SlideShare une entreprise Scribd logo
1  sur  1
Télécharger pour lire hors ligne
I.  Abstract	
  
The	
  evolu)onary	
  mechanism	
  of	
  gene	
  evolu)on	
  has	
  been	
  studied	
  in	
  
many	
  organisms,	
  but	
  there	
  is	
  s)ll	
  a	
  great	
  deal	
  unknown	
  about	
  this	
  
process.	
  To	
  be<er	
  comprehend	
  this	
  mechanism,	
  we	
  used	
  
Agrobacterium	
  as	
  a	
  model	
  organism.	
  	
  Proline	
  arises	
  through	
  a	
  
primary	
  pathway	
  that	
  uses	
  the	
  proC	
  gene	
  in	
  the	
  last	
  step	
  by	
  taking	
  
the	
  precursor	
  and	
  conver)ng	
  it	
  to	
  proline	
  (fig	
  1)	
  Mul)ple	
  copies	
  of	
  
the	
  proC	
  gene	
  have	
  been	
  iden)fied	
  in	
  species	
  of	
  Agrobacterium	
  
including	
  rhizogenes	
  A4,	
  vi7s	
  S4,	
  and	
  radiobacter	
  K84(table	
  1).	
  
Agrobacterium	
  rabiobacter	
  K84	
  contains	
  proC1-­‐3173	
  and	
  proC1-­‐9000	
  
on	
  chromosome	
  one	
  and	
  another,	
  proC2-­‐	
  8082,	
  on	
  chromosome	
  
two.	
  Agrobacterium	
  rhizogenes	
  A4	
  has	
  three	
  genes	
  on	
  chromosome	
  
one,	
  proC1-­‐99000,	
  proC1-­‐65500,	
  and	
  proC-­‐39290	
  and	
  the	
  last	
  proC2-­‐	
  
47450	
  present	
  on	
  chromosome	
  two.	
  The	
  last	
  Agrobacterium	
  vi7s	
  S4	
  
has	
  only	
  proC1-­‐3168	
  present	
  on	
  chromosome	
  one.	
  We	
  screened	
  
each	
  proC	
  gene	
  using	
  func)onal	
  complementa)on	
  to	
  determine	
  if	
  
each	
  gene	
  alone	
  when	
  inserted,	
  via	
  a	
  pKt-­‐1	
  vector	
  created	
  though	
  
ligase	
  independent	
  cloning,	
  into	
  E.	
  coli	
  is	
  adequate	
  for	
  cell	
  survival	
  in	
  
a	
  proline-­‐deficient	
  environment.	
  Func)onal	
  complementa)on	
  
revealed	
  that	
  all	
  proC	
  genes	
  tested	
  in	
  the	
  three	
  Agrobacterium	
  were	
  
necessary	
  for	
  cell	
  viability	
  except	
  for	
  the	
  Agrobacterium	
  A4	
  
proC2-­‐45470.	
  proC1-­‐45470	
  showed	
  no	
  cell	
  growth	
  when	
  it	
  was	
  the	
  
only	
  proC	
  gene	
  present	
  within	
  the	
  E.	
  coli.	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
I.  Background	
  	
  
Gene	
  evolu)on	
  can	
  give	
  rise	
  to	
  new	
  gene	
  func)ons	
  and	
  appears	
  to	
  
use	
  various	
  mechanisms	
  to	
  give	
  rise	
  to	
  the	
  duplicate	
  genes	
  that	
  can	
  
become	
  fixed	
  and	
  accumulate	
  muta)ons.	
  The	
  cri)cal	
  component	
  of	
  
gene	
  evolu)on	
  can	
  give	
  rise	
  to	
  new	
  genes	
  through	
  lateral	
  and	
  
internal	
  gene	
  transfer	
  (fig	
  3).	
  Duplicated	
  genes	
  can	
  either	
  give	
  rise	
  to	
  
genes	
  with	
  new	
  func)ons,	
  become	
  psuedogenes,	
  or	
  the	
  func)on	
  can	
  
be	
  subdivided	
  between	
  the	
  new	
  and	
  old	
  gene	
  (fig	
  2).	
  Agrobacterium	
  
share	
  the	
  common	
  biochemical	
  pathways	
  of	
  proline	
  biosynthesis	
  
that	
  has	
  mul)ple	
  copies	
  of	
  the	
  proC	
  gene	
  present	
  in	
  each	
  organism	
  
for	
  use	
  in	
  this	
  pathway.	
  Agrobacterium	
  are	
  a	
  commonly	
  studied	
  
Gram-­‐nega)ve	
  bacterium	
  that	
  include	
  the	
  following	
  sub-­‐Genus:	
  
•  Agrobacterium	
  vi7s	
  S4,	
  a	
  plant	
  pathogen	
  causing	
  necrosis	
  in	
  	
  
grapevine	
  roots.	
  	
  	
  
•  Agrobacterium	
  radiobacter	
  
K84,	
  a	
  biological	
  control	
  agent	
  	
  
u)lized	
  against	
  crown	
  gall	
  
disease.	
  	
  	
  
•  Agrobacterium	
  rhizogenes	
  	
  
A4,	
  a	
  plant	
  pathogen	
  causing	
  	
  
hairy	
  root	
  disease,	
  u)lized	
  in	
  the	
  	
  
crea)on	
  of	
  gene)cally	
  modified	
  	
  
organisms	
  and	
  pharmaceu)cals.	
  
	
  
Proline	
  is	
  known	
  to	
  serve	
  as	
  an	
  	
  
osmolyte,	
  consequently	
  it	
  is	
  an	
  
important	
  amino	
  acid	
  during	
  	
  
)mes	
  of	
  osmo)c	
  stress	
  for	
  
bacteria	
  and	
  plants.	
  Proline	
  is	
  an	
  
amino	
  acid	
  with	
  a	
  non-­‐polar	
  alpha-­‐amino	
  acid	
  with	
  an	
  alipha)c	
  R-­‐
group	
  and	
  is	
  essen)al	
  for	
  organism	
  viability.	
  	
  Within	
  each,	
  gene	
  
evolu)on	
  has	
  occurred	
  resul)ng	
  in	
  several	
  copies	
  of	
  the	
  proC	
  gene	
  
being	
  present.	
  
	
  
Func)onal	
  Complementa)on	
  of	
  the	
  
Proline	
  Biosynthesis	
  proC	
  Gene	
  in	
  Several	
  Agrobacterium	
  	
  	
  
Sierra	
  Sanders,	
  Jake	
  Whithurse,	
  Loa	
  Griesbach,	
  Joshua	
  Wong,	
  Kathryn	
  Ushimaru,	
  Dylan	
  Marashi,	
  Navarre	
  Freeman,	
  
	
  Thao	
  Nguyen,	
  Jake	
  Van	
  Winkle,	
  Bo	
  Valencia,	
  Laura	
  DeWald,	
  Sean	
  Morton,	
  Kathryn	
  Houmiel,	
  and	
  Derek	
  Wood	
  
Department	
  of	
  Biology,	
  Sea<le	
  Pacific	
  University	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
IV.  Methods	
  
We	
  are	
  inves)ga)ng	
  if	
  several	
  proC	
  genes	
  responsible	
  for	
  proline	
  
synthesis	
  that	
  have	
  arisen	
  from	
  gene	
  duplica)on	
  in	
  Agrobacterium	
  are	
  
capable	
  of	
  ensuring	
  viability	
  of	
  E.	
  coli	
  lacking	
  its	
  na)ve	
  proC	
  gene	
  when	
  
integrated	
  via	
  the	
  pKt-­‐1	
  vector	
  and	
  placed	
  in	
  a	
  proline	
  deficient	
  
environment	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
V.  Results	
  	
  
Newly	
  Cloned	
  Vectors	
  
	
  
	
  
	
  
	
  
Isolate gDNA
•  Using an extraction kit
isolate all ProC genes
Amplify gene of
interest
•  Design primers
•  Amplify gene with PCR
Clone gene
•  Preparing pKt vector
•  Treatment of vector
•  Hybridization of insert and
vector
Sequence gene
•  Send sequence to be
sequenced
Functional
complementation
•  Streak plates with culture and
compare results
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Agrobacterium	
   	
   	
  	
  	
  	
  	
  	
  Agrobacterium	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  vi/s	
  S4	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   	
  	
  	
  	
  	
  	
  radiobacter	
  K84	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Agrobacterium	
  rhizogenes	
  A4	
  
	
  
	
  	
  
	
  
	
  
VI.  Conclusion	
  
Clones	
  of	
  A4	
  proC-­‐65500,	
  A4	
  proC-­‐39290	
  and	
  AVI	
  proC-­‐3168	
  	
  have	
  been	
  
created	
  for	
  future	
  func)onal	
  complementa)on	
  next	
  year.	
  	
  Func)onal	
  
complementa)on	
  preformed	
  on	
  S4	
  proC-­‐3168,	
  K8	
  arad	
  proC-­‐12144	
  and	
  
and	
  A4’s	
  proC-­‐99000	
  it	
  appears	
  all	
  three	
  are	
  sufficient	
  for	
  viability	
  in	
  
proline	
  nega)ve	
  environments	
  when	
  inserted	
  into	
  a	
  mutant	
  E.	
  coli	
  
lacking	
  proC.	
  However,	
  the	
  func)onal	
  complementa)on	
  of	
  A4	
  proC47450	
  
failed	
  to	
  grow,	
  the	
  reason	
  for	
  this	
  is	
  unknown,	
  but	
  a	
  change	
  in	
  an	
  amino	
  
acid	
  in	
  the	
  sequence	
  may	
  contribute	
  to	
  the	
  observed	
  lack	
  of	
  func)on.	
  	
  	
  
VII.  Future	
  work	
  
The	
  original	
  proC1-­‐47450	
  gene	
  will	
  need	
  to	
  be	
  isolated	
  and	
  cloned	
  to	
  test	
  
for	
  func)onal	
  complementa)on	
  and	
  indicate	
  what	
  is	
  causing	
  this	
  proC	
  to	
  
no	
  longer	
  be	
  sufficient	
  for	
  viability.	
  Sequence	
  analysis	
  of	
  the	
  newly	
  
cloned	
  vectors	
  will	
  need	
  to	
  be	
  done	
  to	
  confirm	
  an	
  iden)cal	
  match	
  to	
  the	
  
original	
  gene	
  was	
  cloned	
  and	
  not	
  a	
  mutant.	
  Func)onal	
  complementa)on	
  
will	
  need	
  to	
  con)nue	
  to	
  gather	
  more	
  data.	
  	
  
	
  
VIII.  Acknowledgments	
  
This	
  work	
  was	
  supported	
  by	
  grants	
  from	
  the	
  Murdock	
  Trust	
  and	
  the	
  Na)onal	
  Science	
  
founda)on	
  (TUES	
  #7325436,	
  MCB	
  #0523357).	
  
	
  
IX.  Cita@ons	
  
Csonka	
  L.N.	
  1981.	
  	
  Proline	
  over-­‐produc)on	
  results	
  in	
  enhanced	
  osmotolerance	
  in	
  Salmonella	
  
typhimurium.	
  Molecular	
  and	
  General	
  Gene7cs	
  MGG.	
  182:1.	
  	
  82-­‐86.	
  	
  	
  
	
  
Lynch,	
  Michael,	
  and	
  John	
  S.	
  Conery.	
  2000.	
  The	
  evolu)onary	
  fate	
  and	
  consequences	
  of	
  duplicate	
  
genes.	
  Science	
  290.5494:	
  1151-­‐1155.	
  
	
  
	
  
Table	
  1.	
  Previously	
  provided	
  informa)on.	
  The	
  
loca)on	
  and	
  associated	
  vectors	
  for	
  all	
  three	
  
Agrobacterium.	
  
Figure	
  3	
  Gene	
  duplica)on	
  overview.	
  a)	
  Three	
  methods	
  used	
  for	
  lateral	
  gene	
  transfer;	
  
transduc)on,	
  conjunc)on	
  and	
  transforma)on.	
  b)	
  Methods	
  of	
  internal	
  gene	
  duplica)on;	
  
transposons,	
  gene	
  error	
  and	
  unequal	
  crossover.	
  	
  
a	
  
Figure	
  1.	
  Proline	
  synthesis.	
  An	
  
overview	
  of	
  proline	
  synthesis	
  and	
  
the	
  involvement	
  of	
  proC	
  
Figure	
  5.	
  Methods	
  overview.	
  The	
  en)re	
  process	
  
involved	
  in	
  func)onal	
  complementa)on.	
  
Figure	
  4.	
  Control	
  expected	
  results.	
  These	
  are	
  the	
  results	
  of	
  the	
  controls	
  and	
  the	
  proC	
  
genes	
  given	
  they	
  are	
  adequate	
  for	
  viability.	
  Minimal	
  media	
  (MM),	
  MM	
  with	
  proline	
  
and	
  MM	
  with	
  arabinose	
  plates	
  are	
  all	
  used	
  to	
  induce	
  different	
  effects.	
  
	
  
Figure	
  7.	
  Func)onal	
  complementa)on.	
  a)	
  A.	
  vi7s	
  S4	
  results	
  for	
  func)onal	
  
complementa)on	
  indicate	
  that	
  the	
  plasmid	
  with	
  proC-­‐3168	
  was	
  sufficient	
  for	
  
viability.	
  b)	
  A.	
  radiobacter	
  K84	
  results	
  for	
  func)onal	
  complementa)on	
  indicate	
  
that	
  the	
  plasmid	
  with	
  arad	
  proC-­‐12144	
  was	
  sufficient	
  for	
  viability.	
  Numbering	
  
key	
  can	
  be	
  viewed	
  in	
  fig	
  8.	
  	
  	
  
Figure	
  8.	
  Func)onal	
  complementa)on	
  and	
  analysis.	
  a)	
  Func)onal	
  complementa)on	
  
with	
  all	
  plates	
  and	
  controls.	
  proC1-­‐9900	
  showed	
  growth	
  in	
  minimal	
  media	
  with	
  
arabinose	
  while	
  proC1-­‐45470	
  showed	
  no	
  growth.	
  b)	
  Structural	
  comparison	
  of	
  proC1-­‐	
  
9900	
  (leh)	
  and	
  proC1-­‐47450	
  (right)	
  to	
  see	
  if	
  structure	
  influences	
  viability	
  of	
  proC.	
  
proC-­‐4745	
  
Figure	
  6.	
  New	
  vector	
  transforma)on	
  
confirma)on.	
  Using	
  competent	
  cells	
  the	
  newly	
  
created	
  vectors	
  for	
  proC1-­‐65500,	
  proC1-­‐39290	
  
and	
  proC1-­‐31690	
  two	
  from	
  A.	
  rhizogenes	
  A4	
  and	
  
one	
  from	
  A.	
  vi)s	
  S4	
  respec)vely.	
  The	
  first	
  three	
  
lanes	
  are	
  digest	
  from	
  proC-­‐65500	
  followed	
  by	
  5	
  
lanes	
  of	
  proC-­‐39290	
  and	
  the	
  final	
  lane	
  of	
  
proC-­‐3168.	
  A	
  DNA	
  ladder	
  is	
  present	
  in	
  the	
  first	
  
lane	
  to	
  compare	
  fragment	
  size.	
  The	
  top	
  band	
  in	
  
the	
  digest	
  products	
  is	
  roughly	
  3.8	
  kb	
  and	
  the	
  
products	
  for	
  the	
  inserts	
  are	
  all	
  roughly	
  around	
  .8	
  
kb	
  in	
  size.	
  	
  
Figure	
  2.	
  Outcomes	
  of	
  gene	
  fixa)on.	
  There	
  are	
  
three	
  main	
  possible	
  outcomes	
  aher	
  gene	
  
fixa)on,	
  becoming	
  a	
  psuedogene,	
  subdividing	
  
func)on	
  with	
  another	
  gene	
  or	
  gaining	
  a	
  gene	
  
gene	
  func)on	
  en)rely.	
  
b	
  
a	
   b	
  
a	
  
b	
  
proC1-­‐9900	
  
a	
  

Contenu connexe

Tendances

1-s2.0-S0014480015000970-main
1-s2.0-S0014480015000970-main1-s2.0-S0014480015000970-main
1-s2.0-S0014480015000970-mainHelene Schulz
 
Techniques of-biotechnology-mcclean-good
Techniques of-biotechnology-mcclean-goodTechniques of-biotechnology-mcclean-good
Techniques of-biotechnology-mcclean-goodrcolatru
 
miller-chap-5a
 miller-chap-5a miller-chap-5a
miller-chap-5aAmit Gupta
 
Crop plants: DNA-free genome editing with CRISPR enzymes
Crop plants: DNA-free genome editing with CRISPR enzymesCrop plants: DNA-free genome editing with CRISPR enzymes
Crop plants: DNA-free genome editing with CRISPR enzymesOECD Environment
 
tansgenic mice:methodology and application
tansgenic mice:methodology and applicationtansgenic mice:methodology and application
tansgenic mice:methodology and applicationtinasingh30
 
TILLING & Eco-TILLING : Reverse Genetics Approaches for Crop Improvement
TILLING & Eco-TILLING : Reverse Genetics  Approaches for Crop ImprovementTILLING & Eco-TILLING : Reverse Genetics  Approaches for Crop Improvement
TILLING & Eco-TILLING : Reverse Genetics Approaches for Crop ImprovementVinod Pawar
 
Thesis Power Point Presentation
Thesis Power Point PresentationThesis Power Point Presentation
Thesis Power Point Presentationriddhikapandya1985
 
Advanced genetic tools for plant biotechnology
Advanced genetic tools for plant biotechnology Advanced genetic tools for plant biotechnology
Advanced genetic tools for plant biotechnology muhammad shoaib
 
Investigation of the localization and phenotypic effects of the mRNA transpor...
Investigation of the localization and phenotypic effects of the mRNA transpor...Investigation of the localization and phenotypic effects of the mRNA transpor...
Investigation of the localization and phenotypic effects of the mRNA transpor...Amanda Estes
 
Marker free transgenic development
Marker free transgenic developmentMarker free transgenic development
Marker free transgenic developmentVishwas Acharya
 
TILLING and Eco-TILLING for crop improvement
TILLING and Eco-TILLING for crop improvementTILLING and Eco-TILLING for crop improvement
TILLING and Eco-TILLING for crop improvementRaju Ram Choudhary
 
Modern techniques of crop improvement.pptx final
Modern techniques of crop improvement.pptx finalModern techniques of crop improvement.pptx final
Modern techniques of crop improvement.pptx finalDr Anjani Kumar
 
RNA Sequencing Research
RNA Sequencing ResearchRNA Sequencing Research
RNA Sequencing ResearchTanmay Ghai
 
Crisper - A Gene editing tech.
Crisper - A Gene editing tech.Crisper - A Gene editing tech.
Crisper - A Gene editing tech.Neha Y
 
Chloroplast transformation
Chloroplast transformationChloroplast transformation
Chloroplast transformationSachin Ekatpure
 

Tendances (20)

1-s2.0-S0014480015000970-main
1-s2.0-S0014480015000970-main1-s2.0-S0014480015000970-main
1-s2.0-S0014480015000970-main
 
Omics in crop improvement
Omics in crop improvementOmics in crop improvement
Omics in crop improvement
 
Techniques of-biotechnology-mcclean-good
Techniques of-biotechnology-mcclean-goodTechniques of-biotechnology-mcclean-good
Techniques of-biotechnology-mcclean-good
 
miller-chap-5a
 miller-chap-5a miller-chap-5a
miller-chap-5a
 
Crop plants: DNA-free genome editing with CRISPR enzymes
Crop plants: DNA-free genome editing with CRISPR enzymesCrop plants: DNA-free genome editing with CRISPR enzymes
Crop plants: DNA-free genome editing with CRISPR enzymes
 
tansgenic mice:methodology and application
tansgenic mice:methodology and applicationtansgenic mice:methodology and application
tansgenic mice:methodology and application
 
Clean gene technology
Clean gene technologyClean gene technology
Clean gene technology
 
TILLING & Eco-TILLING : Reverse Genetics Approaches for Crop Improvement
TILLING & Eco-TILLING : Reverse Genetics  Approaches for Crop ImprovementTILLING & Eco-TILLING : Reverse Genetics  Approaches for Crop Improvement
TILLING & Eco-TILLING : Reverse Genetics Approaches for Crop Improvement
 
Thesis Power Point Presentation
Thesis Power Point PresentationThesis Power Point Presentation
Thesis Power Point Presentation
 
Advanced genetic tools for plant biotechnology
Advanced genetic tools for plant biotechnology Advanced genetic tools for plant biotechnology
Advanced genetic tools for plant biotechnology
 
Investigation of the localization and phenotypic effects of the mRNA transpor...
Investigation of the localization and phenotypic effects of the mRNA transpor...Investigation of the localization and phenotypic effects of the mRNA transpor...
Investigation of the localization and phenotypic effects of the mRNA transpor...
 
Marker free transgenic development
Marker free transgenic developmentMarker free transgenic development
Marker free transgenic development
 
Reverse genetics
Reverse geneticsReverse genetics
Reverse genetics
 
Novel Plant Breeding
Novel Plant BreedingNovel Plant Breeding
Novel Plant Breeding
 
Gene stacking
Gene stackingGene stacking
Gene stacking
 
TILLING and Eco-TILLING for crop improvement
TILLING and Eco-TILLING for crop improvementTILLING and Eco-TILLING for crop improvement
TILLING and Eco-TILLING for crop improvement
 
Modern techniques of crop improvement.pptx final
Modern techniques of crop improvement.pptx finalModern techniques of crop improvement.pptx final
Modern techniques of crop improvement.pptx final
 
RNA Sequencing Research
RNA Sequencing ResearchRNA Sequencing Research
RNA Sequencing Research
 
Crisper - A Gene editing tech.
Crisper - A Gene editing tech.Crisper - A Gene editing tech.
Crisper - A Gene editing tech.
 
Chloroplast transformation
Chloroplast transformationChloroplast transformation
Chloroplast transformation
 

En vedette (6)

transgenic plants
transgenic plantstransgenic plants
transgenic plants
 
Plant transformation vectors and their types
Plant transformation vectors and their typesPlant transformation vectors and their types
Plant transformation vectors and their types
 
Gene transformation methods
Gene transformation methodsGene transformation methods
Gene transformation methods
 
Biopesticides
BiopesticidesBiopesticides
Biopesticides
 
Plant transformation methods
Plant transformation methodsPlant transformation methods
Plant transformation methods
 
Gene transfer technologies
Gene transfer technologiesGene transfer technologies
Gene transfer technologies
 

Similaire à Erickson Presentation

JBEI highlights September 2019
JBEI highlights September 2019JBEI highlights September 2019
JBEI highlights September 2019LeahFreemanSloan
 
DNA construct instability in bacteria used for Agrobacterium mediated plant t...
DNA construct instability in bacteria used for Agrobacterium mediated plant t...DNA construct instability in bacteria used for Agrobacterium mediated plant t...
DNA construct instability in bacteria used for Agrobacterium mediated plant t...iosrjce
 
LanglaisC_2007_Systematic approach to protein experssion in cell free systems
LanglaisC_2007_Systematic approach to protein experssion in cell free systemsLanglaisC_2007_Systematic approach to protein experssion in cell free systems
LanglaisC_2007_Systematic approach to protein experssion in cell free systemsClaudia Langlais
 
Joe Walsh Thesis
Joe Walsh ThesisJoe Walsh Thesis
Joe Walsh ThesisJoe Walsh
 
Multigene engineering in plants
Multigene engineering in plantsMultigene engineering in plants
Multigene engineering in plantsSenthil Natesan
 
1st_Seminar_PHD.pptx
1st_Seminar_PHD.pptx1st_Seminar_PHD.pptx
1st_Seminar_PHD.pptxAnanya Sinha
 
Intracellular highways in the plants: the role of the cytoskeleton in camv i...
Intracellular highways in the plants:  the role of the cytoskeleton in camv i...Intracellular highways in the plants:  the role of the cytoskeleton in camv i...
Intracellular highways in the plants: the role of the cytoskeleton in camv i...CIAT
 
An Understanding Of Bacterial Transformation By Plasmid Dna
An Understanding Of Bacterial Transformation By Plasmid DnaAn Understanding Of Bacterial Transformation By Plasmid Dna
An Understanding Of Bacterial Transformation By Plasmid DnaGina Buck
 
Genome-scale in silico atpE gene knockout in Escherichia coli could drive nov...
Genome-scale in silico atpE gene knockout in Escherichia coli could drive nov...Genome-scale in silico atpE gene knockout in Escherichia coli could drive nov...
Genome-scale in silico atpE gene knockout in Escherichia coli could drive nov...Khadem2016
 
Genome-scale in silico atpE gene knockout in Escherichia coli could drive nov...
Genome-scale in silico atpE gene knockout in Escherichia coli could drive nov...Genome-scale in silico atpE gene knockout in Escherichia coli could drive nov...
Genome-scale in silico atpE gene knockout in Escherichia coli could drive nov...Khadem2016
 
Transformation of signal sequence in Escherichia coli by reporter gene fusion
Transformation of signal sequence in Escherichia coli by reporter gene fusionTransformation of signal sequence in Escherichia coli by reporter gene fusion
Transformation of signal sequence in Escherichia coli by reporter gene fusionOpen Access Research Paper
 
Enhancing Solubilization of Hydrophobic ORF3 Product of HEV in Bacterial Expr...
Enhancing Solubilization of Hydrophobic ORF3 Product of HEV in Bacterial Expr...Enhancing Solubilization of Hydrophobic ORF3 Product of HEV in Bacterial Expr...
Enhancing Solubilization of Hydrophobic ORF3 Product of HEV in Bacterial Expr...Allyson Luo
 
Cisgenesis and Intragenesis
Cisgenesis and IntragenesisCisgenesis and Intragenesis
Cisgenesis and Intragenesissharadabgowda
 
Expression systems
Expression systemsExpression systems
Expression systemsAmjad Afridi
 
Jeffrey Noland Publication 2013
Jeffrey Noland Publication 2013Jeffrey Noland Publication 2013
Jeffrey Noland Publication 2013Jeffrey Noland
 
Transcriptomics: A Tool for Plant Disease Management
Transcriptomics: A Tool for Plant Disease ManagementTranscriptomics: A Tool for Plant Disease Management
Transcriptomics: A Tool for Plant Disease ManagementSHIVANI PATHAK
 

Similaire à Erickson Presentation (20)

JBEI highlights September 2019
JBEI highlights September 2019JBEI highlights September 2019
JBEI highlights September 2019
 
DNA construct instability in bacteria used for Agrobacterium mediated plant t...
DNA construct instability in bacteria used for Agrobacterium mediated plant t...DNA construct instability in bacteria used for Agrobacterium mediated plant t...
DNA construct instability in bacteria used for Agrobacterium mediated plant t...
 
LanglaisC_2007_Systematic approach to protein experssion in cell free systems
LanglaisC_2007_Systematic approach to protein experssion in cell free systemsLanglaisC_2007_Systematic approach to protein experssion in cell free systems
LanglaisC_2007_Systematic approach to protein experssion in cell free systems
 
Joe Walsh Thesis
Joe Walsh ThesisJoe Walsh Thesis
Joe Walsh Thesis
 
Multigene engineering in plants
Multigene engineering in plantsMultigene engineering in plants
Multigene engineering in plants
 
1st_Seminar_PHD.pptx
1st_Seminar_PHD.pptx1st_Seminar_PHD.pptx
1st_Seminar_PHD.pptx
 
Intracellular highways in the plants: the role of the cytoskeleton in camv i...
Intracellular highways in the plants:  the role of the cytoskeleton in camv i...Intracellular highways in the plants:  the role of the cytoskeleton in camv i...
Intracellular highways in the plants: the role of the cytoskeleton in camv i...
 
An Understanding Of Bacterial Transformation By Plasmid Dna
An Understanding Of Bacterial Transformation By Plasmid DnaAn Understanding Of Bacterial Transformation By Plasmid Dna
An Understanding Of Bacterial Transformation By Plasmid Dna
 
Genome-scale in silico atpE gene knockout in Escherichia coli could drive nov...
Genome-scale in silico atpE gene knockout in Escherichia coli could drive nov...Genome-scale in silico atpE gene knockout in Escherichia coli could drive nov...
Genome-scale in silico atpE gene knockout in Escherichia coli could drive nov...
 
Genome-scale in silico atpE gene knockout in Escherichia coli could drive nov...
Genome-scale in silico atpE gene knockout in Escherichia coli could drive nov...Genome-scale in silico atpE gene knockout in Escherichia coli could drive nov...
Genome-scale in silico atpE gene knockout in Escherichia coli could drive nov...
 
Genome-scale in silico atpE gene knockout in Escherichia coli could drive nov...
Genome-scale in silico atpE gene knockout in Escherichia coli could drive nov...Genome-scale in silico atpE gene knockout in Escherichia coli could drive nov...
Genome-scale in silico atpE gene knockout in Escherichia coli could drive nov...
 
Transformation of signal sequence in Escherichia coli by reporter gene fusion
Transformation of signal sequence in Escherichia coli by reporter gene fusionTransformation of signal sequence in Escherichia coli by reporter gene fusion
Transformation of signal sequence in Escherichia coli by reporter gene fusion
 
Enhancing Solubilization of Hydrophobic ORF3 Product of HEV in Bacterial Expr...
Enhancing Solubilization of Hydrophobic ORF3 Product of HEV in Bacterial Expr...Enhancing Solubilization of Hydrophobic ORF3 Product of HEV in Bacterial Expr...
Enhancing Solubilization of Hydrophobic ORF3 Product of HEV in Bacterial Expr...
 
Cisgenesis and Intragenesis
Cisgenesis and IntragenesisCisgenesis and Intragenesis
Cisgenesis and Intragenesis
 
Expression systems
Expression systemsExpression systems
Expression systems
 
JoB spike in manuscript 2014
JoB spike in manuscript 2014JoB spike in manuscript 2014
JoB spike in manuscript 2014
 
1110.full
1110.full1110.full
1110.full
 
Jeffrey Noland Publication 2013
Jeffrey Noland Publication 2013Jeffrey Noland Publication 2013
Jeffrey Noland Publication 2013
 
Presentation.ppt
Presentation.pptPresentation.ppt
Presentation.ppt
 
Transcriptomics: A Tool for Plant Disease Management
Transcriptomics: A Tool for Plant Disease ManagementTranscriptomics: A Tool for Plant Disease Management
Transcriptomics: A Tool for Plant Disease Management
 

Erickson Presentation

  • 1. I.  Abstract   The  evolu)onary  mechanism  of  gene  evolu)on  has  been  studied  in   many  organisms,  but  there  is  s)ll  a  great  deal  unknown  about  this   process.  To  be<er  comprehend  this  mechanism,  we  used   Agrobacterium  as  a  model  organism.    Proline  arises  through  a   primary  pathway  that  uses  the  proC  gene  in  the  last  step  by  taking   the  precursor  and  conver)ng  it  to  proline  (fig  1)  Mul)ple  copies  of   the  proC  gene  have  been  iden)fied  in  species  of  Agrobacterium   including  rhizogenes  A4,  vi7s  S4,  and  radiobacter  K84(table  1).   Agrobacterium  rabiobacter  K84  contains  proC1-­‐3173  and  proC1-­‐9000   on  chromosome  one  and  another,  proC2-­‐  8082,  on  chromosome   two.  Agrobacterium  rhizogenes  A4  has  three  genes  on  chromosome   one,  proC1-­‐99000,  proC1-­‐65500,  and  proC-­‐39290  and  the  last  proC2-­‐   47450  present  on  chromosome  two.  The  last  Agrobacterium  vi7s  S4   has  only  proC1-­‐3168  present  on  chromosome  one.  We  screened   each  proC  gene  using  func)onal  complementa)on  to  determine  if   each  gene  alone  when  inserted,  via  a  pKt-­‐1  vector  created  though   ligase  independent  cloning,  into  E.  coli  is  adequate  for  cell  survival  in   a  proline-­‐deficient  environment.  Func)onal  complementa)on   revealed  that  all  proC  genes  tested  in  the  three  Agrobacterium  were   necessary  for  cell  viability  except  for  the  Agrobacterium  A4   proC2-­‐45470.  proC1-­‐45470  showed  no  cell  growth  when  it  was  the   only  proC  gene  present  within  the  E.  coli.                       I.  Background     Gene  evolu)on  can  give  rise  to  new  gene  func)ons  and  appears  to   use  various  mechanisms  to  give  rise  to  the  duplicate  genes  that  can   become  fixed  and  accumulate  muta)ons.  The  cri)cal  component  of   gene  evolu)on  can  give  rise  to  new  genes  through  lateral  and   internal  gene  transfer  (fig  3).  Duplicated  genes  can  either  give  rise  to   genes  with  new  func)ons,  become  psuedogenes,  or  the  func)on  can   be  subdivided  between  the  new  and  old  gene  (fig  2).  Agrobacterium   share  the  common  biochemical  pathways  of  proline  biosynthesis   that  has  mul)ple  copies  of  the  proC  gene  present  in  each  organism   for  use  in  this  pathway.  Agrobacterium  are  a  commonly  studied   Gram-­‐nega)ve  bacterium  that  include  the  following  sub-­‐Genus:   •  Agrobacterium  vi7s  S4,  a  plant  pathogen  causing  necrosis  in     grapevine  roots.       •  Agrobacterium  radiobacter   K84,  a  biological  control  agent     u)lized  against  crown  gall   disease.       •  Agrobacterium  rhizogenes     A4,  a  plant  pathogen  causing     hairy  root  disease,  u)lized  in  the     crea)on  of  gene)cally  modified     organisms  and  pharmaceu)cals.     Proline  is  known  to  serve  as  an     osmolyte,  consequently  it  is  an   important  amino  acid  during     )mes  of  osmo)c  stress  for   bacteria  and  plants.  Proline  is  an   amino  acid  with  a  non-­‐polar  alpha-­‐amino  acid  with  an  alipha)c  R-­‐ group  and  is  essen)al  for  organism  viability.    Within  each,  gene   evolu)on  has  occurred  resul)ng  in  several  copies  of  the  proC  gene   being  present.     Func)onal  Complementa)on  of  the   Proline  Biosynthesis  proC  Gene  in  Several  Agrobacterium       Sierra  Sanders,  Jake  Whithurse,  Loa  Griesbach,  Joshua  Wong,  Kathryn  Ushimaru,  Dylan  Marashi,  Navarre  Freeman,    Thao  Nguyen,  Jake  Van  Winkle,  Bo  Valencia,  Laura  DeWald,  Sean  Morton,  Kathryn  Houmiel,  and  Derek  Wood   Department  of  Biology,  Sea<le  Pacific  University                                   IV.  Methods   We  are  inves)ga)ng  if  several  proC  genes  responsible  for  proline   synthesis  that  have  arisen  from  gene  duplica)on  in  Agrobacterium  are   capable  of  ensuring  viability  of  E.  coli  lacking  its  na)ve  proC  gene  when   integrated  via  the  pKt-­‐1  vector  and  placed  in  a  proline  deficient   environment                 V.  Results     Newly  Cloned  Vectors           Isolate gDNA •  Using an extraction kit isolate all ProC genes Amplify gene of interest •  Design primers •  Amplify gene with PCR Clone gene •  Preparing pKt vector •  Treatment of vector •  Hybridization of insert and vector Sequence gene •  Send sequence to be sequenced Functional complementation •  Streak plates with culture and compare results                      Agrobacterium                Agrobacterium                                      vi/s  S4                                      radiobacter  K84                     Agrobacterium  rhizogenes  A4             VI.  Conclusion   Clones  of  A4  proC-­‐65500,  A4  proC-­‐39290  and  AVI  proC-­‐3168    have  been   created  for  future  func)onal  complementa)on  next  year.    Func)onal   complementa)on  preformed  on  S4  proC-­‐3168,  K8  arad  proC-­‐12144  and   and  A4’s  proC-­‐99000  it  appears  all  three  are  sufficient  for  viability  in   proline  nega)ve  environments  when  inserted  into  a  mutant  E.  coli   lacking  proC.  However,  the  func)onal  complementa)on  of  A4  proC47450   failed  to  grow,  the  reason  for  this  is  unknown,  but  a  change  in  an  amino   acid  in  the  sequence  may  contribute  to  the  observed  lack  of  func)on.       VII.  Future  work   The  original  proC1-­‐47450  gene  will  need  to  be  isolated  and  cloned  to  test   for  func)onal  complementa)on  and  indicate  what  is  causing  this  proC  to   no  longer  be  sufficient  for  viability.  Sequence  analysis  of  the  newly   cloned  vectors  will  need  to  be  done  to  confirm  an  iden)cal  match  to  the   original  gene  was  cloned  and  not  a  mutant.  Func)onal  complementa)on   will  need  to  con)nue  to  gather  more  data.       VIII.  Acknowledgments   This  work  was  supported  by  grants  from  the  Murdock  Trust  and  the  Na)onal  Science   founda)on  (TUES  #7325436,  MCB  #0523357).     IX.  Cita@ons   Csonka  L.N.  1981.    Proline  over-­‐produc)on  results  in  enhanced  osmotolerance  in  Salmonella   typhimurium.  Molecular  and  General  Gene7cs  MGG.  182:1.    82-­‐86.         Lynch,  Michael,  and  John  S.  Conery.  2000.  The  evolu)onary  fate  and  consequences  of  duplicate   genes.  Science  290.5494:  1151-­‐1155.       Table  1.  Previously  provided  informa)on.  The   loca)on  and  associated  vectors  for  all  three   Agrobacterium.   Figure  3  Gene  duplica)on  overview.  a)  Three  methods  used  for  lateral  gene  transfer;   transduc)on,  conjunc)on  and  transforma)on.  b)  Methods  of  internal  gene  duplica)on;   transposons,  gene  error  and  unequal  crossover.     a   Figure  1.  Proline  synthesis.  An   overview  of  proline  synthesis  and   the  involvement  of  proC   Figure  5.  Methods  overview.  The  en)re  process   involved  in  func)onal  complementa)on.   Figure  4.  Control  expected  results.  These  are  the  results  of  the  controls  and  the  proC   genes  given  they  are  adequate  for  viability.  Minimal  media  (MM),  MM  with  proline   and  MM  with  arabinose  plates  are  all  used  to  induce  different  effects.     Figure  7.  Func)onal  complementa)on.  a)  A.  vi7s  S4  results  for  func)onal   complementa)on  indicate  that  the  plasmid  with  proC-­‐3168  was  sufficient  for   viability.  b)  A.  radiobacter  K84  results  for  func)onal  complementa)on  indicate   that  the  plasmid  with  arad  proC-­‐12144  was  sufficient  for  viability.  Numbering   key  can  be  viewed  in  fig  8.       Figure  8.  Func)onal  complementa)on  and  analysis.  a)  Func)onal  complementa)on   with  all  plates  and  controls.  proC1-­‐9900  showed  growth  in  minimal  media  with   arabinose  while  proC1-­‐45470  showed  no  growth.  b)  Structural  comparison  of  proC1-­‐   9900  (leh)  and  proC1-­‐47450  (right)  to  see  if  structure  influences  viability  of  proC.   proC-­‐4745   Figure  6.  New  vector  transforma)on   confirma)on.  Using  competent  cells  the  newly   created  vectors  for  proC1-­‐65500,  proC1-­‐39290   and  proC1-­‐31690  two  from  A.  rhizogenes  A4  and   one  from  A.  vi)s  S4  respec)vely.  The  first  three   lanes  are  digest  from  proC-­‐65500  followed  by  5   lanes  of  proC-­‐39290  and  the  final  lane  of   proC-­‐3168.  A  DNA  ladder  is  present  in  the  first   lane  to  compare  fragment  size.  The  top  band  in   the  digest  products  is  roughly  3.8  kb  and  the   products  for  the  inserts  are  all  roughly  around  .8   kb  in  size.     Figure  2.  Outcomes  of  gene  fixa)on.  There  are   three  main  possible  outcomes  aher  gene   fixa)on,  becoming  a  psuedogene,  subdividing   func)on  with  another  gene  or  gaining  a  gene   gene  func)on  en)rely.   b   a   b   a   b   proC1-­‐9900   a