SlideShare une entreprise Scribd logo
1  sur  137
Télécharger pour lire hors ligne
Deep learning
A primer for the curious developer

Uwe Friedrichsen & Dr. Shirin Glander –codecentric AG – 2018
@ufried

Uwe Friedrichsen

uwe.friedrichsen@codecentric.de
@ShirinGlander

Dr. Shirin Glander

shirin.glander@codecentric.de
Why should I care about Deep Learning?
Deep learning has the potential to affect white collar workers (including IT)
in a similar way as robots affected blue collar workers.
What is Deep Learning?

Some success stories
What is Deep Learning?

A rough classification
AI

Artificial
Intelligence
ML

Machine
Learning
RL

Representational
Learning
DL

Deep
Learning
Traditional AI




Focus on problems that are ...
•  ... hard for humans
•  ... straightforward for computers
•  ... can be formally described
Deep Learning




Focus on problems that are ...
•  ... intuitive for humans
•  ... difficult for computers
(hard to be described formally)
•  ... best learnt from experience
Where does Deep Learning come from?
General evolution


•  Two opposed forces
•  Recreation of biological neural processing
•  Abstract mathematical models (mostly linear algebra)
•  Results in different models and algorithms
•  No clear winner yet
Cybernetics (ca. 1940 - 1960)

•  ADALINE, Perceptron
•  Linear models, typically no hidden layers
•  Stochastic Gradient Descent (SGD)
•  Limited applicability
•  E.g., ADALINE could not learn XOR
•  Resulted in “First winter of ANN” (Artificial Neural Networks)
Connectionism (ca. 1980 - 1990)

•  Neocognitron
•  Non-linear models, distributed feature representation
•  Backpropagation
•  Typically 1, rarely more hidden layers
•  First approaches of sequence modeling
•  LSTM (Long short-term memory) in 1997
•  Unrealistic expectations nurtured by ventures
•  Resulted in “Second winter of ANN”
Deep Learning (ca. 2006 -)


•  Improved algorithms, advanced computing power
•  Enabled training much larger and deeper networks
•  Enabled training much larger data sets
•  Typically several to many hidden layers
•  Overcame the “feature extraction dilemma”
What is Deep Learning used for?
Deep Learning application areas




•  Classification (incl. missing inputs)
•  Regression (value prediction)
•  Function prediction
•  Density estimation
•  Structured output (e.g., translation)





•  Anomaly detection
•  Synthesis and sampling
•  Denoising
•  Compression (dimension reduction)
•  ...
How does Deep Learning work?

A first (scientifically inspired) approach
„A computer program is said to learn
•  from experience E
•  with respect to some class of tasks T
•  and performance measure P
if its performance at tasks in T,
as measured by P,
improves with experience E.”

-- T. Mitchell, Machine Learning, p. 2, McGraw Hill (1997)
Supervised learning,
unsupervised learning,
reinforcement learning, ...
Too difficult to solve
with fixed programs
designed by humans
Accuracy vs. error rate,
training vs. test set, ...
Err ...
Hmm ...
Well ...
I don’t get it!
How does Deep Learning work?

A second (more down-to-earth) approach
Operating
principle
Training
Network
types
Deep
Learning
Deep
Learning
Operating
principle
Training
Network
types
Structure
Behavior
Weight
Operation
Neuron
Data
CNN
Types
Challenges
Quality
measure
RNN
 LSTM
Auto-
encoder
GAN
MLP
Training
set
Cost
function
Transfer
learning
Regulari-
zation
Layer
Connection
Hyper-
parameter
Activation
function
Reinforce-
ment
Unsuper-
vised
Supervised
Stochastic
gradient
descent
Back-
propagation
Under-/
Overfitting
Validation/
Test set
Optimization
procedure
Deep
Learning
Operating
principle
Training
Network
types
Structure
Behavior
Operating
principle
Structure
Behavior
Operating
principle
Operating
principle
Structure
Behavior
Neuron
Neuron

•  Design inspired by biological neurons
•  One or more inputs
•  Processing (and state storage) unit
•  One or more outputs
•  In practice often implemented as tensor transformations
•  Relevance of internal state depends on network type
•  Usually negligible for feed-forward networks
•  Usually relevant for recurrent networks
Neuron

Processing

(+ State)
Output(s)
Input(s)
...
...
Layer
Operating
principle
Structure
Behavior
Neuron
Layer

•  Neurons typically organized in layers
•  Input and output layer as default
•  Optionally one or more hidden layer
•  Layer layout can have 1-n dimensions
•  Neurons in different layers can have different properties
•  Different layers responsible for different (sub-)tasks
Output layer
Input layer
...
N
1
2
Hidden layer(s)
...
Connection
Operating
principle
Structure
Behavior
Neuron
Layer
Connection

•  Usually connect input and output tensor in a 1:1 manner
•  Connect between layers (output layer N-1 à input layer N)
•  Layers can be fully or partially (sparsely) connected
•  RNNs also have backward and/or self connections
•  Some networks have connections between neurons
of the same layer (e.g., Hopfield nets, Boltzmann machines)
Input tensor(s)
Output tensor(s)
Weight
Operating
principle
Structure
Behavior
Neuron
Layer
Connection
Weight

•  (Logically) augments a connection
•  Used to amplify or dampen a signal sent over a connection
•  The actual “memory” of the network
•  The “right” values of the weights are learned during training
•  Can also be used to introduce a bias for a neuron
•  By connecting it to an extra neuron that constantly emits 1
W
 Weight
Operation
Operating
principle
Structure
Behavior
Neuron
Layer
Weight
Connection
Input tensor(s)
Output tensor(s)
Step 1

•  For each neuron of input layer
•  Copy resp. input tensor’s value to neuron’s input
•  Calculate state/output using activation function
(typically linear function, passing value through)
Step 2-N

•  For each hidden layer and output layer in their order
•  For each neuron of the layer
•  Calculate weighted sum on inputs
•  Calculate state/output using activation function
(see examples later)
Final step

•  For each neuron of output layer
•  Copy neuron’s output to resp. output tensor’s value
Input tensor(s)
Output tensor(s)
Step 1
Final step
Step 2-N
•  Default update procedure (most widespread)
•  All neuron per layer in parallel
•  Different update procedures exist
•  E.g., some Hopfield net implementations
randomly pick neurons for update
Activation
function
Operating
principle
Structure
Behavior
Neuron
Layer
Weight
Connection
Operation
Linear function

•  Easy to handle
•  Cannot handle
non-linear problems
Logistic sigmoid function

•  Very widespread
•  Delimits output to [0, 1]
•  Vanishing gradient
problem
Hyperbolic tangent

•  Very widespread
•  Delimits output to [-1, 1]
•  Vanishing gradient
problem
Rectified linear unit (ReLU)

•  Easy to handle
•  No derivative in 0
•  Dying ReLU problem
•  Can be mitigated, e.g.,
by using leaky ReLU
Softplus

•  Smooth approximation
of ReLU
•  ReLU usually performs
better
•  Thus, use of softplus
usually discouraged
Hyper-
parameter
Operating
principle
Structure
Behavior
Neuron
Layer
Weight
Connection
Operation
Activation
function
Hyperparameter


•  Influence network and algorithm behavior
•  Often influence model capacity
•  Not learned, but usually manually optimized
•  Currently quite some research interest in
automatic hyperparameter optimization
Examples

•  Number of hidden layers
•  Number of hidden units
•  Learning rate
•  Number of clusters
•  Weight decay coefficient
•  Convolution kernel width
•  ...
Training
Deep
Learning
Operating
principle
Network
types
Structure
Behavior
Weight
Operation
Neuron
Layer
Connection
Hyper-
parameter
Activation
function
Quality
measure
Training
Cost function
Training
Quality
measure
Cost function (a.k.a. loss function)

•  Determines distance from optimal performance
•  Mean squared error as simple (and widespread) example
Cost function (a.k.a. loss function)

•  Determines distance from optimal performance
•  Mean squared error as simple (and widespread) example
•  Often augmented with regularization term
for better generalization (see challenges)
Optimization
procedure
Training
Quality
measure
Cost function
Training
Quality
measure
Stochastic
gradient
descent
Cost function
Optimization
procedure
Stochastic gradient descent

•  Direct calculation of minimum often not feasible
•  Instead stepwise “descent” using the gradient
à Gradient descent
Stochastic gradient descent

•  Direct calculation of minimum often not feasible
•  Instead stepwise “descent” using the gradient
à Gradient descent
•  Not feasible for large training sets
•  Use (small) random sample of training set per iteration
à Stochastic gradient descent (SGD)
Stochastic gradient descent
Gradient
Direction
Steepness
x
Stochastic gradient descent
x
ε * gradient
x’
Learning
rate ε
Training
Quality
measure
Stochastic
gradient
descent
 Back-
propagation
Cost function
Optimization
procedure
Backpropagation

•  Procedure to calculate new weights based on loss function
Depends on
cost function
Depends on
activation function
Depends on
input calculation
Backpropagation

•  Procedure to calculate new weights based on loss function
•  Usually “back-propagated” layer-wise
•  Most widespread optimization procedure
Depends on
cost function
Depends on
activation function
Depends on
input calculation
Data
Training
Quality
measure
Stochastic
gradient
descent
 Back-
propagation
Cost function
Optimization
procedure
Training set
Validation/
Test set
Data
Training
Quality
measure
Stochastic
gradient
descent
 Back-
propagation
Cost function
Optimization
procedure
Data set

•  Consists of examples (a.k.a. data points)
•  Example always contains input tensor
•  Sometimes also contains expected output tensor
(depending on training type)
•  Data set usually split up in several parts
•  Training set – optimize accuracy (always used)
•  Test set – test generalization (often used)
•  Validation set – tune hyperparameters (sometimes used)
Data
Types
Training
Quality
measure
Stochastic
gradient
descent
 Back-
propagation
Training set
Validation/
Test set
Cost function
Optimization
procedure
Supervised
Data
Types
Training
Quality
measure
Stochastic
gradient
descent
 Back-
propagation
Training set
Validation/
Test set
Cost function
Optimization
procedure
Supervised learning

•  Typically learns from a large, yet finite set of examples
•  Examples consist of input and output tensor
•  Output tensor describes desired output
•  Output tensor also called label or target
•  Typical application areas
•  Classification
•  Regression and function prediction
•  Structured output problems
Unsupervised
Data
Types
Supervised
Training
Quality
measure
Stochastic
gradient
descent
 Back-
propagation
Training set
Validation/
Test set
Cost function
Optimization
procedure
Unsupervised learning

•  Typically learns from a large, yet finite set of examples
•  Examples consist of input tensor only
•  Learning algorithm tries to learn useful properties of the data
•  Requires different type of cost functions
•  Typical application areas
•  Clustering, density estimations
•  Denoising, compression (dimension reduction)
•  Synthesis and sampling
Reinforcement
Data
Types
Supervised
Training
Quality
measure
Unsupervised
Stochastic
gradient
descent
 Back-
propagation
Training set
Validation/
Test set
Cost function
Optimization
procedure
Reinforcement learning

•  Continuously optimizes interaction with an environment
based on reward-based learning
Agent
Environment
State t
 Reward t
State t+1
 Reward t+1
Action t
Reinforcement learning

•  Continuously optimizes interaction with an environment
based on reward-based learning
•  Goal is selection of action with highest expected reward
•  Takes (discounted) expected future rewards into account
•  Labeling of examples replaced by reward function
•  Can continuously learn à data set can be infinite
•  Typically used to solve complex tasks in (increasingly)
complex environments with (very) limited feedback
Challenges
Data
Types
Supervised
Training
Quality
measure
Unsupervised
Reinforcement
Stochastic
gradient
descent
 Back-
propagation
Training set
Validation/
Test set
Cost function
Optimization
procedure
Data
Types
Supervised
Training
Quality
measure
Unsupervised
Reinforcement
Stochastic
gradient
descent
 Back-
propagation
Under-/
Overfitting
Training set
Validation/
Test set
Cost function
Challenges
Optimization
procedure
Underfitting and Overfitting

•  Training error describes how good training data is learnt
•  Test error is an indicator for generalization capability
•  Core challenge for all machine learning type algorithms
1.  Make training error small
2.  Make gap between training and test error small
•  Underfitting is the violation of #1
•  Overfitting is the violation of #2
Good fit
Underfitting
 Overfitting
Training data
 Test data
Underfitting and Overfitting



•  Under- and overfitting influenced by model capacity
•  Too low capacity usually leads to underfitting
•  Too high capacity usually leads to overfitting
•  Finding the right capacity is a challenge
Data
Types
Supervised
Training
Quality
measure
Unsupervised
Reinforcement
Stochastic
gradient
descent
 Back-
propagation
Under-/
Overfitting
Training set
Validation/
Test set
Cost function
Regularization
Challenges
Optimization
procedure
Regularization

•  Regularization is a modification applied to learning algorithm
•  to reduce the generalization error
•  but not the training error
•  Weight decay is a typical regularization measure
Data
Types
Supervised
Training
Quality
measure
Unsupervised
Reinforcement
Stochastic
gradient
descent
 Back-
propagation
Under-/
Overfitting
Transfer
learning
Training set
Validation/
Test set
Cost function
Regularization
Challenges
Optimization
procedure
Transfer learning


•  How to transfer insights between related tasks
•  E.g., is it possible to transfer knowledge gained while training
to recognize cars on the problem of recognizing trucks?
•  General machine learning problem
•  Subject of many research activities
Network
types
Deep
Learning
Operating
principle
Training
Structure
Behavior
Weight
Operation
Neuron
Data
Types
Challenges
Quality
measure
Training
set
Cost
function
Transfer
learning
Regulari-
zation
Layer
Connection
Hyper-
parameter
Activation
function
Reinforce-
ment
Unsuper-
vised
Supervised
Stochastic
gradient
descent
Back-
propagation
Under-/
Overfitting
Validation/
Test set
Optimization
procedure
MLP

Multilayer
Perceptron
Network
types
Multilayer perceptron (MLP)

•  Multilayer feed-forward networks
•  “Vanilla” neural networks
•  Typically used for
•  Function approximation
•  Regression
•  Classification
Image source: https://deeplearning4j.org
CNN

Convolutional
Neural Network
Network
types
MLP

Multilayer
Perceptron
Convolutional neural network (CNN)

•  Special type of MLP for image processing
•  Connects convolutional neuron only with receptive field
•  Advantages
•  Less computing
power required
•  Often even better
recognition rates
•  Inspired by organization of visual cortex
Image source: https://deeplearning4j.org
RNN

Recurrent
Neural Network
Network
types
MLP

Multilayer
Perceptron
CNN

Convolutional
Neural Network
Recurrent neural network (RNN)

•  Implements internal feedback loops
•  Provides a temporal memory
•  Typically used for
•  Speech recognition
•  Text recognition
•  Time series processing
Image source: https://deeplearning4j.org
LSTM

Long
Short-Term
Memory
Network
types
MLP

Multilayer
Perceptron
CNN

Convolutional
Neural Network
RNN

Recurrent
Neural Network
Long short-term memory (LSTM)

•  Special type of RNN
•  Uses special LSTM units
•  Can implement very long-term memory
while avoiding the vanishing/exploding
gradient problem
•  Same application areas as RNN
Image source: https://deeplearning4j.org
Auto-
encoder
Network
types
MLP

Multilayer
Perceptron
CNN

Convolutional
Neural Network
RNN

Recurrent
Neural Network
LSTM

Long
Short-Term
Memory
Autoencoder
•  Special type of MLP
•  Reproduces input at output layer
•  Consists of encoder and decoder
•  Usually configured undercomplete
•  Learns efficient feature codings
•  Dimension reduction (incl. compression)
•  Denoising
•  Usually needs pre-training for not only
reconstructing average of training set
Image source: https://deeplearning4j.org
GAN

Generative
Adversarial
Networks
Network
types
MLP

Multilayer
Perceptron
CNN

Convolutional
Neural Network
RNN

Recurrent
Neural Network
Auto-
encoder
LSTM

Long
Short-Term
Memory
Generative adversarial networks (GAN)
•  Consists of two (adversarial) networks
•  Generator creating fake images
•  Discriminator trying to identify
fake images
•  Typically used for
•  Synthesis and sampling
(e.g., textures in games)
•  Structured output with variance (e.g., variations of a design or voice generation)
•  Probably best known for creating fake celebrity images
Image source: https://deeplearning4j.org
Deep
Learning
Operating
principle
Training
Network
types
Structure
Behavior
Weight
Operation
Neuron
Data
CNN
Types
Challenges
Quality
measure
RNN
 LSTM
Auto-
encoder
GAN
MLP
Training
set
Cost
function
Transfer
learning
Regulari-
zation
Layer
Connection
Hyper-
parameter
Activation
function
Reinforce-
ment
Unsuper-
vised
Supervised
Stochastic
gradient
descent
Back-
propagation
Under-/
Overfitting
Validation/
Test set
Optimization
procedure
How does Deep Learning feel in practice?
What issues might I face if diving deeper?
Issues you might face

•  Very fast moving research domain
•  You need the math. Really!
•  How much data do you have?
•  GDPR: Can you explain the decision of your network?
•  Meta-Learning as the next step
•  Monopolization of research and knowledge
Wrap-up
Wrap-up

•  Broad, diverse topic
•  Very good library support and more
•  Very active research topic
•  No free lunch
•  You need the math!

à Exciting and important topic – become a part of it!
References

•  I. Goodfellow, Y. Bengio, A. Courville, ”Deep learning",
MIT press, 2016, also available via https://www.deeplearningbook.org
•  C. Perez, “The Deep Learning AI Playbook”,
Intuition Machine Inc., 2017
•  F. Chollet, "Deep Learning with Python",
Manning Publications, 2017
•  OpenAI, https://openai.com
•  Keras, https://keras.io
•  Deep Learning for Java, https://deeplearning4j.org/index.html
•  Deep Learning (Resource site), http://deeplearning.net
@ShirinGlander

Dr. Shirin Glander

shirin.glander@codecentric.de
@ufried

Uwe Friedrichsen

uwe.friedrichsen@codecentric.de

Contenu connexe

Tendances

2010 deep learning and unsupervised feature learning
2010 deep learning and unsupervised feature learning2010 deep learning and unsupervised feature learning
2010 deep learning and unsupervised feature learning
Van Thanh
 
Yann le cun
Yann le cunYann le cun
Yann le cun
Yandex
 
PR-258: From ImageNet to Image Classification: Contextualizing Progress on Be...
PR-258: From ImageNet to Image Classification: Contextualizing Progress on Be...PR-258: From ImageNet to Image Classification: Contextualizing Progress on Be...
PR-258: From ImageNet to Image Classification: Contextualizing Progress on Be...
Jinwon Lee
 
Transfer Learning and Fine-tuning Deep Neural Networks
 Transfer Learning and Fine-tuning Deep Neural Networks Transfer Learning and Fine-tuning Deep Neural Networks
Transfer Learning and Fine-tuning Deep Neural Networks
PyData
 

Tendances (20)

Deep Learning Sample Class (Jon Lederman)
Deep Learning Sample Class (Jon Lederman)Deep Learning Sample Class (Jon Lederman)
Deep Learning Sample Class (Jon Lederman)
 
2010 deep learning and unsupervised feature learning
2010 deep learning and unsupervised feature learning2010 deep learning and unsupervised feature learning
2010 deep learning and unsupervised feature learning
 
"An Introduction to Machine Learning and How to Teach Machines to See," a Pre...
"An Introduction to Machine Learning and How to Teach Machines to See," a Pre..."An Introduction to Machine Learning and How to Teach Machines to See," a Pre...
"An Introduction to Machine Learning and How to Teach Machines to See," a Pre...
 
Artificial Intelligence Course: Linear models
Artificial Intelligence Course: Linear models Artificial Intelligence Course: Linear models
Artificial Intelligence Course: Linear models
 
Introduction to machine learning
Introduction to machine learningIntroduction to machine learning
Introduction to machine learning
 
Introduction to deep learning
Introduction to deep learningIntroduction to deep learning
Introduction to deep learning
 
Piotr Mirowski - Review Autoencoders (Deep Learning) - CIUUK14
Piotr Mirowski - Review Autoencoders (Deep Learning) - CIUUK14Piotr Mirowski - Review Autoencoders (Deep Learning) - CIUUK14
Piotr Mirowski - Review Autoencoders (Deep Learning) - CIUUK14
 
An Introduction to Deep Learning
An Introduction to Deep LearningAn Introduction to Deep Learning
An Introduction to Deep Learning
 
Deep Learning in Recommender Systems - RecSys Summer School 2017
Deep Learning in Recommender Systems - RecSys Summer School 2017Deep Learning in Recommender Systems - RecSys Summer School 2017
Deep Learning in Recommender Systems - RecSys Summer School 2017
 
Yann le cun
Yann le cunYann le cun
Yann le cun
 
PR-258: From ImageNet to Image Classification: Contextualizing Progress on Be...
PR-258: From ImageNet to Image Classification: Contextualizing Progress on Be...PR-258: From ImageNet to Image Classification: Contextualizing Progress on Be...
PR-258: From ImageNet to Image Classification: Contextualizing Progress on Be...
 
Deep learning in Computer Vision
Deep learning in Computer VisionDeep learning in Computer Vision
Deep learning in Computer Vision
 
Transfer Learning: An overview
Transfer Learning: An overviewTransfer Learning: An overview
Transfer Learning: An overview
 
DEF CON 24 - Clarence Chio - machine duping 101
DEF CON 24 - Clarence Chio - machine duping 101DEF CON 24 - Clarence Chio - machine duping 101
DEF CON 24 - Clarence Chio - machine duping 101
 
Deep Style: Using Variational Auto-encoders for Image Generation
Deep Style: Using Variational Auto-encoders for Image GenerationDeep Style: Using Variational Auto-encoders for Image Generation
Deep Style: Using Variational Auto-encoders for Image Generation
 
Deep Learning
Deep LearningDeep Learning
Deep Learning
 
Deep Learning
Deep LearningDeep Learning
Deep Learning
 
Machine Learning, Deep Learning and Data Analysis Introduction
Machine Learning, Deep Learning and Data Analysis IntroductionMachine Learning, Deep Learning and Data Analysis Introduction
Machine Learning, Deep Learning and Data Analysis Introduction
 
Transfer Learning and Fine-tuning Deep Neural Networks
 Transfer Learning and Fine-tuning Deep Neural Networks Transfer Learning and Fine-tuning Deep Neural Networks
Transfer Learning and Fine-tuning Deep Neural Networks
 
Deep learning
Deep learningDeep learning
Deep learning
 

Similaire à Deep learning - a primer

Separating Hype from Reality in Deep Learning with Sameer Farooqui
 Separating Hype from Reality in Deep Learning with Sameer Farooqui Separating Hype from Reality in Deep Learning with Sameer Farooqui
Separating Hype from Reality in Deep Learning with Sameer Farooqui
Databricks
 
9.b-CMPS 403-F20-Session 9-Intro to ML II.pdf
9.b-CMPS 403-F20-Session 9-Intro to ML II.pdf9.b-CMPS 403-F20-Session 9-Intro to ML II.pdf
9.b-CMPS 403-F20-Session 9-Intro to ML II.pdf
AmirMohamedNabilSale
 

Similaire à Deep learning - a primer (20)

EssentialsOfMachineLearning.pdf
EssentialsOfMachineLearning.pdfEssentialsOfMachineLearning.pdf
EssentialsOfMachineLearning.pdf
 
Introduction to Deep learning and H2O for beginner's
Introduction to Deep learning and H2O for beginner'sIntroduction to Deep learning and H2O for beginner's
Introduction to Deep learning and H2O for beginner's
 
Machine Duping 101: Pwning Deep Learning Systems
Machine Duping 101: Pwning Deep Learning SystemsMachine Duping 101: Pwning Deep Learning Systems
Machine Duping 101: Pwning Deep Learning Systems
 
Deep learning from a novice perspective
Deep learning from a novice perspectiveDeep learning from a novice perspective
Deep learning from a novice perspective
 
Separating Hype from Reality in Deep Learning with Sameer Farooqui
 Separating Hype from Reality in Deep Learning with Sameer Farooqui Separating Hype from Reality in Deep Learning with Sameer Farooqui
Separating Hype from Reality in Deep Learning with Sameer Farooqui
 
V2.0 open power ai virtual university deep learning and ai introduction
V2.0 open power ai virtual university   deep learning and ai introductionV2.0 open power ai virtual university   deep learning and ai introduction
V2.0 open power ai virtual university deep learning and ai introduction
 
Facial Emotion Detection on Children's Emotional Face
Facial Emotion Detection on Children's Emotional FaceFacial Emotion Detection on Children's Emotional Face
Facial Emotion Detection on Children's Emotional Face
 
1. Introduction to deep learning.pptx
1. Introduction to deep learning.pptx1. Introduction to deep learning.pptx
1. Introduction to deep learning.pptx
 
tensorflow.pptx
tensorflow.pptxtensorflow.pptx
tensorflow.pptx
 
Deep learning: the future of recommendations
Deep learning: the future of recommendationsDeep learning: the future of recommendations
Deep learning: the future of recommendations
 
Machine learning for IoT - unpacking the blackbox
Machine learning for IoT - unpacking the blackboxMachine learning for IoT - unpacking the blackbox
Machine learning for IoT - unpacking the blackbox
 
DeepLearningLecture.pptx
DeepLearningLecture.pptxDeepLearningLecture.pptx
DeepLearningLecture.pptx
 
AI and Deep Learning
AI and Deep Learning AI and Deep Learning
AI and Deep Learning
 
Introduction to deep learning
Introduction to deep learningIntroduction to deep learning
Introduction to deep learning
 
lecture 01.1.ppt
lecture 01.1.pptlecture 01.1.ppt
lecture 01.1.ppt
 
Hyperparameter Tuning
Hyperparameter TuningHyperparameter Tuning
Hyperparameter Tuning
 
Deep learning Introduction and Basics
Deep learning  Introduction and BasicsDeep learning  Introduction and Basics
Deep learning Introduction and Basics
 
An introduction to Machine Learning (and a little bit of Deep Learning)
An introduction to Machine Learning (and a little bit of Deep Learning)An introduction to Machine Learning (and a little bit of Deep Learning)
An introduction to Machine Learning (and a little bit of Deep Learning)
 
Deep learning introduction
Deep learning introductionDeep learning introduction
Deep learning introduction
 
9.b-CMPS 403-F20-Session 9-Intro to ML II.pdf
9.b-CMPS 403-F20-Session 9-Intro to ML II.pdf9.b-CMPS 403-F20-Session 9-Intro to ML II.pdf
9.b-CMPS 403-F20-Session 9-Intro to ML II.pdf
 

Plus de Shirin Elsinghorst

SAP webinar: Explaining Keras Image Classification Models with LIME
SAP webinar: Explaining Keras Image Classification Models with LIMESAP webinar: Explaining Keras Image Classification Models with LIME
SAP webinar: Explaining Keras Image Classification Models with LIME
Shirin Elsinghorst
 

Plus de Shirin Elsinghorst (10)

Transparente und Verantwortungsbewusste KI
Transparente und Verantwortungsbewusste KITransparente und Verantwortungsbewusste KI
Transparente und Verantwortungsbewusste KI
 
Datenstrategie in der Praxis
Datenstrategie in der PraxisDatenstrategie in der Praxis
Datenstrategie in der Praxis
 
RICHTIG GUT: DIE QUALITÄT VON MODELLEN VERSTEHEN
RICHTIG GUT: DIE QUALITÄT VON MODELLEN VERSTEHENRICHTIG GUT: DIE QUALITÄT VON MODELLEN VERSTEHEN
RICHTIG GUT: DIE QUALITÄT VON MODELLEN VERSTEHEN
 
Real-World Data Science (Fraud Detection, Customer Churn & Predictive Mainten...
Real-World Data Science (Fraud Detection, Customer Churn & Predictive Mainten...Real-World Data Science (Fraud Detection, Customer Churn & Predictive Mainten...
Real-World Data Science (Fraud Detection, Customer Churn & Predictive Mainten...
 
SAP webinar: Explaining Keras Image Classification Models with LIME
SAP webinar: Explaining Keras Image Classification Models with LIMESAP webinar: Explaining Keras Image Classification Models with LIME
SAP webinar: Explaining Keras Image Classification Models with LIME
 
Workshop - Introduction to Machine Learning with R
Workshop - Introduction to Machine Learning with RWorkshop - Introduction to Machine Learning with R
Workshop - Introduction to Machine Learning with R
 
HH Data Science Meetup: Explaining complex machine learning models with LIME
HH Data Science Meetup: Explaining complex machine learning models with LIMEHH Data Science Meetup: Explaining complex machine learning models with LIME
HH Data Science Meetup: Explaining complex machine learning models with LIME
 
HH Data Science Meetup: Explaining complex machine learning models with LIME
HH Data Science Meetup: Explaining complex machine learning models with LIMEHH Data Science Meetup: Explaining complex machine learning models with LIME
HH Data Science Meetup: Explaining complex machine learning models with LIME
 
Ruhr.PY - Introducing Deep Learning with Keras and Python
Ruhr.PY - Introducing Deep Learning with Keras and PythonRuhr.PY - Introducing Deep Learning with Keras and Python
Ruhr.PY - Introducing Deep Learning with Keras and Python
 
From Biology to Industry. A Blogger’s Journey to Data Science.
From Biology to Industry. A Blogger’s Journey to Data Science.From Biology to Industry. A Blogger’s Journey to Data Science.
From Biology to Industry. A Blogger’s Journey to Data Science.
 

Dernier

+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(☎️+971_581248768%)**%*]'#abortion pills for sale in dubai@
 

Dernier (20)

Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
Top 10 Most Downloaded Games on Play Store in 2024
Top 10 Most Downloaded Games on Play Store in 2024Top 10 Most Downloaded Games on Play Store in 2024
Top 10 Most Downloaded Games on Play Store in 2024
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
Top 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live StreamsTop 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live Streams
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Manulife - Insurer Innovation Award 2024
Manulife - Insurer Innovation Award 2024Manulife - Insurer Innovation Award 2024
Manulife - Insurer Innovation Award 2024
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 

Deep learning - a primer