SlideShare une entreprise Scribd logo
1  sur  82
Higher Unit 2
www.mathsrevision.com

Higher

Outcome 3

Trigonometry identities of the form sin(A+B)
Double Angle formulae
Trigonometric Equations
Radians & Trig Basics
More Trigonometric Equations
Exam Type Questions
www.mathsrevision.com
Trig Identities
Outcome 3

www.mathsrevision.com

Higher

Supplied on
a formula
sheet !!

The following relationships are always true for
two angles A and B.
1a.
1b.

sin(A + B) = sinAcosB + cosAsinB
sin(A - B) = sinAcosB - cosAsinB

2a.

cos(A + B) = cosAcosB – sinAsinB

2b.

cos(A - B) = cosAcosB + sinAsinB

Quite tricky to prove but some of following
examples should show that they do work!!
Trig Identities
Higher

Examples 1

Outcome 3

www.mathsrevision.com

(1) Expand cos(U – V).

(use formula 2b )

cos(U – V) = cosUcosV + sinUsinV
(2) Simplify

sinf°cosg° - cosf°sing°

(use formula 1b )

sinf°cosg° - cosf°sing° = sin(f – g)°
(3) Simplify cos8 θ sinθ + sin8 θ cos θ (use formula 1a )
cos8 θ sin θ + sin8 θ cos θ = sin(8 θ + θ) = sin9 θ
Trig Identities
Higher

Example 2

Outcome 3

www.mathsrevision.com

By taking A = 60° and B = 30°,
prove the identity for cos(A – B).
NB:

cos(A – B) = cosAcosB + sinAsinB

LHS = cos(60 – 30 )° = cos30° =

√3

/2

RHS = cos60°cos30° + sin60°sin30°
=(½

X

√3

=
Hence LHS = RHS !!

√3

/4 +

=

√3

/2

/2 ) + (√3/2 X ½)
√3

/4
Trig Identities
Higher

Example 3

Outcome 3

www.mathsrevision.com

Prove that sin15° = ¼(√6 - √2)
sin15° = sin(45 – 30)°

= sin45°cos30° - cos45°sin30°
= (1/√2
=

X

√3

/2 ) - (1/√2 X ½)

(√3/2√2 -

1

=

(√3 - 1)
2√2

=

(√6 - √2)
4

= ¼(√6 - √2)

/2√2)
X

√2
√2
Trig Identities
www.mathsrevision.com

Higher

Example 4

NAB type
Question

Outcome 3

y
β

41

x

α

40

Show that

3

4

cos(α - β) =

187

/205

Triangle2

Triangle1
If missing side = x

If missing side = y

Then x2 = 412 – 402 = 81

Then y2 = 42 + 32 = 25

So

So

x=9

y=5

sinα = 9/41 and cosα = 40/41 sin β = 3/5 and cosβ = 4/5
Higher

Trig Identities
Outcome 3

www.mathsrevision.com

sinα = 9/41 and cosα = 40/41 sin β = 3/5 and cosβ = 4/5
cos(α - β) = cosαcosβ + sinαsinβ

= (40/41

X

/5) + (9/41

4

=

160

/205 +

=

187

X

/5 )

3

/205

/205

27

Remember this is a NAB type Question
Trig Identities
Higher

Example 5

Solve

Outcome 3

sinx°cos30° + cosx°sin30° = -0.966

ALWAYS
work out
By
Quad 1 rule 1a
first
sin(x

www.mathsrevision.com

NAB type
Question

where 0o < x < 360o
sinx°cos30° + cosx°sin30° = sin(x + 30)°

S
180-xo

+ 30)° = -0.966

Quad 3 and Quad 4
sin-1 0.966 = 75°
Quad 3: angle = 180o + 75o
x + 30o = 255o
x = 225o

A
xo

180+x
T

360-xo
C

o

Quad 4: angle = 360o – 75o
x + 30o = 285o
x = 255o
Trig Identities
Higher

Solve

www.mathsrevision.com

Outcome 3

Example 6

sin5 θ cos3 θ - cos5 θ sin3 θ = √3/2

By rule 1b.

where 0 < θ < π

sin5θ cos3θ - cos5θ sin3θ =sin(5θ - 3θ) = sin2θ

sin2θ = √3/2
Repeats every π

Quad 1 and Quad 2
sin-1 √3/2 = π/3

S
π-θ

A
θ

π+θ 2π-θ
T
C

Quad 1: angle = π/3 Quad 2: angle = π - π/3 In this example
repeats lie out
2 θ = π/ 3
2 θ = 2π/3
θ = π /6

θ = π/ 3

with limits
Trig Identities
Higher

Example 7

Outcome 3

www.mathsrevision.com

Find the value of x that minimises the expression
cosx°cos32° + sinx°sin32°
Using rule 2(b) we get
cosx°cos32° + sinx°sin32° = cos(x – 32)°
cos graph is roller-coaster

min value is -1 when angle = 180°
ie

x – 32o = 180o
ie

x = 212o
Paper 1 type
questions

Trig Identities
www.mathsrevision.com

Higher

Example 8

Outcome 3

Simplify

sin(θ - π/3) + cos(θ + π/6) + cos(π/2 - θ)

sin(θ - π/3) + cos(θ + π/6) + cos(π/2 - θ)
=

sin θ cosπ/3 – cos θ sinπ/3
+ cos θ cosπ/6 – sin θ sinπ/6
+ cosπ/2 cos θ + sinπ/2 sin θ

= 1/2 sin θ – √3/2cos θ + √3/2 cos θ – 1/2sin θ + 0 x cos θ + 1 X sin θ

=

sin θ
Paper 1 type
questions

Trig Identities
Higher

Example 9

Outcome 3

www.mathsrevision.com

Prove that
(sinA + cosB)2 + (cosA - sinB)2 = 2(1 + sin(A - B))
LHS = (sinA + cosB)2 + (cosA - sinB)2
= sin2A + 2sinAcosB + cos2B + cos2A – 2cosAsinB + sin2B
= (sin2A + cos2A) + (sin2B + cos2B) + 2sinAcosB - 2cosAsinB
= 1 + 1 + 2(sinAcosB - cosAsinB)
= 2 + 2sin(A – B)
= 2(1 + sin(A – B)) = RHS
Double Angle Formulae
Outcome 3

www.mathsrevision.com

Higher

sin 2 A = 2sin A cos A
cos 2 A = cos 2 A − sin 2 A
= 2cos 2 A − 1
2
= 1 − 2sin A
Two further formulae derived from the cos 2 A formulae.

cos A = 1 (1 + cos 2 A)
2
2

sin A = 1 (1 − cos 2 A)
2
2
Double Angle formulae

www.mathsrevision.com

Higher

Mixed Examples:

Outcome 3

4
Given that A is an acute angle and tan A = , calculate sin 2 A and cos 2 A.
3
sin A 4
=
cos A 3

2

sin 2 A + ( 3 sin A) 2 = 1
4
sin A = ±

Similarly:
sin 2 A = 2sin A cos A =

Substitute form the
tan (sin/cos) equation

sin A + cos A = 1
2

cos A =

16
=
25

3
5

9 − 16
=
25

+ve because A is acute
3-4-5 triangle !

24
25

cos 2 A = cos 2 A − sin 2 A =

4
5

−7
25

A is greater than 45
degrees – hence 2A is
greater than 90 degrees.
Double Angle formulae
Outcome 3

Higher

www.mathsrevision.com

Find the exact value of sin 75o.

2

sin(75o ) = sin(45 + 30)

o

sin(75 ) = sin 45cos30 + cos 45sin 30

45
1

o

1 3 1 1
1+ 3
=
+
=
2 2
22
2 2

Prove that

1

2 30

o

1

sin(α + β )
= tan α + tan β
cos α cos β

sin(α + β )
sin α cos β + cos α sin β
=
cosα cos β
cosα cos β

=

sin α sin β
+
cosα cos β

= tan α + tan β

3
Double Angle formulae
Outcome 3

Higher

www.mathsrevision.com

For the diagram opposite show that cos LMN =

5
.
5

cos LMN = cos(α + β )
Length of LM =
Length of MN =

M

18 = 3 2
10

3 2

cos(α + β ) = cosα cos β − sin α sin β
=
=
=

1 3
1 1
−
2 10
2 10
2
2
=
=
20
4 5
5
5

1
5

α

3
L

3

β

10

1 N
Double Angle formulae
Outcome 3

Higher

www.mathsrevision.com

Prove that,

cos 4 α − sin 4 α = cos 2α .

cos 4 α − sin 4 α = (cos 2 α ) 2 − (sin 2 α ) 2

Using x 2 − y 2 = ( x − y )( x + y )

= (cos 2 α − sin 2 α )(cos 2 α + sin 2 α )

cos 2 α + sin 2 α = 1

= cos 2 α − sin 2 α

cos 2α = cos 2 α − sin 2 α

= cos 2α
Trigonometric Equations

www.mathsrevision.com

Higher

Outcome 3

Double angle formulae (like cos2A or sin2A) often occur in
trig equations. We can solve these equations by substituting
the expressions derived in the previous sections.

Rules for solving equations
sin2A = 2sinAcosA when replacing sin2Aequation
cos2A = 2cos2A – 1 if cosA is also in the equation
cos2A = 1 – 2sin2A if sinA is also in the equation
Trigonometric Equations
Outcome 3

Higher

cos 2 x o − 4sin x o + 5 = 0 for 0 ≤ x ≤ 360o.

www.mathsrevision.com

Solve:

cos2x and sin x,

(1 − 2sin x) − 4sin x + 5 = 0
2

6 − 4sin x − 2sin x = 0
2

so substitute 1-2sin2x
compare with 6 − 4 z − 2 z 2 = 0

(6 + 2sin x)(1 − sin x) = 0

sin x = 1 or sin x = −3

x = 90

o

0 ≤ sin x ≤ 1 for all real angles
Trigonometric Equations
Outcome 3

Higher

www.mathsrevision.com

Solve:

5cos 2 x o = cos x o − 2

for 0 ≤ x ≤ 360o

cos 2x and cos x,

5(2cos 2 x − 1) = cos x − 2

so substitute 2cos2 -1
π
2

10cos 2 x − cos x − 3 = 0
(5cos x − 3)(2cos x + 1) = 0
3
1
cos x =
or cos x = −
5
2

π

x = 90 + 30 = 120

x = 51.3o and
x = 360 − 51.3 = 308.7

90o

o

o

x = 270 − 30 = 240o

180

o

and

S

A

T

C

270o
3π
2

0o
Trigonometric Equations

www.mathsrevision.com

Higher

Outcome 3
Trigonometric Equations
Outcome 3

Higher

www.mathsrevision.com

The diagram shows the graphs of

f ( x ) = a sin bx o

and g ( x ) = c sin x o

for 0 ≤ x ≤ 360o.
4

y

y

y = f ( x)

2

360

0
-2

o

x
x

y = g ( x)

-4

Three problems concerning this graph follow.
Trigonometric Equations
Outcome 3

Higher

www.mathsrevision.com

i)

State the values of a, b and c.

y

y

y = f ( x)

f ( x) = a sin bx o g ( x) = c sin x o
The max & min values of sinbx
are 1 and -1 resp.
The max & min values of
asinbx are 3 and -3 resp.

360o

y = g ( x)

a=3

f(x) goes through 2 complete cycles from 0 – 360o b =

2

g ( x) = c sin x o
The max & min values of csinx are 2 and -2 resp.

c=2

x
x
Trigonometric Equations
Outcome 3

Higher

f ( x ) = g ( x) algebraically.

www.mathsrevision.com

ii) Solve the equation

From the previous problem we now have:

f ( x) = 3sin 2 x

g ( x) = 2sin x

and

Hence, the equation to solve is:

3(2sin x cos x) = 2sin x

Expand sin 2x

6sin x cos x − 2sin x = 0

3sin x cos x − sin x = 0

sin x(3cos x − 1) = 0
sin x = 0 or

1
cos x =
3

3sin 2 x = 2sin x
Divide both sides by 2

Spot the common factor in the terms?

Is satisfied by all values of x for which:
Trigonometric Equations
Outcome 3

Higher

www.mathsrevision.com

iii) find the coordinates of the points of intersection
of the graphs for 0 ≤ x ≤ 360o.

From the previous problem we have:

sin x = 0 and

sin x = 0
Hence

x

= 0o

x

= 180o

x

= 360o

1
cos x =
3

1
cos x =
3
x = 70.5o
x = (360 − 70.5)o

= 289.5o
Radian Measurements
Outcome 3

www.mathsrevision.com

Higher

Reminders

i) Radians

π radians = 180

Converting between degrees and radians:
120o = 120.

π
18 0

5π 5π 180
=
.
6
6 π

2π
=
radians
3

= 150o

o
Degree Measurements
Outcome 3

Higher

Equilateral triangle:

www.mathsrevision.com

ii) Exact Values
45o right-angled
triangle:
1

2

60o
1

2
45o
1

cos 45o = sin 45o =

tan 45 = 1
o

30o

2

3
1

1
2

sin 60o =
1
2

3
2

sin 30o =

cos 60o =

1
2

cos30o =

3
2

tan 30o =

1
3

tan 60o =

3
Radians / Degrees
Outcome 3

www.mathsrevision.com

Higher

degrees

0o

30o

45o

radians

0

π

π

π

π

0

cos

1

4
1
2
1
2

3
3
2
1
2

2

sin

0

tan

0

6
1
2
3
2
1
3

1

3

∞

Example:

60o

90o
1

What is the exact value of sin 240o ?

240 = 180 + 60

sin(180 + α ) = − sin α

sin 240o = −

3
2
Sine Graph
www.mathsrevision.com

Higher

Outcome 3

Period = 360o

Amplitude = 1
Cosine Graph
Outcome 3

www.mathsrevision.com

Higher

Period = 360o

Amplitude = 1
Tan Graph
www.mathsrevision.com

Higher

Outcome 3

Period = 180o

Amplitude cannot be found for tan function
Solving Trigonometric Equations
Outcome 3

www.mathsrevision.com

Higher

Solve 2cos3 x − 1 = 0
(0 ≤ x ≤ 360o )
Example:
Step 2: consider what solutions
Step 1: Re-Arrange

are expected
π
2

2cos3 x − 1 = 0

2cos3 x = 1
1
cos3 x =
2

90o

π

180

o

S

A

T

C

270o
3π
2

0o
Solving Trigonometric Equations
Outcome 3

www.mathsrevision.com

Higher

cos 3x is positive so solutions
1
in the first and fourth quadrants
cos3 x =

2

0 ≤ x ≤ 360o

Since
x3
Then

has 2 solutions
x3

0 ≤ 3 x ≤ 1080o

has 6 solutions
Solving Trigonometric Equations
Outcome 3

Higher

www.mathsrevision.com

Step 3: Solve the equation

1
cos3 x =
2

1
3 x = cos  ÷ = 60o
2
−1

1st quad 4th quad

3x = 60o

300o

x = 20o

100o

cos wave repeats every 360o
420o 660o 780o 1020o
140o 220o 260o

340o
Solving Trigonometric Equations
Higher

Outcome 3

www.mathsrevision.com

Graphical solution for

1
cos3 x =
2
Solving Trigonometric Equations
Outcome 3

Higher

www.mathsrevision.com

Example:

Solve 1 + 2 sin 6t = 0

Step 1: Re-Arrange

(0 ≤ t ≤ 180o )

Step 2: consider what solutions
are expected

−1
sin 6t =
2

π
2

90o

sin 6t is negative so solutions in
the third and fourth quadrants
Since

0 ≤ t ≤ 180o

x6

x6
Then

has 2 solutions

0 ≤ 6t ≤ 1080o

has 12 solutions

π

180

o

S

A

T

C

270o
3π
2

0o
Solving Trigonometric Equations
Outcome 3

Higher

www.mathsrevision.com

Step 3: Solve the equation

−1
sin 6t =
2

 −1 
6t = sin −1 
÷
2


3rd quad 4th quad

6t = 225o
x = 39.1o

315o

 1 
o
st
sin −1 
÷ = 45 always 1 Quad first
 2

sin wave repeats every 360o
585o 675o 945o 1035o

52.5o 97.5o 112.5o 157.5o 172.5o
Solving Trigonometric Equations

www.mathsrevision.com

Higher

Outcome 3

−1
Graphical solution for sin 6t =
2
The solution is to be in radians – but
work in Trigonometric at the
Solvingdegrees and convertEquations
end.
Outcome 3

Higher

www.mathsrevision.com

Example:

π
Solve 2sin(2 x − ) = 1
3

(0 ≤ x ≤ 2π )

Step 2: consider what
solutions are expected

Step 1: Re-Arrange

1
sin(2 x − 60 ) =
2

π
2

o

90o

(2x – 60o ) = sin-1(1/2)
Since

0 ≤ x ≤ 360

has 2 solutions

o

x2
Then

π
x2

0 ≤ 2 x ≤ 720

o

has 4 solutions

180

o

S

A

T

C

270o
3π
2

0o
Solving Trigonometric Equations
Outcome 3

Higher

www.mathsrevision.com

Step 3: Solve the equation
sin(2 x − 60o ) =

1
2

1
2 x − 60o = sin −1  ÷
2

1
sin −1  ÷ = 30o
2

(1st quadrant)

2 x − 60o = 30o and 150o

1st quad 2nd quad

2x = 90o

x = 45o
π
4

210o

sin wave repeats every 360o
450o 570o

105o 225o
7π
5π
12
4

285o
19π
12
Solving Trigonometric Equations

www.mathsrevision.com

Higher

Outcome 3

Graphical solution for

1
sin(2 x − 60 ) =
2
o
The solution is to be in radians – but
work in degrees and convert at the end.

Solving Trigonometric Equations
Outcome 3

Higher

www.mathsrevision.com

Harder Example: Solve

tan 2 x = 3

(0 ≤ x ≤ 2π )
Step 2: consider what
solutions are expected

Step 1: Re-Arrange

π
2

tan x = ± 3

90o
tan x = + 3

tan x = − 3

2 solutions
1 and 3
st

rd

quads

2 solutions
2

nd

and 4

th

quads

π

180

o

S

A

T

C

270o
3π
2

0o
Solving Trigonometric Equations
Outcome 3

Higher

www.mathsrevision.com

Step 3: Solve the equation

tan x = + 3 tan x = − 3

π
3

π
3

(60o in the 1st quadrant)

120o

tan wave repeats every 180o
240o 300o

2π
3

4π
3

1st quad 2nd quad

x = 60o

tan −1 3 =

5π
3
Solving Trigonometric Equations

www.mathsrevision.com

Higher

Outcome 3

Graphical solution for

tan x = 3
2
Solving Trigonometric Equations
Outcome 3

Higher

www.mathsrevision.com

Harder Example: Solve

3sin 2 x − 4sin x + 1 = 0 (0 ≤ x ≤ 360o )

Step 1: Re-Arrange

Step 2: Consider what solutions

(3sin x − 1)(sin x − 1) = 0
1
sin x =
3

are expected

π
2

90o

sin x = 1

π
Two solutions

One solution

180

o

S

A

T

C

270o
3π
2

0o
Solving Trigonometric Equations
Outcome 3

Higher

www.mathsrevision.com

Step 3: Solve the equation
sin x =

1
3

sin x = 1

Two solutions
1stquad

2nd quad

x = 19.5o 160.5o
Overall solution

One solution
90o

x = 19.5o , 90o and 160.5o
Solving Trigonometric Equations
Higher

Outcome 3

www.mathsrevision.com

Graphical solution for

3sin 2 x − 4sin x + 1 = 0
The solution is to be in radians – but
work in degrees and convert at the end.

Solving Trigonometric Equations
Outcome 3

Higher

www.mathsrevision.com

Harder Example: Solve

5sin 2 x − 2 = 2cos x

Step 1: Re-Arrange

Step 2: Consider what solutions

5(1 − cos x) − 2 = 2cos x
2

are expected

π
2

Remember o
this !
90
2
2

3 − 2cos x − 5cos 2 x = 0
(3 − 5cos x)(1 + cos x) = 0

3
cos x =
5

(0 ≤ x ≤ 2π )

cos x = −1

sin α + cos α = 1
cos 2 α = 1 − sin 2 α
A2
o 2 S
180 α = 1 − cos α
sin

π

C

T

270o
Two solutions

One solution

3π
2

0o
Solving Trigonometric Equations
Outcome 3

Higher

www.mathsrevision.com

Step 3: Solve the equation
cos x =

3
5

Two solutions
1stquad

3rd quad

x = 53.1o 306.9o
Overall solution in radians

cos x = −1
One solution
180o

x = 0.93 , π and 5.35
Solving Trigonometric Equations
Higher

Outcome 3

www.mathsrevision.com

Graphical solution for

5 sin 2 x − 2 = 2cos x
www.maths4scotland.co.uk

Higher Maths
Strategies

Compound Angles

Click to start
Maths4Scotland

Higher

The following questions are on

Compound Angles
Non-calculator questions will be indicated
You will need a pencil, paper, ruler and rubber.

Click to continue
Maths4Scotland

Higher

This presentation is split into two parts
Using Compound angle formula for
Exact values
Solving equations

Choose by clicking on the appropriate button

Quit

Quit
Maths4Scotland

Higher

A is the point (8, 4). The line OA is inclined at an angle p radians to the
x-axis
a) Find the exact values of:
i) sin (2p)
ii) cos (2p)
The line OB is inclined at an angle 2p radians to the x-axis.
b) Write down the exact value of the gradient of OB.
Draw triangle

80

Pythagoras

4

p
8

8
sin p =
80
4
8
⇒ 2×
×
⇒
80
80

cos p =

Write down values for cos p and sin p
Expand sin (2p)

sin 2 p = 2sin p cos p

Expand cos (2p)

cos 2 p = cos p − sin p ⇒

Use m = tan (2p)

tan 2 p =

Previous

2

2

sin 2 p
cos 2 p
Quit

⇒

( ) ( )
8
80

2

−

4
80

2

⇒

4
80
64
4
⇒
80
5
64 − 16
3
⇒
80
5

4 3
4
÷
⇒
5 5
3
Quit

Hint
Next
Maths4Scotland

Higher

In triangle ABC show that the exact value of

sin(a + b) is
Use Pythagoras

sin a =

sin a, cos a, sin b, cos b

Substitute values
Simplify

Previous

10

2

AC = 2 CB = 10

Write down values for

Expand sin (a + b)

2
5

1
2

cos a =

1
2

sin b =

1
10

cos b =

3
10

sin( a + b) = sin a cos b + cos a sin b

sin( a + b) =

sin(a + b) =

3
20

+

1
20

Quit

1
2

×

→

3
10

+

4
20

Quit

1
2
→

×

1
10
4
4
→
→
4×5
2 5

2
5

Hint
Next
Maths4Scotland

Higher

Using triangle PQR, as shown, find the
11

exact value of cos 2x
Use Pythagoras

PR = 11

Write down values for

cos x and sin x

2
cos x =
11

7
sin x =
11

Expand cos 2x

cos 2 x = cos 2 x − sin 2 x

Substitute values

( ) −( )

Simplify

Previous

2
11

cos 2x =

4
7
cos 2 x =
−
11
11
Quit

2

7
11

→ −

2

3
11

Quit

Hint
Next
Maths4Scotland

Higher

On the co-ordinate diagram shown, A is the point (6, 8) and

10

B is the point (12, -5). Angle AOC = p and angle COB = q
Mark up triangles
Find the exact value of sin (p + q).
OA = 10 OB = 13
Use Pythagoras
Write down values for

sin p =

sin p, cos p, sin q, cos q
Expand sin (p + q)
Substitute values
Simplify

Previous

8
,
10

cos p =

6
,
10

sin q =

8
6
12

5

13
5
,
13

cos q =

12
13

sin ( p + q ) = sin p cos q + cos p sin q
sin ( p + q) =

sin ( p + q) =

96
130

+

30
130

Quit

8 12
×
10 13

→

+

6
5
×
10 13

126
130

Quit

→

63
65

Hint
Next
Maths4Scotland

Higher

A and B are acute angles such that tan A =

3
4

Draw triangles

Use Pythagoras

Write down sin A, cos A, sin B, cos B

sin A =

sin 2 A = 2sin A cos A

Expand cos 2A

cos 2 A = cos A − sin A
2

Expand sin (2A + B)

13

3

A

5

B
4

12

Hypotenuses are 5 and 13 respectively

Expand sin 2A

Previous

5

Find the exact value of
cos 2A b)
sin(2 A + B)
c)

sin 2A a)

Substitute

5

and tan B = 12 .

2

3
,
5

cos A =

4
,
5

sin B =
3
5

sin 2 A = 2 × ×
cos 2A =

2

4
5

5
,
13

⇒
2

4
 3
 ÷ − ÷
5
5

⇒

cos B =

12
13

24
25
16
9
−
25 25

⇒

7
25

sin ( 2 A + B ) = sin 2 A cos B + cos 2 A sin B

sin ( 2 A + B ) =

24 12
7
5
323
×
+
×
=
25 13
25 13 325
Quit

Quit

Hint
Next
Maths4Scotland

Higher

tan x°
If x° is an acute angle such that =

4
3

5

4 3 +3
sin( x + 30)° is
show that the exact value of
10

4

x
3

Draw triangle

Use Pythagoras

Write down sin x and cos x
Expand sin (x + 30)

sin x =

Hypotenuse is 5
4
,
5

cos x =

3
5

sin( x + 30) = sin x cos 30 + cos x sin 30

Substitute

sin( x + 30) =

4
3
3 1
×
+ ×
5 2
5 2

Simplify

sin( x + 30) =

4 3
3
+
10
10

⇒

4 3 +3
10
Hint

Previous
Table of exact values

Quit

Quit

Next
Maths4Scotland

Higher

The diagram shows two right angled triangles
24

ABD and BCD with AB = 7 cm, BC = 4 cm and CD = 3 cm.
Angle DBC = x° and angleyABD is 20 − 6 6
cos( x + )° is y°.
35
Show that the exact value of
BD = 5, AD = 24
Use Pythagoras
Write down
sin x, cos x, sin y, cos y.
Expand cos (x + y)

sin x =

3
,
5

cos x =

4
,
5

sin y =

5

24
,
7

cos y =

5
7

cos( x + y ) = cos x cos y − sin x sin y

Substitute

cos( x + y ) =

4 5
3
24
× − ×
5 7
5
7

Simplify

cos( x + y ) =

20 − 3 4 × 6
20 − 6 6
20 3 24
⇒
⇒
−
35
35
35
35

Previous

Quit

Quit

Hint
Next
Maths4Scotland

Higher

The framework of a child’s swing has dimensions
as shown in the diagram. Find the exact value of sin x°
Draw triangle

Use Pythagoras

Draw in perpendicular

h= 5
3

Use fact that sin x = sin ( ½ x + ½ x)

sin

Write down sin ½ x and cos ½ x

sin

Expand sin ( ½ x + ½ x)
Substitute
Simplify

sin

(

x x
+
2 2

sin x =

)=

(

x
x
2 h5

x x
+
2 2
2
3

( ) = , cos ( ) =
) = sin cos + sin

2× ×

x
2

2
3

x
2

x
2

x
2

5
3
x
x
cos =
2
2

3

2
4
x
2

2sin cos

x
2

5
3

4 5
9

Previous
Table of exact values

Hint
Quit

Quit

Next
Maths4Scotland

Higher

11
π
, 0<α <
3
2
sin 2α
find the exact value of

tan
Given that α =

Draw triangle

11

a

Use Pythagoras

Write down values for

cos a and sin a

20

hypotenuse

3
cos a =
20

= 20

3

11
sin a =
20

Expand sin 2a

sin 2a = 2 sin a cos a

Substitute values

sin 2a = 2 ×

Simplify

Previous

11
3
×
20
20

6 11
sin 2a =
20
Quit

⇒

Quit

3 11
10

Hint
Next
Maths4Scotland

Higher

Find algebraically the exact value of

sin θ ° + sin ( θ + 120 ) ° + cos(θ + 150)°

Expand sin (θ +120)

sin ( θ + 120 ) = sin θ cos120 + cos θ sin120

Expand cos (θ +150)

cos ( θ + 150 ) = cos θ cos150 − sin θ sin150

Use table of exact values

cos 120 = − cos 60 = −
sin 120 =

Combine and substitute
Simplify

sin 60 =

sin θ + sin θ .

1
2

sin θ − sin θ +

3
2

1
2
3
2

cos 150 = − cos 30 = −
sin 150 =

sin 30 =

3
2
1
2

( ) + cosθ .( ) + cos θ .( ) − sin θ . ( )

cos θ −

−

1
2

3
2

3
2

−

3
2

1
2

1
2

cos θ − sin θ

=0
Previous
Table of exact values

Quit

Quit

Hint
Next
Maths4Scotland
If cos θ =

Higher

4
π
, 0 ≤θ ≤
5
2

sin 2θ a)

find the exact value of

sin 4θb)

Draw triangle

cos θ =

cos θ and sin θ

Expand cos 2θ
Find sin 4θ
Previous

Opposite side = 3

4
5

sin θ =

sin 2θ = 2 sin θ cos θ

Expand sin 4θ (4θ = 2θ + 2θ)

4

3
5

3 4
24
⇒ 2× × ⇒
5 5
25

sin 4θ = 2 sin 2θ cos 2θ

cos 2θ = cos θ − sin θ
2

sin 4θ = 2 ×

3

θ

Use Pythagoras

Write down values for

Expand sin 2θ

5

24 7
×
25 25
Quit

2

⇒

16 9
7
⇒
−
⇒
25 25
25

336
625
Quit

Hint
Next
Maths4Scotland

Higher

For acute angles sin P =
P and Q

12
and
13

sin Q =

3
5

13

63
sin ( P +Q) =
65
Show that the exact value of

Draw triangles

Use Pythagoras

Write down sin P, cos P, sin Q, cos Q
Expand sin (P + Q)

5

12

P

3

Q

5

4

Adjacent sides are 5 and 4 respectively

sin P =

12
,
13

cos P =

5
,
13

sin Q =

3
,
5

cos Q =

4
5

sin ( P + Q ) = sin P cos Q + cos P sin Q

Substitute

sin ( P + Q ) =

12 4
5 3
× +
×
13 5
13 5

Simplify

sin ( P + Q ) =

48
15
+
65
65

Previous

Quit

⇒

Quit

63
65

Hint
Next
Maths4Scotland

Higher

You have completed all

Previous

Quit

12 questions in this section

Quit

Back to start
Maths4Scotland

Higher

Using Compound angle formula for

Solving Equations

Continue

Quit

Quit
Maths4Scotland

Higher

Solve the equation 3cos(2 x) + 10 cos( x) − 1 = 0 for 0 ≤ x ≤ π correct to 2 decimal places
Replace cos 2x with
Substitute
Simplify

cos 2 x = 2 cos 2 x − 1
3 ( 2 cos x − 1) + 10 cos x − 1 = 0
2

Determine quadrants
S

A

T

6 cos x + 10 cos x − 4 = 0
2

C

3cos 2 x + 5cos x − 2 = 0
Factorise
Hence

( 3cos x − 1) ( cos x + 2 ) = 0
cos x =

x = 1.23

Find acute x

Previous

acute

x = 1.23 rad

Quit

2π − 1.23

rads

x = 5.05

cos x = −2 Discard

or

x = 1.23

1
3

rads

rads

Hint
Quit

Next
Maths4Scotland

Higher

The diagram shows the graph of a cosine function from 0 to π.
a) State the equation of the graph.
b) The line with equation y = -√3 intersects this graph
at points A and B. Find the co-ordinates of B.

Equation

y = 2 cos 2 x
Determine quadrants

2 cos 2 x = − 3

Solve simultaneously

cos 2x = −

Rearrange
Check range

0≤ x ≤π

Find acute 2x
Deduce 2x

acute

2x =

2x =

S

T

x =

Table of exact values

6π π
+
rads
6
6

Quit

Quit

5π
7π
or
12
12

B

π
6

Previous

C

3
2

⇒ 0 ≤ 2 x ≤ 2π

6π π
−
or
6
6

A

(

is

B

7π
12

,− 3

)
Next

Hint
Maths4Scotland

Higher

Functions f and g are defined on suitable domains by f(x) = sin (x) and g(x) = 2x
a)
i)
1 expression
st

2nd expression
Form equation

Find expressions for:
f(g(x))

g(f(x)) Determine x

ii)

for 0 ≤ x sin360° 0 ⇒ x = 0°, 360°
≤ x=

f b)g ( xSolve f (2f(g(x))sing(f(x))
(
)) = 2 x) = = 2 x

cos x =

g ( f ( x )) = g (sin x) = 2sin x
2sin 2 x = 2sin x → sin 2 x = sin x

Replace sin 2x

2sin x cos x − sin x = 0

Common factor
Hence

or

2 cos x − 1 = 0 ⇒ cos x =

Previous
Table of exact values

Quit

acute

x = 60°

S

A

T

C

Determine

x = 0°, 60°, 300°, 360°

sin x ( 2 cos x − 1) = 0

sin x = 0

⇒

quadrants
x = 60°, 300°

2sin x cos x = sin x

Rearrange

1
2

1
2

Quit

Hint
Next
Maths4Scotland

Higher

Functions f ( x) = sin x, g ( x) = cos x
a)
b)

i)

2 expression
nd

h( x ) = x +

Find expressions for
1
1

f (h( x)) =

Show that

1st expression

and

sin x +

2

2

π
4

are defined on a suitable set of real numbers

i) f(h(x))

cos x

ii) Find a similar expression for g(h(x))
f (h( x )) − g (h( x )) = 1 for 0 ≤ x ≤ 2π
iii) Hence solve the equation
2
π
π
sin x = 1
f (h( x)) = f x + = sin x +
Simplifies to
2
4
4

( ) ( )
g (h( x)) = g ( x + ) = cos ( x + )
π
4

f

Simplify 1 expr.
st

π
4

π
(h( x)) = sin x cos
4
1
2

Rearrange: sin x =

π
+ cos x sin
4
1
2

Use exact values

f ( h( x)) =

Similarly for 2nd expr.

g (h( x )) = cos x cos − sin x sin

sin x +

g (h( x)) =

Form Eqn.

ii) g(h(x))

1
2

acute x

cos x

π
4

cos x −

1
2

Determine
π
4

sin x

f ( h( x)) − g ( h( x)) = 1

Previous
Table of exact values

Quit

Quit

acute

2
=
2

x=

2
1
=
2 2
2

π
4

S

A

T

C

quadrants
x=

π 3π
,
4 4

Hint
Next
Maths4Scotland
a)

Higher

Solve the equation sin 2x - cos x = 0 in the interval 0 ≤ x ≤ 180°
b)

The diagram shows parts of two trigonometric graphs,
y = sin 2x and y = cos x. Use your solutions in (a) to
write down the co-ordinates of the point P.

Replace sin 2x

2sin x cos x − cos x = 0

Common factor

cos x ( 2sin x − 1) = 0

Hence

cos x = 0

Determine x

or

Solutions for where graphs cross

2sin x − 1 = 0 ⇒ sin x =

1
2

cos x = 0 ⇒ x = 90°, ( 270° out of range)
sin x =

1
2

⇒

acute

x = 30°

S

A

Determine quadrants
T
Previous
Table of exact values

x =150°
y = cos150°

Find y value
Coords, P

C
Quit

By inspection (P)

y=−

x = 30°, 150°

for sin x

x = 30°, 90°, 150°

Quit

(

P 150°, −

3
2

)

3
2

Hint
Next
Maths4Scotland

Higher

Solve the 3cos(2 x) + cos( x) = − 1
equation

for 0 ≤ x ≤ 360°

cos 2 x = 2 cos 2 x − 1

Replace cos 2x with

Determine quadrants

3 ( 2 cos x − 1) + cos x = −1
2

Substitute

cos x = −

2
3

cos x =

1
2

6 cos 2 x + cos x − 2 = 0

Factorise

x = 48°

acute

x = 60°

S

Simplify

acute

A

S

A

( 3cos x + 2 ) ( 2 cos x − 1) = 0
cos x = −

Hence
Find acute x

acute

2
3

x = 48°

cos x =
acute

1
2

x = 60°

T
C
x = 132°
x = 228°

T
C
x = 60°
x = 300°

Solutions are: x= 60°, 132°, 228° and 300°
Previous
Table of exact values

Quit

Quit

Hint
Next
Maths4Scotland

Higher

(

π
6

)

2sin x −
Solve the2equation= 1
sin

Rearrange

)

(

)

(

π
=
6

Determine quadrants

T

2x −

)

π
6

=

and for range

(

0 ≤ x ≤ 2π ⇒ 0 ≤ 2 x ≤ 4π
S

0 ≤ 2 x ≤ 2π

for range

1
=
2

π
acute 2 x −
6

Find acute x
Note range

(

π
2x −
6

for 0 ≤ x ≤ 2π

2x −

A

π
6

)

=

π
6

(

2x −

π
6

π
6

)

=

5π
6

)

=

17π
6

2π ≤ 2 x ≤ 4π
13π
6

(

2x −

Solutions are:

x=

C

π π 7π 3π
, ,
,
6 2
6
2
Hint

Previous
Table of exact values

Quit

Quit

Next
Maths4Scotland

Higher

a) Write the equation cos 2θ + 8 cos θ + 9 = 0 in terms of cos θ
and show that for cos θ it has equal roots.
b) Show that there are no real roots for θ
Replace cos 2θ with
Rearrange
Divide by 2
Factorise
Deduction

cos 2θ = 2 cos 2 θ − 1

Try to solve:

( cos θ + 2 ) = 0

2 cos 2 θ + 8cos θ + 8 = 0

cos θ = −2

cos 2 θ + 4 cos θ + 4 = 0

No solution

Hence there are no real solutions for θ

( cos θ + 2 ) ( cos θ + 2 ) = 0
Equal roots for cos θ

Hint
Previous

Quit

Quit

Next
Maths4Scotland

Higher

Solve algebraically, the equation sin 2x + sin x = 0, 0 ≤ x ≤ 360
Replace sin 2x

2sin x cos x + sin x = 0

Determine quadrants

sin x ( 2 cos x + 1) = 0

for cos x
S
A

Common factor
Hence

sin x = 0
or

Determine x

2 cos x + 1 = 0

⇒

cos x = −

1
2

1
2

acute

x = 60°

x = 0°,
Previous
Table of exact values

C

x = 120°, 240°

sin x = 0 ⇒ x = 0°, 360°
cos x = − ⇒

T

Quit

120°, 240°, 360°

Quit

Hint
Next
Maths4Scotland

Higher

Find the exact solutions of 4sin2 x = 1, 0 ≤ x ≤ 2π

sin 2 x =

Rearrange
Take square roots
Find acute x

1
4

sin x = ±

1
2

x =

π
6

acute

Determine quadrants for sin x
S

T

+ and – from the square root requires all 4 quadrants

A

C

π 5π 7π 11π
x = ,
,
,
6
6
6
6
Hint

Previous
Table of exact values

Quit

Quit

Next
Maths4Scotland

Higher

Solve the equation x + cos x = 0
cos 2
Replace cos 2x with

for 0 ≤ x ≤ 360°

cos 2 x = 2 cos 2 x − 1

Substitute

2 cos 2 x + cos x − 1 = 0

Factorise

cos x =

2 cos 2 x − 1 + cos x = 0

Simplify

Determine quadrants
1
2

( 2 cos x − 1) ( cos x + 1) = 0
cos x =

Hence
Find acute x

acute

1
2

x = 60°

acute

S

cos x = −1

x = 60°

A

T
C
x = 60°
x = 300°

x = 180°

Solutions are: x= 60°, 180° and 300°
Previous
Table of exact values

Quit

Quit

Hint
Next
Maths4Scotland

Higher

cos
Solve algebraically, the equation 2 x + 5cos x − 2 = 0
Replace cos 2x with
Substitute

cos 2 x = 2 cos 2 x − 1

for 0 ≤ x ≤ 360°
Determine quadrants

2 cos x − 1 + 5cos x − 2 = 0
2

cos x =
acute

Simplify

2 cos 2 x + 5cos x − 3 = 0

Factorise

1
2

x = 60°

( 2 cos x − 1) ( cos x + 3) = 0

Hence
Find acute x

cos x =
acute

1
2

x = 60°

S

cos x = −3
Discard above

A

T
C
x = 60°
x = 300°

Solutions are: x= 60° and 300°
Previous
Table of exact values

Quit

Quit

Hint
Next
Maths4Scotland

Higher

You have completed all

Previous

12 questions in this presentation

Quit

Quit

Back to start
Maths4Scotland

Higher

Table of exact values

30°

sin
cos
tan

Return

45°

60°

π
6
1
2

π
4

π
3

1
2
1
2

3
2

3
2
1
3

1

1
2

3
Maths4Scotland

Higher

You have completed all

Previous

12 questions in this presentation

Quit

Quit

Back to start

Contenu connexe

Tendances

Equations of a line ppt
Equations of a line pptEquations of a line ppt
Equations of a line pptchriscline1979
 
Absolute Value Inequalities
Absolute Value InequalitiesAbsolute Value Inequalities
Absolute Value Inequalitiesswartzje
 
Imaginary numbers
Imaginary numbersImaginary numbers
Imaginary numbersJordan Vint
 
Geometry 11.6 Area of Circles Sectors and Segments.ppt
Geometry 11.6 Area of Circles Sectors and Segments.pptGeometry 11.6 Area of Circles Sectors and Segments.ppt
Geometry 11.6 Area of Circles Sectors and Segments.pptcarrie mixto
 
Parallel and perpendicular lines
Parallel and perpendicular linesParallel and perpendicular lines
Parallel and perpendicular linesJessica Garcia
 
Finding Slope Given A Graph And Two Points
Finding Slope Given A Graph And Two PointsFinding Slope Given A Graph And Two Points
Finding Slope Given A Graph And Two PointsGillian Guiang
 
Complex Numbers
Complex NumbersComplex Numbers
Complex Numbersswartzje
 
410629531-G9-WEEK-3 dll.doc
410629531-G9-WEEK-3 dll.doc410629531-G9-WEEK-3 dll.doc
410629531-G9-WEEK-3 dll.docJosephSPalileoJr
 
Rational irrational and_real_number_practice
Rational irrational and_real_number_practiceRational irrational and_real_number_practice
Rational irrational and_real_number_practiceeixarc
 
X2 T01 03 argand diagram
X2 T01 03 argand diagramX2 T01 03 argand diagram
X2 T01 03 argand diagramNigel Simmons
 
Holt Solve Equations with Variables on Both Sides
Holt Solve Equations with Variables on Both SidesHolt Solve Equations with Variables on Both Sides
Holt Solve Equations with Variables on Both Sideskaren wagoner
 
Mathematical Induction
Mathematical InductionMathematical Induction
Mathematical InductionEdelyn Cagas
 
Factoring Cubes
Factoring CubesFactoring Cubes
Factoring Cubesswartzje
 

Tendances (20)

Equations of a line ppt
Equations of a line pptEquations of a line ppt
Equations of a line ppt
 
Inequalities
InequalitiesInequalities
Inequalities
 
Inequalities
InequalitiesInequalities
Inequalities
 
Absolute Value Inequalities
Absolute Value InequalitiesAbsolute Value Inequalities
Absolute Value Inequalities
 
Slope
SlopeSlope
Slope
 
Imaginary numbers
Imaginary numbersImaginary numbers
Imaginary numbers
 
Geometry 11.6 Area of Circles Sectors and Segments.ppt
Geometry 11.6 Area of Circles Sectors and Segments.pptGeometry 11.6 Area of Circles Sectors and Segments.ppt
Geometry 11.6 Area of Circles Sectors and Segments.ppt
 
Coordinate geometry
Coordinate geometryCoordinate geometry
Coordinate geometry
 
Chapter 5 Point Slope Form
Chapter 5 Point Slope FormChapter 5 Point Slope Form
Chapter 5 Point Slope Form
 
Parallel and perpendicular lines
Parallel and perpendicular linesParallel and perpendicular lines
Parallel and perpendicular lines
 
Finding Slope Given A Graph And Two Points
Finding Slope Given A Graph And Two PointsFinding Slope Given A Graph And Two Points
Finding Slope Given A Graph And Two Points
 
Complex number
Complex numberComplex number
Complex number
 
Trigonometric identities
Trigonometric identitiesTrigonometric identities
Trigonometric identities
 
Complex Numbers
Complex NumbersComplex Numbers
Complex Numbers
 
410629531-G9-WEEK-3 dll.doc
410629531-G9-WEEK-3 dll.doc410629531-G9-WEEK-3 dll.doc
410629531-G9-WEEK-3 dll.doc
 
Rational irrational and_real_number_practice
Rational irrational and_real_number_practiceRational irrational and_real_number_practice
Rational irrational and_real_number_practice
 
X2 T01 03 argand diagram
X2 T01 03 argand diagramX2 T01 03 argand diagram
X2 T01 03 argand diagram
 
Holt Solve Equations with Variables on Both Sides
Holt Solve Equations with Variables on Both SidesHolt Solve Equations with Variables on Both Sides
Holt Solve Equations with Variables on Both Sides
 
Mathematical Induction
Mathematical InductionMathematical Induction
Mathematical Induction
 
Factoring Cubes
Factoring CubesFactoring Cubes
Factoring Cubes
 

En vedette

Trigonometric graphs
Trigonometric graphsTrigonometric graphs
Trigonometric graphsShaun Wilson
 
Pre-calculus 1, 2 and Calculus I (exam notes)
Pre-calculus 1, 2 and Calculus I (exam notes)Pre-calculus 1, 2 and Calculus I (exam notes)
Pre-calculus 1, 2 and Calculus I (exam notes)William Faber
 
10 unsolved papers with answers class 12
10 unsolved papers with answers class 1210 unsolved papers with answers class 12
10 unsolved papers with answers class 12nitishguptamaps
 
Graphs of trigonometry functions
Graphs of trigonometry functionsGraphs of trigonometry functions
Graphs of trigonometry functionslgemgnani
 
Higher Maths 1.2.1 - Sets and Functions
Higher Maths 1.2.1 - Sets and FunctionsHigher Maths 1.2.1 - Sets and Functions
Higher Maths 1.2.1 - Sets and Functionstimschmitz
 
Higher Maths 1.2.2 - Graphs and Transformations
Higher Maths 1.2.2 - Graphs and TransformationsHigher Maths 1.2.2 - Graphs and Transformations
Higher Maths 1.2.2 - Graphs and Transformationstimschmitz
 
Higher Maths 1.1 - Straight Line
Higher Maths 1.1 - Straight LineHigher Maths 1.1 - Straight Line
Higher Maths 1.1 - Straight Linetimschmitz
 
Radix 4 FFT algorithm and it time complexity computation
Radix 4 FFT algorithm and it time complexity computationRadix 4 FFT algorithm and it time complexity computation
Radix 4 FFT algorithm and it time complexity computationRaj Jaiswal
 
right spherical triangle. trigonometry
right spherical triangle. trigonometryright spherical triangle. trigonometry
right spherical triangle. trigonometrycayyy
 
Advanced Trigonometry
Advanced TrigonometryAdvanced Trigonometry
Advanced Trigonometrytimschmitz
 
Higher Maths 1.2.3 - Trigonometric Functions
Higher Maths 1.2.3 - Trigonometric FunctionsHigher Maths 1.2.3 - Trigonometric Functions
Higher Maths 1.2.3 - Trigonometric Functionstimschmitz
 
Higher Maths 2.1.2 - Quadratic Functions
Higher Maths 2.1.2 - Quadratic FunctionsHigher Maths 2.1.2 - Quadratic Functions
Higher Maths 2.1.2 - Quadratic Functionstimschmitz
 
The Fast Fourier Transform (FFT)
The Fast Fourier Transform (FFT)The Fast Fourier Transform (FFT)
The Fast Fourier Transform (FFT)Oka Danil
 
Discrete Fourier Transform
Discrete Fourier TransformDiscrete Fourier Transform
Discrete Fourier TransformAbhishek Choksi
 

En vedette (20)

Trigonometric graphs
Trigonometric graphsTrigonometric graphs
Trigonometric graphs
 
Trigonometry presentation
Trigonometry presentationTrigonometry presentation
Trigonometry presentation
 
Pre-calculus 1, 2 and Calculus I (exam notes)
Pre-calculus 1, 2 and Calculus I (exam notes)Pre-calculus 1, 2 and Calculus I (exam notes)
Pre-calculus 1, 2 and Calculus I (exam notes)
 
Trigonometry
TrigonometryTrigonometry
Trigonometry
 
Trigonometry
TrigonometryTrigonometry
Trigonometry
 
10 unsolved papers with answers class 12
10 unsolved papers with answers class 1210 unsolved papers with answers class 12
10 unsolved papers with answers class 12
 
Graphs of trigonometry functions
Graphs of trigonometry functionsGraphs of trigonometry functions
Graphs of trigonometry functions
 
Higher Maths 1.2.1 - Sets and Functions
Higher Maths 1.2.1 - Sets and FunctionsHigher Maths 1.2.1 - Sets and Functions
Higher Maths 1.2.1 - Sets and Functions
 
Math pdf [eDvArDo]
Math pdf [eDvArDo]Math pdf [eDvArDo]
Math pdf [eDvArDo]
 
Higher Maths 1.2.2 - Graphs and Transformations
Higher Maths 1.2.2 - Graphs and TransformationsHigher Maths 1.2.2 - Graphs and Transformations
Higher Maths 1.2.2 - Graphs and Transformations
 
Higher Maths 1.1 - Straight Line
Higher Maths 1.1 - Straight LineHigher Maths 1.1 - Straight Line
Higher Maths 1.1 - Straight Line
 
Radix 4 FFT algorithm and it time complexity computation
Radix 4 FFT algorithm and it time complexity computationRadix 4 FFT algorithm and it time complexity computation
Radix 4 FFT algorithm and it time complexity computation
 
right spherical triangle. trigonometry
right spherical triangle. trigonometryright spherical triangle. trigonometry
right spherical triangle. trigonometry
 
Dif fft
Dif fftDif fft
Dif fft
 
Advanced Trigonometry
Advanced TrigonometryAdvanced Trigonometry
Advanced Trigonometry
 
Higher Maths 1.2.3 - Trigonometric Functions
Higher Maths 1.2.3 - Trigonometric FunctionsHigher Maths 1.2.3 - Trigonometric Functions
Higher Maths 1.2.3 - Trigonometric Functions
 
Higher Maths 2.1.2 - Quadratic Functions
Higher Maths 2.1.2 - Quadratic FunctionsHigher Maths 2.1.2 - Quadratic Functions
Higher Maths 2.1.2 - Quadratic Functions
 
Fft ppt
Fft pptFft ppt
Fft ppt
 
The Fast Fourier Transform (FFT)
The Fast Fourier Transform (FFT)The Fast Fourier Transform (FFT)
The Fast Fourier Transform (FFT)
 
Discrete Fourier Transform
Discrete Fourier TransformDiscrete Fourier Transform
Discrete Fourier Transform
 

Similaire à Trigonometry

1.trigonometry Further Mathematics Zimbabwe Zimsec Cambridge
1.trigonometry Further Mathematics Zimbabwe Zimsec Cambridge1.trigonometry Further Mathematics Zimbabwe Zimsec Cambridge
1.trigonometry Further Mathematics Zimbabwe Zimsec Cambridgealproelearning
 
Module 5 circular functions
Module 5   circular functionsModule 5   circular functions
Module 5 circular functionsdionesioable
 
Questions and Solutions Basic Trigonometry.pdf
Questions and Solutions Basic Trigonometry.pdfQuestions and Solutions Basic Trigonometry.pdf
Questions and Solutions Basic Trigonometry.pdferbisyaputra
 
Lesson 5.3 honors
Lesson 5.3 honorsLesson 5.3 honors
Lesson 5.3 honorsmorrobea
 
Trigonometric ratios and identities 1
Trigonometric ratios and identities 1Trigonometric ratios and identities 1
Trigonometric ratios and identities 1Sudersana Viswanathan
 
Lesson 4.3 regular
Lesson 4.3 regularLesson 4.3 regular
Lesson 4.3 regularmorrobea
 
Trigonometry.pdf
Trigonometry.pdfTrigonometry.pdf
Trigonometry.pdfkeyurgala
 
2018 mtap for g10 with answers
2018 mtap for g10 with answers2018 mtap for g10 with answers
2018 mtap for g10 with answersJashey Dee
 
matrices and determinantes
matrices and determinantes matrices and determinantes
matrices and determinantes gandhinagar
 
41 trig equations
41 trig equations41 trig equations
41 trig equationsJJkedst
 
Mathmatics (Algebra,inequalities, Sequences, variation and indices
Mathmatics (Algebra,inequalities, Sequences, variation and indicesMathmatics (Algebra,inequalities, Sequences, variation and indices
Mathmatics (Algebra,inequalities, Sequences, variation and indicesSneha Gori
 
Lesson-6-Trigonometric-Identities.pptx
Lesson-6-Trigonometric-Identities.pptxLesson-6-Trigonometric-Identities.pptx
Lesson-6-Trigonometric-Identities.pptxDenmarkSantos5
 
Trigonometric (hayati pravita)
Trigonometric (hayati pravita)Trigonometric (hayati pravita)
Trigonometric (hayati pravita)Fadhel Hizham
 
Summative Assessment Paper-1
Summative Assessment Paper-1Summative Assessment Paper-1
Summative Assessment Paper-1APEX INSTITUTE
 

Similaire à Trigonometry (20)

1.trigonometry Further Mathematics Zimbabwe Zimsec Cambridge
1.trigonometry Further Mathematics Zimbabwe Zimsec Cambridge1.trigonometry Further Mathematics Zimbabwe Zimsec Cambridge
1.trigonometry Further Mathematics Zimbabwe Zimsec Cambridge
 
TRIGONOMETRY
TRIGONOMETRYTRIGONOMETRY
TRIGONOMETRY
 
Module 5 circular functions
Module 5   circular functionsModule 5   circular functions
Module 5 circular functions
 
Questions and Solutions Basic Trigonometry.pdf
Questions and Solutions Basic Trigonometry.pdfQuestions and Solutions Basic Trigonometry.pdf
Questions and Solutions Basic Trigonometry.pdf
 
Trigo functions
Trigo functionsTrigo functions
Trigo functions
 
Lesson 5.3 honors
Lesson 5.3 honorsLesson 5.3 honors
Lesson 5.3 honors
 
Trigonometric ratios and identities 1
Trigonometric ratios and identities 1Trigonometric ratios and identities 1
Trigonometric ratios and identities 1
 
trigonometry.pdf
trigonometry.pdftrigonometry.pdf
trigonometry.pdf
 
Lesson 4.3 regular
Lesson 4.3 regularLesson 4.3 regular
Lesson 4.3 regular
 
Trigonometry.pdf
Trigonometry.pdfTrigonometry.pdf
Trigonometry.pdf
 
2018 mtap for g10 with answers
2018 mtap for g10 with answers2018 mtap for g10 with answers
2018 mtap for g10 with answers
 
matrices and determinantes
matrices and determinantes matrices and determinantes
matrices and determinantes
 
41 trig equations
41 trig equations41 trig equations
41 trig equations
 
Differentiation
DifferentiationDifferentiation
Differentiation
 
Mathmatics (Algebra,inequalities, Sequences, variation and indices
Mathmatics (Algebra,inequalities, Sequences, variation and indicesMathmatics (Algebra,inequalities, Sequences, variation and indices
Mathmatics (Algebra,inequalities, Sequences, variation and indices
 
Lesson-6-Trigonometric-Identities.pptx
Lesson-6-Trigonometric-Identities.pptxLesson-6-Trigonometric-Identities.pptx
Lesson-6-Trigonometric-Identities.pptx
 
Straight line
Straight lineStraight line
Straight line
 
Trigonometric (hayati pravita)
Trigonometric (hayati pravita)Trigonometric (hayati pravita)
Trigonometric (hayati pravita)
 
Summative Assessment Paper-1
Summative Assessment Paper-1Summative Assessment Paper-1
Summative Assessment Paper-1
 
TABREZ KHAN.ppt
TABREZ KHAN.pptTABREZ KHAN.ppt
TABREZ KHAN.ppt
 

Dernier

Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYKayeClaireEstoconing
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxMaryGraceBautista27
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...Postal Advocate Inc.
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomnelietumpap1
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parentsnavabharathschool99
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceSamikshaHamane
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxDr.Ibrahim Hassaan
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfphamnguyenenglishnb
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxAshokKarra1
 

Dernier (20)

Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptx
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choom
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parents
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in Pharmacovigilance
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptxYOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptx
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptx
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 

Trigonometry

  • 1. Higher Unit 2 www.mathsrevision.com Higher Outcome 3 Trigonometry identities of the form sin(A+B) Double Angle formulae Trigonometric Equations Radians & Trig Basics More Trigonometric Equations Exam Type Questions www.mathsrevision.com
  • 2. Trig Identities Outcome 3 www.mathsrevision.com Higher Supplied on a formula sheet !! The following relationships are always true for two angles A and B. 1a. 1b. sin(A + B) = sinAcosB + cosAsinB sin(A - B) = sinAcosB - cosAsinB 2a. cos(A + B) = cosAcosB – sinAsinB 2b. cos(A - B) = cosAcosB + sinAsinB Quite tricky to prove but some of following examples should show that they do work!!
  • 3. Trig Identities Higher Examples 1 Outcome 3 www.mathsrevision.com (1) Expand cos(U – V). (use formula 2b ) cos(U – V) = cosUcosV + sinUsinV (2) Simplify sinf°cosg° - cosf°sing° (use formula 1b ) sinf°cosg° - cosf°sing° = sin(f – g)° (3) Simplify cos8 θ sinθ + sin8 θ cos θ (use formula 1a ) cos8 θ sin θ + sin8 θ cos θ = sin(8 θ + θ) = sin9 θ
  • 4. Trig Identities Higher Example 2 Outcome 3 www.mathsrevision.com By taking A = 60° and B = 30°, prove the identity for cos(A – B). NB: cos(A – B) = cosAcosB + sinAsinB LHS = cos(60 – 30 )° = cos30° = √3 /2 RHS = cos60°cos30° + sin60°sin30° =(½ X √3 = Hence LHS = RHS !! √3 /4 + = √3 /2 /2 ) + (√3/2 X ½) √3 /4
  • 5. Trig Identities Higher Example 3 Outcome 3 www.mathsrevision.com Prove that sin15° = ¼(√6 - √2) sin15° = sin(45 – 30)° = sin45°cos30° - cos45°sin30° = (1/√2 = X √3 /2 ) - (1/√2 X ½) (√3/2√2 - 1 = (√3 - 1) 2√2 = (√6 - √2) 4 = ¼(√6 - √2) /2√2) X √2 √2
  • 6. Trig Identities www.mathsrevision.com Higher Example 4 NAB type Question Outcome 3 y β 41 x α 40 Show that 3 4 cos(α - β) = 187 /205 Triangle2 Triangle1 If missing side = x If missing side = y Then x2 = 412 – 402 = 81 Then y2 = 42 + 32 = 25 So So x=9 y=5 sinα = 9/41 and cosα = 40/41 sin β = 3/5 and cosβ = 4/5
  • 7. Higher Trig Identities Outcome 3 www.mathsrevision.com sinα = 9/41 and cosα = 40/41 sin β = 3/5 and cosβ = 4/5 cos(α - β) = cosαcosβ + sinαsinβ = (40/41 X /5) + (9/41 4 = 160 /205 + = 187 X /5 ) 3 /205 /205 27 Remember this is a NAB type Question
  • 8. Trig Identities Higher Example 5 Solve Outcome 3 sinx°cos30° + cosx°sin30° = -0.966 ALWAYS work out By Quad 1 rule 1a first sin(x www.mathsrevision.com NAB type Question where 0o < x < 360o sinx°cos30° + cosx°sin30° = sin(x + 30)° S 180-xo + 30)° = -0.966 Quad 3 and Quad 4 sin-1 0.966 = 75° Quad 3: angle = 180o + 75o x + 30o = 255o x = 225o A xo 180+x T 360-xo C o Quad 4: angle = 360o – 75o x + 30o = 285o x = 255o
  • 9. Trig Identities Higher Solve www.mathsrevision.com Outcome 3 Example 6 sin5 θ cos3 θ - cos5 θ sin3 θ = √3/2 By rule 1b. where 0 < θ < π sin5θ cos3θ - cos5θ sin3θ =sin(5θ - 3θ) = sin2θ sin2θ = √3/2 Repeats every π Quad 1 and Quad 2 sin-1 √3/2 = π/3 S π-θ A θ π+θ 2π-θ T C Quad 1: angle = π/3 Quad 2: angle = π - π/3 In this example repeats lie out 2 θ = π/ 3 2 θ = 2π/3 θ = π /6 θ = π/ 3 with limits
  • 10. Trig Identities Higher Example 7 Outcome 3 www.mathsrevision.com Find the value of x that minimises the expression cosx°cos32° + sinx°sin32° Using rule 2(b) we get cosx°cos32° + sinx°sin32° = cos(x – 32)° cos graph is roller-coaster min value is -1 when angle = 180° ie x – 32o = 180o ie x = 212o
  • 11. Paper 1 type questions Trig Identities www.mathsrevision.com Higher Example 8 Outcome 3 Simplify sin(θ - π/3) + cos(θ + π/6) + cos(π/2 - θ) sin(θ - π/3) + cos(θ + π/6) + cos(π/2 - θ) = sin θ cosπ/3 – cos θ sinπ/3 + cos θ cosπ/6 – sin θ sinπ/6 + cosπ/2 cos θ + sinπ/2 sin θ = 1/2 sin θ – √3/2cos θ + √3/2 cos θ – 1/2sin θ + 0 x cos θ + 1 X sin θ = sin θ
  • 12. Paper 1 type questions Trig Identities Higher Example 9 Outcome 3 www.mathsrevision.com Prove that (sinA + cosB)2 + (cosA - sinB)2 = 2(1 + sin(A - B)) LHS = (sinA + cosB)2 + (cosA - sinB)2 = sin2A + 2sinAcosB + cos2B + cos2A – 2cosAsinB + sin2B = (sin2A + cos2A) + (sin2B + cos2B) + 2sinAcosB - 2cosAsinB = 1 + 1 + 2(sinAcosB - cosAsinB) = 2 + 2sin(A – B) = 2(1 + sin(A – B)) = RHS
  • 13. Double Angle Formulae Outcome 3 www.mathsrevision.com Higher sin 2 A = 2sin A cos A cos 2 A = cos 2 A − sin 2 A = 2cos 2 A − 1 2 = 1 − 2sin A Two further formulae derived from the cos 2 A formulae. cos A = 1 (1 + cos 2 A) 2 2 sin A = 1 (1 − cos 2 A) 2 2
  • 14. Double Angle formulae www.mathsrevision.com Higher Mixed Examples: Outcome 3 4 Given that A is an acute angle and tan A = , calculate sin 2 A and cos 2 A. 3 sin A 4 = cos A 3 2 sin 2 A + ( 3 sin A) 2 = 1 4 sin A = ± Similarly: sin 2 A = 2sin A cos A = Substitute form the tan (sin/cos) equation sin A + cos A = 1 2 cos A = 16 = 25 3 5 9 − 16 = 25 +ve because A is acute 3-4-5 triangle ! 24 25 cos 2 A = cos 2 A − sin 2 A = 4 5 −7 25 A is greater than 45 degrees – hence 2A is greater than 90 degrees.
  • 15. Double Angle formulae Outcome 3 Higher www.mathsrevision.com Find the exact value of sin 75o. 2 sin(75o ) = sin(45 + 30) o sin(75 ) = sin 45cos30 + cos 45sin 30 45 1 o 1 3 1 1 1+ 3 = + = 2 2 22 2 2 Prove that 1 2 30 o 1 sin(α + β ) = tan α + tan β cos α cos β sin(α + β ) sin α cos β + cos α sin β = cosα cos β cosα cos β = sin α sin β + cosα cos β = tan α + tan β 3
  • 16. Double Angle formulae Outcome 3 Higher www.mathsrevision.com For the diagram opposite show that cos LMN = 5 . 5 cos LMN = cos(α + β ) Length of LM = Length of MN = M 18 = 3 2 10 3 2 cos(α + β ) = cosα cos β − sin α sin β = = = 1 3 1 1 − 2 10 2 10 2 2 = = 20 4 5 5 5 1 5 α 3 L 3 β 10 1 N
  • 17. Double Angle formulae Outcome 3 Higher www.mathsrevision.com Prove that, cos 4 α − sin 4 α = cos 2α . cos 4 α − sin 4 α = (cos 2 α ) 2 − (sin 2 α ) 2 Using x 2 − y 2 = ( x − y )( x + y ) = (cos 2 α − sin 2 α )(cos 2 α + sin 2 α ) cos 2 α + sin 2 α = 1 = cos 2 α − sin 2 α cos 2α = cos 2 α − sin 2 α = cos 2α
  • 18. Trigonometric Equations www.mathsrevision.com Higher Outcome 3 Double angle formulae (like cos2A or sin2A) often occur in trig equations. We can solve these equations by substituting the expressions derived in the previous sections. Rules for solving equations sin2A = 2sinAcosA when replacing sin2Aequation cos2A = 2cos2A – 1 if cosA is also in the equation cos2A = 1 – 2sin2A if sinA is also in the equation
  • 19. Trigonometric Equations Outcome 3 Higher cos 2 x o − 4sin x o + 5 = 0 for 0 ≤ x ≤ 360o. www.mathsrevision.com Solve: cos2x and sin x, (1 − 2sin x) − 4sin x + 5 = 0 2 6 − 4sin x − 2sin x = 0 2 so substitute 1-2sin2x compare with 6 − 4 z − 2 z 2 = 0 (6 + 2sin x)(1 − sin x) = 0 sin x = 1 or sin x = −3 x = 90 o 0 ≤ sin x ≤ 1 for all real angles
  • 20. Trigonometric Equations Outcome 3 Higher www.mathsrevision.com Solve: 5cos 2 x o = cos x o − 2 for 0 ≤ x ≤ 360o cos 2x and cos x, 5(2cos 2 x − 1) = cos x − 2 so substitute 2cos2 -1 π 2 10cos 2 x − cos x − 3 = 0 (5cos x − 3)(2cos x + 1) = 0 3 1 cos x = or cos x = − 5 2 π x = 90 + 30 = 120 x = 51.3o and x = 360 − 51.3 = 308.7 90o o o x = 270 − 30 = 240o 180 o and S A T C 270o 3π 2 0o
  • 22. Trigonometric Equations Outcome 3 Higher www.mathsrevision.com The diagram shows the graphs of f ( x ) = a sin bx o and g ( x ) = c sin x o for 0 ≤ x ≤ 360o. 4 y y y = f ( x) 2 360 0 -2 o x x y = g ( x) -4 Three problems concerning this graph follow.
  • 23. Trigonometric Equations Outcome 3 Higher www.mathsrevision.com i) State the values of a, b and c. y y y = f ( x) f ( x) = a sin bx o g ( x) = c sin x o The max & min values of sinbx are 1 and -1 resp. The max & min values of asinbx are 3 and -3 resp. 360o y = g ( x) a=3 f(x) goes through 2 complete cycles from 0 – 360o b = 2 g ( x) = c sin x o The max & min values of csinx are 2 and -2 resp. c=2 x x
  • 24. Trigonometric Equations Outcome 3 Higher f ( x ) = g ( x) algebraically. www.mathsrevision.com ii) Solve the equation From the previous problem we now have: f ( x) = 3sin 2 x g ( x) = 2sin x and Hence, the equation to solve is: 3(2sin x cos x) = 2sin x Expand sin 2x 6sin x cos x − 2sin x = 0 3sin x cos x − sin x = 0 sin x(3cos x − 1) = 0 sin x = 0 or 1 cos x = 3 3sin 2 x = 2sin x Divide both sides by 2 Spot the common factor in the terms? Is satisfied by all values of x for which:
  • 25. Trigonometric Equations Outcome 3 Higher www.mathsrevision.com iii) find the coordinates of the points of intersection of the graphs for 0 ≤ x ≤ 360o. From the previous problem we have: sin x = 0 and sin x = 0 Hence x = 0o x = 180o x = 360o 1 cos x = 3 1 cos x = 3 x = 70.5o x = (360 − 70.5)o = 289.5o
  • 26. Radian Measurements Outcome 3 www.mathsrevision.com Higher Reminders i) Radians π radians = 180 Converting between degrees and radians: 120o = 120. π 18 0 5π 5π 180 = . 6 6 π 2π = radians 3 = 150o o
  • 27. Degree Measurements Outcome 3 Higher Equilateral triangle: www.mathsrevision.com ii) Exact Values 45o right-angled triangle: 1 2 60o 1 2 45o 1 cos 45o = sin 45o = tan 45 = 1 o 30o 2 3 1 1 2 sin 60o = 1 2 3 2 sin 30o = cos 60o = 1 2 cos30o = 3 2 tan 30o = 1 3 tan 60o = 3
  • 28. Radians / Degrees Outcome 3 www.mathsrevision.com Higher degrees 0o 30o 45o radians 0 π π π π 0 cos 1 4 1 2 1 2 3 3 2 1 2 2 sin 0 tan 0 6 1 2 3 2 1 3 1 3 ∞ Example: 60o 90o 1 What is the exact value of sin 240o ? 240 = 180 + 60 sin(180 + α ) = − sin α sin 240o = − 3 2
  • 31. Tan Graph www.mathsrevision.com Higher Outcome 3 Period = 180o Amplitude cannot be found for tan function
  • 32. Solving Trigonometric Equations Outcome 3 www.mathsrevision.com Higher Solve 2cos3 x − 1 = 0 (0 ≤ x ≤ 360o ) Example: Step 2: consider what solutions Step 1: Re-Arrange are expected π 2 2cos3 x − 1 = 0 2cos3 x = 1 1 cos3 x = 2 90o π 180 o S A T C 270o 3π 2 0o
  • 33. Solving Trigonometric Equations Outcome 3 www.mathsrevision.com Higher cos 3x is positive so solutions 1 in the first and fourth quadrants cos3 x = 2 0 ≤ x ≤ 360o Since x3 Then has 2 solutions x3 0 ≤ 3 x ≤ 1080o has 6 solutions
  • 34. Solving Trigonometric Equations Outcome 3 Higher www.mathsrevision.com Step 3: Solve the equation 1 cos3 x = 2 1 3 x = cos  ÷ = 60o 2 −1 1st quad 4th quad 3x = 60o 300o x = 20o 100o cos wave repeats every 360o 420o 660o 780o 1020o 140o 220o 260o 340o
  • 35. Solving Trigonometric Equations Higher Outcome 3 www.mathsrevision.com Graphical solution for 1 cos3 x = 2
  • 36. Solving Trigonometric Equations Outcome 3 Higher www.mathsrevision.com Example: Solve 1 + 2 sin 6t = 0 Step 1: Re-Arrange (0 ≤ t ≤ 180o ) Step 2: consider what solutions are expected −1 sin 6t = 2 π 2 90o sin 6t is negative so solutions in the third and fourth quadrants Since 0 ≤ t ≤ 180o x6 x6 Then has 2 solutions 0 ≤ 6t ≤ 1080o has 12 solutions π 180 o S A T C 270o 3π 2 0o
  • 37. Solving Trigonometric Equations Outcome 3 Higher www.mathsrevision.com Step 3: Solve the equation −1 sin 6t = 2  −1  6t = sin −1  ÷ 2  3rd quad 4th quad 6t = 225o x = 39.1o 315o  1  o st sin −1  ÷ = 45 always 1 Quad first  2 sin wave repeats every 360o 585o 675o 945o 1035o 52.5o 97.5o 112.5o 157.5o 172.5o
  • 39. The solution is to be in radians – but work in Trigonometric at the Solvingdegrees and convertEquations end. Outcome 3 Higher www.mathsrevision.com Example: π Solve 2sin(2 x − ) = 1 3 (0 ≤ x ≤ 2π ) Step 2: consider what solutions are expected Step 1: Re-Arrange 1 sin(2 x − 60 ) = 2 π 2 o 90o (2x – 60o ) = sin-1(1/2) Since 0 ≤ x ≤ 360 has 2 solutions o x2 Then π x2 0 ≤ 2 x ≤ 720 o has 4 solutions 180 o S A T C 270o 3π 2 0o
  • 40. Solving Trigonometric Equations Outcome 3 Higher www.mathsrevision.com Step 3: Solve the equation sin(2 x − 60o ) = 1 2 1 2 x − 60o = sin −1  ÷ 2 1 sin −1  ÷ = 30o 2 (1st quadrant) 2 x − 60o = 30o and 150o 1st quad 2nd quad 2x = 90o x = 45o π 4 210o sin wave repeats every 360o 450o 570o 105o 225o 7π 5π 12 4 285o 19π 12
  • 41. Solving Trigonometric Equations www.mathsrevision.com Higher Outcome 3 Graphical solution for 1 sin(2 x − 60 ) = 2 o
  • 42. The solution is to be in radians – but work in degrees and convert at the end. Solving Trigonometric Equations Outcome 3 Higher www.mathsrevision.com Harder Example: Solve tan 2 x = 3 (0 ≤ x ≤ 2π ) Step 2: consider what solutions are expected Step 1: Re-Arrange π 2 tan x = ± 3 90o tan x = + 3 tan x = − 3 2 solutions 1 and 3 st rd quads 2 solutions 2 nd and 4 th quads π 180 o S A T C 270o 3π 2 0o
  • 43. Solving Trigonometric Equations Outcome 3 Higher www.mathsrevision.com Step 3: Solve the equation tan x = + 3 tan x = − 3 π 3 π 3 (60o in the 1st quadrant) 120o tan wave repeats every 180o 240o 300o 2π 3 4π 3 1st quad 2nd quad x = 60o tan −1 3 = 5π 3
  • 45. Solving Trigonometric Equations Outcome 3 Higher www.mathsrevision.com Harder Example: Solve 3sin 2 x − 4sin x + 1 = 0 (0 ≤ x ≤ 360o ) Step 1: Re-Arrange Step 2: Consider what solutions (3sin x − 1)(sin x − 1) = 0 1 sin x = 3 are expected π 2 90o sin x = 1 π Two solutions One solution 180 o S A T C 270o 3π 2 0o
  • 46. Solving Trigonometric Equations Outcome 3 Higher www.mathsrevision.com Step 3: Solve the equation sin x = 1 3 sin x = 1 Two solutions 1stquad 2nd quad x = 19.5o 160.5o Overall solution One solution 90o x = 19.5o , 90o and 160.5o
  • 47. Solving Trigonometric Equations Higher Outcome 3 www.mathsrevision.com Graphical solution for 3sin 2 x − 4sin x + 1 = 0
  • 48. The solution is to be in radians – but work in degrees and convert at the end. Solving Trigonometric Equations Outcome 3 Higher www.mathsrevision.com Harder Example: Solve 5sin 2 x − 2 = 2cos x Step 1: Re-Arrange Step 2: Consider what solutions 5(1 − cos x) − 2 = 2cos x 2 are expected π 2 Remember o this ! 90 2 2 3 − 2cos x − 5cos 2 x = 0 (3 − 5cos x)(1 + cos x) = 0 3 cos x = 5 (0 ≤ x ≤ 2π ) cos x = −1 sin α + cos α = 1 cos 2 α = 1 − sin 2 α A2 o 2 S 180 α = 1 − cos α sin π C T 270o Two solutions One solution 3π 2 0o
  • 49. Solving Trigonometric Equations Outcome 3 Higher www.mathsrevision.com Step 3: Solve the equation cos x = 3 5 Two solutions 1stquad 3rd quad x = 53.1o 306.9o Overall solution in radians cos x = −1 One solution 180o x = 0.93 , π and 5.35
  • 50. Solving Trigonometric Equations Higher Outcome 3 www.mathsrevision.com Graphical solution for 5 sin 2 x − 2 = 2cos x
  • 52. Maths4Scotland Higher The following questions are on Compound Angles Non-calculator questions will be indicated You will need a pencil, paper, ruler and rubber. Click to continue
  • 53. Maths4Scotland Higher This presentation is split into two parts Using Compound angle formula for Exact values Solving equations Choose by clicking on the appropriate button Quit Quit
  • 54. Maths4Scotland Higher A is the point (8, 4). The line OA is inclined at an angle p radians to the x-axis a) Find the exact values of: i) sin (2p) ii) cos (2p) The line OB is inclined at an angle 2p radians to the x-axis. b) Write down the exact value of the gradient of OB. Draw triangle 80 Pythagoras 4 p 8 8 sin p = 80 4 8 ⇒ 2× × ⇒ 80 80 cos p = Write down values for cos p and sin p Expand sin (2p) sin 2 p = 2sin p cos p Expand cos (2p) cos 2 p = cos p − sin p ⇒ Use m = tan (2p) tan 2 p = Previous 2 2 sin 2 p cos 2 p Quit ⇒ ( ) ( ) 8 80 2 − 4 80 2 ⇒ 4 80 64 4 ⇒ 80 5 64 − 16 3 ⇒ 80 5 4 3 4 ÷ ⇒ 5 5 3 Quit Hint Next
  • 55. Maths4Scotland Higher In triangle ABC show that the exact value of sin(a + b) is Use Pythagoras sin a = sin a, cos a, sin b, cos b Substitute values Simplify Previous 10 2 AC = 2 CB = 10 Write down values for Expand sin (a + b) 2 5 1 2 cos a = 1 2 sin b = 1 10 cos b = 3 10 sin( a + b) = sin a cos b + cos a sin b sin( a + b) = sin(a + b) = 3 20 + 1 20 Quit 1 2 × → 3 10 + 4 20 Quit 1 2 → × 1 10 4 4 → → 4×5 2 5 2 5 Hint Next
  • 56. Maths4Scotland Higher Using triangle PQR, as shown, find the 11 exact value of cos 2x Use Pythagoras PR = 11 Write down values for cos x and sin x 2 cos x = 11 7 sin x = 11 Expand cos 2x cos 2 x = cos 2 x − sin 2 x Substitute values ( ) −( ) Simplify Previous 2 11 cos 2x = 4 7 cos 2 x = − 11 11 Quit 2 7 11 → − 2 3 11 Quit Hint Next
  • 57. Maths4Scotland Higher On the co-ordinate diagram shown, A is the point (6, 8) and 10 B is the point (12, -5). Angle AOC = p and angle COB = q Mark up triangles Find the exact value of sin (p + q). OA = 10 OB = 13 Use Pythagoras Write down values for sin p = sin p, cos p, sin q, cos q Expand sin (p + q) Substitute values Simplify Previous 8 , 10 cos p = 6 , 10 sin q = 8 6 12 5 13 5 , 13 cos q = 12 13 sin ( p + q ) = sin p cos q + cos p sin q sin ( p + q) = sin ( p + q) = 96 130 + 30 130 Quit 8 12 × 10 13 → + 6 5 × 10 13 126 130 Quit → 63 65 Hint Next
  • 58. Maths4Scotland Higher A and B are acute angles such that tan A = 3 4 Draw triangles Use Pythagoras Write down sin A, cos A, sin B, cos B sin A = sin 2 A = 2sin A cos A Expand cos 2A cos 2 A = cos A − sin A 2 Expand sin (2A + B) 13 3 A 5 B 4 12 Hypotenuses are 5 and 13 respectively Expand sin 2A Previous 5 Find the exact value of cos 2A b) sin(2 A + B) c) sin 2A a) Substitute 5 and tan B = 12 . 2 3 , 5 cos A = 4 , 5 sin B = 3 5 sin 2 A = 2 × × cos 2A = 2 4 5 5 , 13 ⇒ 2 4  3  ÷ − ÷ 5 5 ⇒ cos B = 12 13 24 25 16 9 − 25 25 ⇒ 7 25 sin ( 2 A + B ) = sin 2 A cos B + cos 2 A sin B sin ( 2 A + B ) = 24 12 7 5 323 × + × = 25 13 25 13 325 Quit Quit Hint Next
  • 59. Maths4Scotland Higher tan x° If x° is an acute angle such that = 4 3 5 4 3 +3 sin( x + 30)° is show that the exact value of 10 4 x 3 Draw triangle Use Pythagoras Write down sin x and cos x Expand sin (x + 30) sin x = Hypotenuse is 5 4 , 5 cos x = 3 5 sin( x + 30) = sin x cos 30 + cos x sin 30 Substitute sin( x + 30) = 4 3 3 1 × + × 5 2 5 2 Simplify sin( x + 30) = 4 3 3 + 10 10 ⇒ 4 3 +3 10 Hint Previous Table of exact values Quit Quit Next
  • 60. Maths4Scotland Higher The diagram shows two right angled triangles 24 ABD and BCD with AB = 7 cm, BC = 4 cm and CD = 3 cm. Angle DBC = x° and angleyABD is 20 − 6 6 cos( x + )° is y°. 35 Show that the exact value of BD = 5, AD = 24 Use Pythagoras Write down sin x, cos x, sin y, cos y. Expand cos (x + y) sin x = 3 , 5 cos x = 4 , 5 sin y = 5 24 , 7 cos y = 5 7 cos( x + y ) = cos x cos y − sin x sin y Substitute cos( x + y ) = 4 5 3 24 × − × 5 7 5 7 Simplify cos( x + y ) = 20 − 3 4 × 6 20 − 6 6 20 3 24 ⇒ ⇒ − 35 35 35 35 Previous Quit Quit Hint Next
  • 61. Maths4Scotland Higher The framework of a child’s swing has dimensions as shown in the diagram. Find the exact value of sin x° Draw triangle Use Pythagoras Draw in perpendicular h= 5 3 Use fact that sin x = sin ( ½ x + ½ x) sin Write down sin ½ x and cos ½ x sin Expand sin ( ½ x + ½ x) Substitute Simplify sin ( x x + 2 2 sin x = )= ( x x 2 h5 x x + 2 2 2 3 ( ) = , cos ( ) = ) = sin cos + sin 2× × x 2 2 3 x 2 x 2 x 2 5 3 x x cos = 2 2 3 2 4 x 2 2sin cos x 2 5 3 4 5 9 Previous Table of exact values Hint Quit Quit Next
  • 62. Maths4Scotland Higher 11 π , 0<α < 3 2 sin 2α find the exact value of tan Given that α = Draw triangle 11 a Use Pythagoras Write down values for cos a and sin a 20 hypotenuse 3 cos a = 20 = 20 3 11 sin a = 20 Expand sin 2a sin 2a = 2 sin a cos a Substitute values sin 2a = 2 × Simplify Previous 11 3 × 20 20 6 11 sin 2a = 20 Quit ⇒ Quit 3 11 10 Hint Next
  • 63. Maths4Scotland Higher Find algebraically the exact value of sin θ ° + sin ( θ + 120 ) ° + cos(θ + 150)° Expand sin (θ +120) sin ( θ + 120 ) = sin θ cos120 + cos θ sin120 Expand cos (θ +150) cos ( θ + 150 ) = cos θ cos150 − sin θ sin150 Use table of exact values cos 120 = − cos 60 = − sin 120 = Combine and substitute Simplify sin 60 = sin θ + sin θ . 1 2 sin θ − sin θ + 3 2 1 2 3 2 cos 150 = − cos 30 = − sin 150 = sin 30 = 3 2 1 2 ( ) + cosθ .( ) + cos θ .( ) − sin θ . ( ) cos θ − − 1 2 3 2 3 2 − 3 2 1 2 1 2 cos θ − sin θ =0 Previous Table of exact values Quit Quit Hint Next
  • 64. Maths4Scotland If cos θ = Higher 4 π , 0 ≤θ ≤ 5 2 sin 2θ a) find the exact value of sin 4θb) Draw triangle cos θ = cos θ and sin θ Expand cos 2θ Find sin 4θ Previous Opposite side = 3 4 5 sin θ = sin 2θ = 2 sin θ cos θ Expand sin 4θ (4θ = 2θ + 2θ) 4 3 5 3 4 24 ⇒ 2× × ⇒ 5 5 25 sin 4θ = 2 sin 2θ cos 2θ cos 2θ = cos θ − sin θ 2 sin 4θ = 2 × 3 θ Use Pythagoras Write down values for Expand sin 2θ 5 24 7 × 25 25 Quit 2 ⇒ 16 9 7 ⇒ − ⇒ 25 25 25 336 625 Quit Hint Next
  • 65. Maths4Scotland Higher For acute angles sin P = P and Q 12 and 13 sin Q = 3 5 13 63 sin ( P +Q) = 65 Show that the exact value of Draw triangles Use Pythagoras Write down sin P, cos P, sin Q, cos Q Expand sin (P + Q) 5 12 P 3 Q 5 4 Adjacent sides are 5 and 4 respectively sin P = 12 , 13 cos P = 5 , 13 sin Q = 3 , 5 cos Q = 4 5 sin ( P + Q ) = sin P cos Q + cos P sin Q Substitute sin ( P + Q ) = 12 4 5 3 × + × 13 5 13 5 Simplify sin ( P + Q ) = 48 15 + 65 65 Previous Quit ⇒ Quit 63 65 Hint Next
  • 66. Maths4Scotland Higher You have completed all Previous Quit 12 questions in this section Quit Back to start
  • 67. Maths4Scotland Higher Using Compound angle formula for Solving Equations Continue Quit Quit
  • 68. Maths4Scotland Higher Solve the equation 3cos(2 x) + 10 cos( x) − 1 = 0 for 0 ≤ x ≤ π correct to 2 decimal places Replace cos 2x with Substitute Simplify cos 2 x = 2 cos 2 x − 1 3 ( 2 cos x − 1) + 10 cos x − 1 = 0 2 Determine quadrants S A T 6 cos x + 10 cos x − 4 = 0 2 C 3cos 2 x + 5cos x − 2 = 0 Factorise Hence ( 3cos x − 1) ( cos x + 2 ) = 0 cos x = x = 1.23 Find acute x Previous acute x = 1.23 rad Quit 2π − 1.23 rads x = 5.05 cos x = −2 Discard or x = 1.23 1 3 rads rads Hint Quit Next
  • 69. Maths4Scotland Higher The diagram shows the graph of a cosine function from 0 to π. a) State the equation of the graph. b) The line with equation y = -√3 intersects this graph at points A and B. Find the co-ordinates of B. Equation y = 2 cos 2 x Determine quadrants 2 cos 2 x = − 3 Solve simultaneously cos 2x = − Rearrange Check range 0≤ x ≤π Find acute 2x Deduce 2x acute 2x = 2x = S T x = Table of exact values 6π π + rads 6 6 Quit Quit 5π 7π or 12 12 B π 6 Previous C 3 2 ⇒ 0 ≤ 2 x ≤ 2π 6π π − or 6 6 A ( is B 7π 12 ,− 3 ) Next Hint
  • 70. Maths4Scotland Higher Functions f and g are defined on suitable domains by f(x) = sin (x) and g(x) = 2x a) i) 1 expression st 2nd expression Form equation Find expressions for: f(g(x)) g(f(x)) Determine x ii) for 0 ≤ x sin360° 0 ⇒ x = 0°, 360° ≤ x= f b)g ( xSolve f (2f(g(x))sing(f(x)) ( )) = 2 x) = = 2 x cos x = g ( f ( x )) = g (sin x) = 2sin x 2sin 2 x = 2sin x → sin 2 x = sin x Replace sin 2x 2sin x cos x − sin x = 0 Common factor Hence or 2 cos x − 1 = 0 ⇒ cos x = Previous Table of exact values Quit acute x = 60° S A T C Determine x = 0°, 60°, 300°, 360° sin x ( 2 cos x − 1) = 0 sin x = 0 ⇒ quadrants x = 60°, 300° 2sin x cos x = sin x Rearrange 1 2 1 2 Quit Hint Next
  • 71. Maths4Scotland Higher Functions f ( x) = sin x, g ( x) = cos x a) b) i) 2 expression nd h( x ) = x + Find expressions for 1 1 f (h( x)) = Show that 1st expression and sin x + 2 2 π 4 are defined on a suitable set of real numbers i) f(h(x)) cos x ii) Find a similar expression for g(h(x)) f (h( x )) − g (h( x )) = 1 for 0 ≤ x ≤ 2π iii) Hence solve the equation 2 π π sin x = 1 f (h( x)) = f x + = sin x + Simplifies to 2 4 4 ( ) ( ) g (h( x)) = g ( x + ) = cos ( x + ) π 4 f Simplify 1 expr. st π 4 π (h( x)) = sin x cos 4 1 2 Rearrange: sin x = π + cos x sin 4 1 2 Use exact values f ( h( x)) = Similarly for 2nd expr. g (h( x )) = cos x cos − sin x sin sin x + g (h( x)) = Form Eqn. ii) g(h(x)) 1 2 acute x cos x π 4 cos x − 1 2 Determine π 4 sin x f ( h( x)) − g ( h( x)) = 1 Previous Table of exact values Quit Quit acute 2 = 2 x= 2 1 = 2 2 2 π 4 S A T C quadrants x= π 3π , 4 4 Hint Next
  • 72. Maths4Scotland a) Higher Solve the equation sin 2x - cos x = 0 in the interval 0 ≤ x ≤ 180° b) The diagram shows parts of two trigonometric graphs, y = sin 2x and y = cos x. Use your solutions in (a) to write down the co-ordinates of the point P. Replace sin 2x 2sin x cos x − cos x = 0 Common factor cos x ( 2sin x − 1) = 0 Hence cos x = 0 Determine x or Solutions for where graphs cross 2sin x − 1 = 0 ⇒ sin x = 1 2 cos x = 0 ⇒ x = 90°, ( 270° out of range) sin x = 1 2 ⇒ acute x = 30° S A Determine quadrants T Previous Table of exact values x =150° y = cos150° Find y value Coords, P C Quit By inspection (P) y=− x = 30°, 150° for sin x x = 30°, 90°, 150° Quit ( P 150°, − 3 2 ) 3 2 Hint Next
  • 73. Maths4Scotland Higher Solve the 3cos(2 x) + cos( x) = − 1 equation for 0 ≤ x ≤ 360° cos 2 x = 2 cos 2 x − 1 Replace cos 2x with Determine quadrants 3 ( 2 cos x − 1) + cos x = −1 2 Substitute cos x = − 2 3 cos x = 1 2 6 cos 2 x + cos x − 2 = 0 Factorise x = 48° acute x = 60° S Simplify acute A S A ( 3cos x + 2 ) ( 2 cos x − 1) = 0 cos x = − Hence Find acute x acute 2 3 x = 48° cos x = acute 1 2 x = 60° T C x = 132° x = 228° T C x = 60° x = 300° Solutions are: x= 60°, 132°, 228° and 300° Previous Table of exact values Quit Quit Hint Next
  • 74. Maths4Scotland Higher ( π 6 ) 2sin x − Solve the2equation= 1 sin Rearrange ) ( ) ( π = 6 Determine quadrants T 2x − ) π 6 = and for range ( 0 ≤ x ≤ 2π ⇒ 0 ≤ 2 x ≤ 4π S 0 ≤ 2 x ≤ 2π for range 1 = 2 π acute 2 x − 6 Find acute x Note range ( π 2x − 6 for 0 ≤ x ≤ 2π 2x − A π 6 ) = π 6 ( 2x − π 6 π 6 ) = 5π 6 ) = 17π 6 2π ≤ 2 x ≤ 4π 13π 6 ( 2x − Solutions are: x= C π π 7π 3π , , , 6 2 6 2 Hint Previous Table of exact values Quit Quit Next
  • 75. Maths4Scotland Higher a) Write the equation cos 2θ + 8 cos θ + 9 = 0 in terms of cos θ and show that for cos θ it has equal roots. b) Show that there are no real roots for θ Replace cos 2θ with Rearrange Divide by 2 Factorise Deduction cos 2θ = 2 cos 2 θ − 1 Try to solve: ( cos θ + 2 ) = 0 2 cos 2 θ + 8cos θ + 8 = 0 cos θ = −2 cos 2 θ + 4 cos θ + 4 = 0 No solution Hence there are no real solutions for θ ( cos θ + 2 ) ( cos θ + 2 ) = 0 Equal roots for cos θ Hint Previous Quit Quit Next
  • 76. Maths4Scotland Higher Solve algebraically, the equation sin 2x + sin x = 0, 0 ≤ x ≤ 360 Replace sin 2x 2sin x cos x + sin x = 0 Determine quadrants sin x ( 2 cos x + 1) = 0 for cos x S A Common factor Hence sin x = 0 or Determine x 2 cos x + 1 = 0 ⇒ cos x = − 1 2 1 2 acute x = 60° x = 0°, Previous Table of exact values C x = 120°, 240° sin x = 0 ⇒ x = 0°, 360° cos x = − ⇒ T Quit 120°, 240°, 360° Quit Hint Next
  • 77. Maths4Scotland Higher Find the exact solutions of 4sin2 x = 1, 0 ≤ x ≤ 2π sin 2 x = Rearrange Take square roots Find acute x 1 4 sin x = ± 1 2 x = π 6 acute Determine quadrants for sin x S T + and – from the square root requires all 4 quadrants A C π 5π 7π 11π x = , , , 6 6 6 6 Hint Previous Table of exact values Quit Quit Next
  • 78. Maths4Scotland Higher Solve the equation x + cos x = 0 cos 2 Replace cos 2x with for 0 ≤ x ≤ 360° cos 2 x = 2 cos 2 x − 1 Substitute 2 cos 2 x + cos x − 1 = 0 Factorise cos x = 2 cos 2 x − 1 + cos x = 0 Simplify Determine quadrants 1 2 ( 2 cos x − 1) ( cos x + 1) = 0 cos x = Hence Find acute x acute 1 2 x = 60° acute S cos x = −1 x = 60° A T C x = 60° x = 300° x = 180° Solutions are: x= 60°, 180° and 300° Previous Table of exact values Quit Quit Hint Next
  • 79. Maths4Scotland Higher cos Solve algebraically, the equation 2 x + 5cos x − 2 = 0 Replace cos 2x with Substitute cos 2 x = 2 cos 2 x − 1 for 0 ≤ x ≤ 360° Determine quadrants 2 cos x − 1 + 5cos x − 2 = 0 2 cos x = acute Simplify 2 cos 2 x + 5cos x − 3 = 0 Factorise 1 2 x = 60° ( 2 cos x − 1) ( cos x + 3) = 0 Hence Find acute x cos x = acute 1 2 x = 60° S cos x = −3 Discard above A T C x = 60° x = 300° Solutions are: x= 60° and 300° Previous Table of exact values Quit Quit Hint Next
  • 80. Maths4Scotland Higher You have completed all Previous 12 questions in this presentation Quit Quit Back to start
  • 81. Maths4Scotland Higher Table of exact values 30° sin cos tan Return 45° 60° π 6 1 2 π 4 π 3 1 2 1 2 3 2 3 2 1 3 1 1 2 3
  • 82. Maths4Scotland Higher You have completed all Previous 12 questions in this presentation Quit Quit Back to start