cancer Care in a Post Truth World
Matthew Katz7.6K vues
Scalable Software Testing and Verification of Non-Functional Properties throu... par Lionel Briand
Scalable Software Testing and Verification of Non-Functional Properties throu...Scalable Software Testing and Verification of Non-Functional Properties throu...
Scalable Software Testing and Verification of Non-Functional Properties throu...
Lionel Briand478 vues

Similaire à Skillshare - Understanding extractives data

Intangible Assets and Spanish Economic Growth par
Intangible Assets and Spanish Economic GrowthIntangible Assets and Spanish Economic Growth
Intangible Assets and Spanish Economic GrowthSPINTAN
310 vues26 diapositives
The Future of Mining par
The Future of MiningThe Future of Mining
The Future of MiningEnergy for One World
833 vues80 diapositives
The Future of Mining par
The Future of MiningThe Future of Mining
The Future of MiningSchneider Electric
9.2K vues80 diapositives
Methodologies for Addressing Risks and Opportunities Engendered by Big Data T... par
Methodologies for Addressing Risks and Opportunities Engendered by Big Data T...Methodologies for Addressing Risks and Opportunities Engendered by Big Data T...
Methodologies for Addressing Risks and Opportunities Engendered by Big Data T...BYTE Project
451 vues11 diapositives
Select usa par
Select usaSelect usa
Select usaBusiness Turku
421 vues15 diapositives
A3 - Competitiveness of the Geothermal sector par
A3 - Competitiveness of the Geothermal sector A3 - Competitiveness of the Geothermal sector
A3 - Competitiveness of the Geothermal sector Iceland Geothermal
53 vues15 diapositives

Similaire à Skillshare - Understanding extractives data(20)

Intangible Assets and Spanish Economic Growth par SPINTAN
Intangible Assets and Spanish Economic GrowthIntangible Assets and Spanish Economic Growth
Intangible Assets and Spanish Economic Growth
SPINTAN 310 vues
Methodologies for Addressing Risks and Opportunities Engendered by Big Data T... par BYTE Project
Methodologies for Addressing Risks and Opportunities Engendered by Big Data T...Methodologies for Addressing Risks and Opportunities Engendered by Big Data T...
Methodologies for Addressing Risks and Opportunities Engendered by Big Data T...
BYTE Project451 vues
01 int biz.theories session 1, 2 & 3 par mayuritiwari01
01 int biz.theories session 1, 2 & 301 int biz.theories session 1, 2 & 3
01 int biz.theories session 1, 2 & 3
mayuritiwari01891 vues
Open Data Institute presentation of european context par liberTIC
Open Data Institute presentation of european contextOpen Data Institute presentation of european context
Open Data Institute presentation of european context
liberTIC1.1K vues
Hack day presentation may 2013 par Rewired_State
Hack day presentation may 2013Hack day presentation may 2013
Hack day presentation may 2013
Rewired_State327 vues
The State of Open Data - AI, Data Literacy and the Private Sector par Tim Davies
The State of Open Data - AI, Data Literacy and the Private SectorThe State of Open Data - AI, Data Literacy and the Private Sector
The State of Open Data - AI, Data Literacy and the Private Sector
Tim Davies229 vues
Mining regions OECD future work programme par OECDregions
Mining regions OECD future work programmeMining regions OECD future work programme
Mining regions OECD future work programme
OECDregions905 vues
Alpaca ESG Data & Reporting Field Study_EXTERNAL PUBLISHING_2.12.23.pdf par Daniel Fetner
Alpaca ESG Data & Reporting Field Study_EXTERNAL PUBLISHING_2.12.23.pdfAlpaca ESG Data & Reporting Field Study_EXTERNAL PUBLISHING_2.12.23.pdf
Alpaca ESG Data & Reporting Field Study_EXTERNAL PUBLISHING_2.12.23.pdf
Daniel Fetner263 vues
Global Spatial Data - Challenges, Issues & Trends par GSDI Association
Global Spatial Data - Challenges, Issues & TrendsGlobal Spatial Data - Challenges, Issues & Trends
Global Spatial Data - Challenges, Issues & Trends
GSDI Association474 vues
Globalization in detail and international business par Yashraj Tahilramani
Globalization in detail and international businessGlobalization in detail and international business
Globalization in detail and international business
Using DBpedia for Thesaurus Management and Linked Open Data Integration par Martin Kaltenböck
Using DBpedia for Thesaurus Management and Linked Open Data IntegrationUsing DBpedia for Thesaurus Management and Linked Open Data Integration
Using DBpedia for Thesaurus Management and Linked Open Data Integration
Martin Kaltenböck2.2K vues
Responsible mineral development: a multidimensional view on value creation in... par Mining On Top
Responsible mineral development: a multidimensional view on value creation in...Responsible mineral development: a multidimensional view on value creation in...
Responsible mineral development: a multidimensional view on value creation in...
Mining On Top1.2K vues

Plus de School of Data

Skillshare - Regression Analysis for Data Journalism par
Skillshare - Regression Analysis for Data JournalismSkillshare - Regression Analysis for Data Journalism
Skillshare - Regression Analysis for Data JournalismSchool of Data
2.4K vues38 diapositives
Skillshare - Building a data literacy community in Nigeria par
Skillshare - Building a data literacy community in NigeriaSkillshare - Building a data literacy community in Nigeria
Skillshare - Building a data literacy community in NigeriaSchool of Data
1.2K vues22 diapositives
Skillshare - Using Kobo Toolbox for mobile data collection par
Skillshare - Using Kobo Toolbox for mobile data collectionSkillshare - Using Kobo Toolbox for mobile data collection
Skillshare - Using Kobo Toolbox for mobile data collectionSchool of Data
6.9K vues20 diapositives
Skillshare - Introduction to Timemapper par
Skillshare - Introduction to TimemapperSkillshare - Introduction to Timemapper
Skillshare - Introduction to TimemapperSchool of Data
787 vues15 diapositives
Skillshare - Let's talk about R in Data Journalism par
Skillshare - Let's talk about R in Data JournalismSkillshare - Let's talk about R in Data Journalism
Skillshare - Let's talk about R in Data JournalismSchool of Data
1.5K vues17 diapositives
Skillshare - Introduction to Data Scraping par
Skillshare - Introduction to Data ScrapingSkillshare - Introduction to Data Scraping
Skillshare - Introduction to Data ScrapingSchool of Data
2.3K vues18 diapositives

Plus de School of Data(17)

Skillshare - Regression Analysis for Data Journalism par School of Data
Skillshare - Regression Analysis for Data JournalismSkillshare - Regression Analysis for Data Journalism
Skillshare - Regression Analysis for Data Journalism
School of Data2.4K vues
Skillshare - Building a data literacy community in Nigeria par School of Data
Skillshare - Building a data literacy community in NigeriaSkillshare - Building a data literacy community in Nigeria
Skillshare - Building a data literacy community in Nigeria
School of Data1.2K vues
Skillshare - Using Kobo Toolbox for mobile data collection par School of Data
Skillshare - Using Kobo Toolbox for mobile data collectionSkillshare - Using Kobo Toolbox for mobile data collection
Skillshare - Using Kobo Toolbox for mobile data collection
School of Data6.9K vues
Skillshare - Introduction to Timemapper par School of Data
Skillshare - Introduction to TimemapperSkillshare - Introduction to Timemapper
Skillshare - Introduction to Timemapper
School of Data787 vues
Skillshare - Let's talk about R in Data Journalism par School of Data
Skillshare - Let's talk about R in Data JournalismSkillshare - Let's talk about R in Data Journalism
Skillshare - Let's talk about R in Data Journalism
School of Data1.5K vues
Skillshare - Introduction to Data Scraping par School of Data
Skillshare - Introduction to Data ScrapingSkillshare - Introduction to Data Scraping
Skillshare - Introduction to Data Scraping
School of Data2.3K vues
From data to diagrams: an introduction to basic graphs and charts par School of Data
From data to diagrams: an introduction to basic graphs and chartsFrom data to diagrams: an introduction to basic graphs and charts
From data to diagrams: an introduction to basic graphs and charts
School of Data1.2K vues
Introduction to Data Journalism par School of Data
Introduction to Data JournalismIntroduction to Data Journalism
Introduction to Data Journalism
School of Data1.1K vues
Skillshare getting feedback from training events par School of Data
Skillshare  getting feedback from training events Skillshare  getting feedback from training events
Skillshare getting feedback from training events
School of Data2.2K vues
Activism through the lens [english].pptx par School of Data
Activism through the lens [english].pptxActivism through the lens [english].pptx
Activism through the lens [english].pptx
School of Data732 vues
Gamification skillshare by Yuandra Ismiraldi par School of Data
Gamification skillshare by Yuandra IsmiraldiGamification skillshare by Yuandra Ismiraldi
Gamification skillshare by Yuandra Ismiraldi
School of Data668 vues
Facilitation skill share by Happy Feraren par School of Data
Facilitation skill share by Happy FerarenFacilitation skill share by Happy Feraren
Facilitation skill share by Happy Feraren
School of Data583 vues
Mapping Skillshare with School of Data par School of Data
Mapping Skillshare with School of DataMapping Skillshare with School of Data
Mapping Skillshare with School of Data
School of Data7.7K vues
Data Visualization & Design with School of Data par School of Data
Data Visualization & Design with School of DataData Visualization & Design with School of Data
Data Visualization & Design with School of Data
School of Data9.9K vues
Network mapping with School of Data par School of Data
Network mapping with School of DataNetwork mapping with School of Data
Network mapping with School of Data
School of Data2.9K vues

Dernier

Vikas 500 BIG DATA TECHNOLOGIES LAB.pdf par
Vikas 500 BIG DATA TECHNOLOGIES LAB.pdfVikas 500 BIG DATA TECHNOLOGIES LAB.pdf
Vikas 500 BIG DATA TECHNOLOGIES LAB.pdfvikas12611618
8 vues30 diapositives
How Leaders See Data? (Level 1) par
How Leaders See Data? (Level 1)How Leaders See Data? (Level 1)
How Leaders See Data? (Level 1)Narendra Narendra
13 vues76 diapositives
Cross-network in Google Analytics 4.pdf par
Cross-network in Google Analytics 4.pdfCross-network in Google Analytics 4.pdf
Cross-network in Google Analytics 4.pdfGA4 Tutorials
6 vues7 diapositives
SUPER STORE SQL PROJECT.pptx par
SUPER STORE SQL PROJECT.pptxSUPER STORE SQL PROJECT.pptx
SUPER STORE SQL PROJECT.pptxkhan888620
12 vues16 diapositives
ColonyOS par
ColonyOSColonyOS
ColonyOSJohanKristiansson6
9 vues17 diapositives
UNEP FI CRS Climate Risk Results.pptx par
UNEP FI CRS Climate Risk Results.pptxUNEP FI CRS Climate Risk Results.pptx
UNEP FI CRS Climate Risk Results.pptxpekka28
11 vues51 diapositives

Dernier(20)

Vikas 500 BIG DATA TECHNOLOGIES LAB.pdf par vikas12611618
Vikas 500 BIG DATA TECHNOLOGIES LAB.pdfVikas 500 BIG DATA TECHNOLOGIES LAB.pdf
Vikas 500 BIG DATA TECHNOLOGIES LAB.pdf
vikas126116188 vues
Cross-network in Google Analytics 4.pdf par GA4 Tutorials
Cross-network in Google Analytics 4.pdfCross-network in Google Analytics 4.pdf
Cross-network in Google Analytics 4.pdf
GA4 Tutorials6 vues
SUPER STORE SQL PROJECT.pptx par khan888620
SUPER STORE SQL PROJECT.pptxSUPER STORE SQL PROJECT.pptx
SUPER STORE SQL PROJECT.pptx
khan88862012 vues
UNEP FI CRS Climate Risk Results.pptx par pekka28
UNEP FI CRS Climate Risk Results.pptxUNEP FI CRS Climate Risk Results.pptx
UNEP FI CRS Climate Risk Results.pptx
pekka2811 vues
[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation par DataScienceConferenc1
[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation
[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation
Ukraine Infographic_22NOV2023_v2.pdf par AnastosiyaGurin
Ukraine Infographic_22NOV2023_v2.pdfUkraine Infographic_22NOV2023_v2.pdf
Ukraine Infographic_22NOV2023_v2.pdf
AnastosiyaGurin1.3K vues
Organic Shopping in Google Analytics 4.pdf par GA4 Tutorials
Organic Shopping in Google Analytics 4.pdfOrganic Shopping in Google Analytics 4.pdf
Organic Shopping in Google Analytics 4.pdf
GA4 Tutorials11 vues
Advanced_Recommendation_Systems_Presentation.pptx par neeharikasingh29
Advanced_Recommendation_Systems_Presentation.pptxAdvanced_Recommendation_Systems_Presentation.pptx
Advanced_Recommendation_Systems_Presentation.pptx
[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M... par DataScienceConferenc1
[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...
[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...
[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptx par DataScienceConferenc1
[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptx[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptx
[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptx
CRIJ4385_Death Penalty_F23.pptx par yvettemm100
CRIJ4385_Death Penalty_F23.pptxCRIJ4385_Death Penalty_F23.pptx
CRIJ4385_Death Penalty_F23.pptx
yvettemm1006 vues
Chapter 3b- Process Communication (1) (1)(1) (1).pptx par ayeshabaig2004
Chapter 3b- Process Communication (1) (1)(1) (1).pptxChapter 3b- Process Communication (1) (1)(1) (1).pptx
Chapter 3b- Process Communication (1) (1)(1) (1).pptx

Skillshare - Understanding extractives data

  • 1. Things to understand before diving into Extractives Data PRESENTED BY Julio Lopez @jalp_ec
  • 2. Contents 1. Target Audience 2. Demystifying the extractives industry 3. Why do people even care about it? 4. So, what data are we really talking about? 5. Ok, but where can I find it? 6. Do people really use this?
  • 4. Target Audience ● Data Journalists ● NGOs ● Students ● Researchers (civil society, think tanks) ● School of Data Fellows
  • 6. Extractives industries “Industries that extract natural resources (NNRR), such as oil, natural gas, diamonds, coal, and other minerals from the ground” NNRR are also relevant in the energy sector: primary sources that are transformed into useful energy (crude oil to diesel to electricity / natural gas to electricity)
  • 7. Amplified Production chain Requirements + Production chain + Benefits
  • 8. Why do people even care about it? 2
  • 9. Why is this important? ● Economic factors: Source of revenues in many countries (including high-income and low-income) ● The environmental and social impacts: Sustainable management of natural resources. ● Transparency and access to information could improve the quality of governance
  • 10. Why is this important? ● Highly specialized industry = enhance public understanding of this topics. ● Opening Extractives Data could foster more innovative education and capacity building programs. ● There is a big potential for countries to go from macro statistics to real time local data using open data: project level data.
  • 11. So, what data are we really talking about? 3
  • 12. Extractives data ecosystem ▪ Micro data: Project level data ▪ Macro data: Country level Source: NRGI
  • 13. Country level (Macro data) ●Collected at the country level (aggregated variables) ●Originated at government agencies and international databases ●Most common data includes: production of the resource (oil, natural gas, copper, etc.), exports and imports, revenues and prices. ●It is Primary data (sources)
  • 14. Project level (Micro data) ●Information on projects, blocks, fields, and concessions (usually geocoded) ●Companies also publish data on projects ●Governments disseminate maps, contracts, and lists of blocks/fields/concessions ●Contracts are also published (sometimes they do not match with the projects) ●Normally it is not primary data (lack of official databases)
  • 15. Ok, but where can I find it? 4
  • 16. Country wide ● Government agencies dedicated to oil, gas and mining industries ● Central Banks ● International trade offices ● Environmental agencies
  • 17. International Agencies ● World Bank Development Indicator ● Inter-American Development Bank ● International Monetary Found (IMF) ● IEA (International Energy Agency) Statistics Energy Atlas ● Joint Organisations Data Initiative (IEA, OLADE, APEC, IEF) – hydrocarbons and natural gas
  • 18. International Civil Society ● Publish What You Pay (PWYP) ● Extractives Industries Transparency Iniciative (EITI) ● Natural Resource Governance Institute (NRGI) ● Open Oil ● Open Contracts ● Open Corporations ● Global Subsidies Initiative - International Institute for Sustainable Development’
  • 20. Uses ● NGOs, think tanks, consultancy firms and companies and journalists ● Data visualization as a tool to advocate ● Mapping ● Contracts – Texts
  • 21. Maps – Mining in Africa http://www.a-mla.org/index.php
  • 25. Resources & Readings 1. http://gijn.org/2014/03/05/covering-the-extractives-industry-big-data-new- tools-and-journalism/ 2. http://www.resourcegovernance.org/news/blog/extractive-industries-data- ecosystem-database-available-data-tools-natural-resource-govern 3. http://www.evidenceondemand.info/-maximising-the-benefits-of-data-and- extractives-industries-for-the-poor-understanding-data-demand 4. http://opendatacon.org/reversing-the-resource-curse-with-open-data/ 5. https://openoil.net/exploring-oil-data/