SlideShare une entreprise Scribd logo
1  sur  98
By
Dr. G.N. Kodanda Ramaiah /
P. Siva Nagendra Reddy
Introduction
DC & AC Bridge are used to measure
resistance, inductance, capacitance and
impedance.
Operate on a null indication principle. This
means the indication is independent of the
calibration of the indicating device or any
characteristics of it.
Very high degrees of accuracy can be
achieved using the bridges
Types of bridges
Two types of bridge are used in measurement:
1) DC bridge:
a) Wheatstone Bridge
b) Kelvin Bridge
2) AC bridge:
a) Similar Angle Bridge
b) Opposite Angle Bridge/Hay Bridge
c) Maxwell Bridge
d) Wein Bridge
e) Radio Frequency Bridge
f) Schering Bridge
Wheatstone Bridge
A Wheatstone bridge is a measuring instrument
invented by Samuel Hunter Christie (British
scientist & mathematician) in 1833 and improved
and popularized by Sir Charles Wheatstone in
1843. It is used to measure an unknown electrical
resistance by balancing two legs of a bridge
circuit, one leg of which includes the unknown
component. Its operation is similar to the original
potentiometer except that in potentiometer circuits
the meter used is a sensitive galvanometer.
Sir Charles Wheatstone (1802 – 1875)
Thévenin’s Theorem
An analytical tool used to extensively analyze an unbalance bridge.
Thévenin's theorem for electrical networks states that any combination of voltage
sources and resistors with two terminals is electrically equivalent to a single voltage
source V and a single series resistor R. For single frequency AC systems the theorem
can also be applied to general impedances, not just resistors. The theorem was
first discovered by German physicist Hermann von Helmholtz in 1853, but
was then rediscovered in 1883 by French telegraph engineer Léon Charles
Thévenin (1857-1926).
Hermann von Helmholtz (1821 – 1894)
Léon Charles Thévenin (1857-1926)German Physicist
French Engineer
Wheatstone Bridge
Hay’s Bridge
It is also a modification of the Maxwell’s
Wien Bridge and is particularly useful if
the phase angle of the inductive
impedance is large.
In this case a comparatively smaller series
resistance R1 is used instead of a parallel
résistance.( which has to be of a very
large value) as shown in fig.
Fig
L3= C1 R2 R4 R3= w C1 R1 R2 R4
1+w R1 C1 1+w R1 C1
Wien Series Bridge
It is a simple ratio bridge and is used for
audio-frequency measurement of
capacitance over a wide range. As shown in
fig.
Fig.
R1=R2R4/R3 C1=C4(R3/R2)
Wien Parallel Bridge
It is also a ratio bridge used mainly as the
feedback network in the wide range audio-
frequency R-C oscillators.
It is may be used for the measurement of
the audio-frequency but it is not as
accurate as the modern digital frequency
meters. As shown in fig.
Fig.
C2 = R2 = R3
C1 R1 R4
EMI AMD EMC
 EM interference (EMI): The unwanted effect of EM noise
interfering with our signals
 The absence of Electromagnetic Interference (EMI) in a
system is called Electromagnetic Compatibility (EMC).
(or)
 EM compatibility means the ability of equipment to
function satisfactorily in its EM environment without
introducing intolerable EM disturbances to other equipment
in that environment.
INTRODUCTION:
 Electromagnetics (EM) is a branch of physics or electrical engineering in
which electric and magnetic phenomena are studied.
 Electromagnetic interference exist in every communication link. it
manifests itself as noise.
 Electromagnetic interference (EMI) is electromagnetic energy that
adversely affects the performance of electrical/electronic equipment by
creating undesirable responses or complete operational failure.
 Electromagnetic compatibility (EMC) is the ability of electrical or
electronic equipment/systems to function in the intended operating
environment without causing or experiencing performance degradation due
to intentional EMI.
 The most common methods of noise reduction include proper equipment
circuit design, shielding , grounding, filtering, isolation, separation and
orientation and noise cancellation techniques.
70
DEFINITION OF EMI & EMC:
EMI???
 Electromagnetic interference is the degradation in the performance of a
device due to the fields making up the electromagnetic environment.
EMC???
 Electromagnetic compatibility is achieved when a device functions
satisfactorily without introducing intolerable disturbances to the
electromagnetic environment.
71
ELECTRO MAGNETIC
INTERFERENCE
72
73
Example:
Electromagnetic
interference in
TV signal
CAUSES OF EMI/EMC
 SOURCES
 Refrigerators, washing machine, electric motors.
 Arc welding machine.
 Electric shavers, AC, Computers.
 Fast switching digital devices, ICs etc
 Power chords of computers, UPS etc.
 Aircraft navigation and Military equipments.
 VICTIMS
 Communication Receivers.
 Microprocessors, Computers.
 Industrial Controls.
 Medical Devices.
 Household Appliances.
 Living Beings.
BASIC ELEMENTS OF EMI
SITUATION
75
Interference occurs if the received energy causes the receptor to
function in unwanted manner.
Whether the receiver is functioning in wanted or unwanted
manner, depends on the coupling path as well as the source and
victim.
The medium is to be made as inefficient as possible.
CLASSIFICATION OF EMI:
76
RADIATED INTERFERENCE
77
Narrow band interference usually arises from intentional transmissions such as radio
and TV stations, pager transmitters , cell phones etc. It is a high frequency operation .
Example: proximity effect
Broad band interference usually comes from incidental radio frequency emitters.
These includes electric power transmission lines, electric motors etc. It is a low
frequency operation
Example : skin effect
CONDUCTED INTERFERENCE
 Conducted electromagnetic interference is caused by the physical contact of the
conductors as opposed to radiated EMI, which is caused by induction (without
physical contact of the conductors).
 Electromagnetic disturbances in the EM field of a conductor will no longer be
confined to the surface of the conductor and will radiate away from it.
 This persists in all conductors and mutual inductance between two radiated
electromagnetic fields will result in EMI
78
Differences between conducted and
radiated interference
79
80
 Intra system EMI causes  Inter system EMI
causes
81
Effects of EMI
Momentary disturbance in TV and radio reception due to operation of mixer-
grinder/electric shavers/a passing vehicles etc
Reset of computers and loss of data.
Change of setting of status of control equipments.
Failure of pace maker implemented in a patient due to a ‘walkie talkie’
Malfunctioning of flight controlling system due to use of laptop by passenger.
Biological hazards.
Sources of EMI:
The sources of EMI can be broadly classified into two groups
 Natural sources of EMI
example: lightning
 Manmade sources of EMI
example: commercial radio and telephone communications
In specific we can classify as
 Functional: EMI can originate from any source designed to generate
electromagnetic energy and which may create interference as a normal part of its
operation
 Incidental: EMI can originate from man made sources .These sources are not
designed specifically to generate electromagnetic energy but which do infact cause
interference.
 Natural: EMI can be caused by natural phenomena, such as electrical storms , rain
particles , solar and interstellar radiation.
82
83
Fig:1
Fig: 2 Fig1-lightning hitting
between the
Buildings.
Fig2-lightning
hitting a tree
EMI CONTROL
TECHNIQUES:
To control or suppress EMI, the three
common means employed in the
design process are
Grounding
Shielding
Filtering
84
Grounding:
85
Grounding is the establishment of an
electrically conductive path between two points
to connect electrical and electronic elements of
a system to one another or to some reference
point, which may be designated as the ground.
.An ideal ground plane is a zero-potential
,zero-impedance body that can be used as a
reference for all signals in associated circuitry
and to which any undesired current can be
transferred for the elimination of its effects.
Bonds provide protection from electrical shock, power circuit current return paths, and antenna
ground plane connections, and also minimize the potential difference between the devices. They
have the ability to carry large fault current.
Bonding is the establishment of a low-impedance
path between two metal surfaces. Grounding is a
circuit concept, while bonding denotes the physical
implementation of that concept.
Shielding:
 The purpose of shielding is to confine radiated energy to a specific region or to prevent radiated
energy from entering a specific region.
 Shields may be in the form of partitions and boxes as well as in the form of cable and connector
shields.
 Shield types include solid, nonsolid (e.g., screen), and braid, as is used on cables. In all cases, a
shield can be characterized by its shielding effectiveness.
 The shielding effectiveness is defined as
SE=10 log incident power density
transmitted power density
 where the incident power density is the power density at a measuring point before a shield is installed
and the transmitted power is the power density at the same point after the shield is in place.
86
10
Filtering:
 An electrical filter is a network of lumped or
distributed constant resistors, inductors, and
capacitors that offers comparatively little
opposition to certain frequencies, while
blocking the passage of other frequencies.
 Filter provides the means whereby levels of
conducted interference are substantially
reduced.
 The most significant characteristic of a filter
is the insertion loss it provides as a function
of frequency.
 Insertion loss is defined as
IL=20 log V2/V1
 Where V1 is the output voltage of a signal
source with the filter in the circuit, and V2 is
the output voltage of the signal source
without the use of the filter.
87
10
ELECTRO MAGNETIC
COMPATIBILITY
 Electromagnetic compatibility (EMC) is the branch of electrical science
which studies the unintentional generation, propagation and reception of
electromagnetic energy with reference to the unwanted effects
(Electromagnetic interference, or EMI) that such energy may induce.
 The goal of EMC is the correct operation, in the same electromagnetic
environment, of different equipment which use electromagnetic
phenomena, and the avoidance of any interference effects.
 A system is said to be electro magnetically compatible if :-
• It doesn't cause interference with other system .
• It is not susceptible to emissions from other systems.
• It doesn’t cause interference with itself.
 EMI is a phenomenon while EMC is an equipment characteristic or
a property not to generate EMI above a certain limit and not to
be affected or disturbed by EMI. The statement "Live and let live" is the
best way to describe EMC. 88
The methodologies
used to prevent
EMI are:-
 Suppress the emissions at source point
, best method to control EMI.
 Make the coupling path as inefficient
as possible.
 Make the receiver less susceptible to
emission.
89
COUPLING MECHANISM:
90
The basic arrangement of noise source, coupling path and victim, receptor or sink is
shown in the figure below. Source and victim are usually electronic hardware devices,
though the source may be a natural phenomenon such as a lightning strike, electrostatic
discharge(ESD) or, in one famous case, the Big Bang at the origin of the Universe.
There are four basic coupling mechanism :
1. Conductive
2. Capacitive
3. Magnetic/Inductive
4. Radiative
Conductive coupling:
Conductive coupling occurs when the coupling path between the source and the
receptor is formed by direct contact with a conducting body, for example a
transmission line, wire, cable, PCB trace or metal enclosure.
Conduction modes:
Conducted noise is also characterized by the way it appears on different conductors:
 Common mode or common impedance coupling:
Noise appears in phase(in the same direction) on two conductors.
 Differential mode coupling:
Noise appears out of phase(in the opposite direction)on two conductors.
91
Capacitive coupling:
 Capacitive coupling occurs when a varying electrical field exists between
two adjacent conductors typically less than a wavelength apart, inducing a
change in voltage across the gap.
Inductive coupling:
 Inductive coupling occurs where the source and receiver are separated by
a short distance (typically less than a wavelength).
 Strictly, "Inductive coupling" can be of two kinds, electrical induction and
magnetic induction.
 It is common to refer to electrical induction as capacitive coupling, and to
magnetic induction as inductive coupling.
Magnetic coupling:
 Magnetic coupling (MC) occurs when a varying magnetic field exists
between two parallel conductors typically less than a wavelength apart,
inducing a change in voltage along the receiving conductor.
92
Radiative coupling:
 Radiative coupling or electromagnetic coupling occurs when source and
victim are separated by a large distance, typically more than a wavelength.
 Source and victim act as radio antennas: the source emits or radiates
an electromagnetic wave which propagates across the open space in
between and is picked up or received by the victim.
93
NEED FOR EMC STANDARDS:
 The EMC standards are required for trouble free co-existence
and to ensure satisfactory operation.
 They are also required to provide compatibility between
electrical, electronic, computer, control and other systems.
 Standards are required as manufacturer-user interaction and
user’s knowledge on EMI are limited.
 They are also required for establishing harmonized standards
to reduce international trade barriers and to improve product
reliability and life of the product.
EMC STANDARDS:
These are of two types
 Military Standards :
Military EMC standards are made in order to ensure system-to-system
compatibility in the real time military environment. Military standards are
more stringent than civilian standards. Most of the military standards are
broadly based on MIL-STD 461 and 462.
 Civilian Standards:
The civilian EMC standards are applicable for equipments used for
commercial, industrial and domestic applications. The emission standards
are specified to protect the broadcast services from interference..
95
ADVANTAGES OF EMC
STANDARDS
The advantages are:
Compatibility, reliability and maintainability
are increased.
Design safety margin is provided.
 The equipment operates in EMI scenario
satisfactorily.
 Product life and profits are increased.
96
DEPARTMENT OF ECE,
KUPPAM ENGINEERING COLLEGE,KUPPAM.
DEPARTMENT OF ECE,
KUPPAM ENGINEERING COLLEGE,KUPPAM.

Contenu connexe

Tendances

Concept of Digital measurement, block Diagram & study of Voltmeter
Concept of Digital measurement, block Diagram & study of VoltmeterConcept of Digital measurement, block Diagram & study of Voltmeter
Concept of Digital measurement, block Diagram & study of VoltmeterAbhishek Choksi
 
Electronics and communication
 Electronics and communication  Electronics and communication
Electronics and communication shashank jaiswal
 
Carrier and chopper amplifiers
Carrier and chopper amplifiers Carrier and chopper amplifiers
Carrier and chopper amplifiers BharathasreejaG
 
Analog communication
Analog communicationAnalog communication
Analog communicationPreston King
 
Am transmitter
Am transmitterAm transmitter
Am transmitterAJAL A J
 
Chapter 3 am receivers
Chapter 3 am receiversChapter 3 am receivers
Chapter 3 am receiversmkazree
 
Radio receiver characteristics
Radio receiver characteristicsRadio receiver characteristics
Radio receiver characteristicsabhishek reddy
 
ACD-instrumentation amplifier & peaking amplifier
ACD-instrumentation amplifier & peaking amplifier  ACD-instrumentation amplifier & peaking amplifier
ACD-instrumentation amplifier & peaking amplifier Ðîgëñ Tàìlør
 
RECONFIGURABLE ANTENAA
RECONFIGURABLE ANTENAARECONFIGURABLE ANTENAA
RECONFIGURABLE ANTENAAaditiagrawal97
 
Signal generators
Signal generatorsSignal generators
Signal generatorschethank27
 
EC6701 RF&MW - VSWR Meter
EC6701 RF&MW - VSWR MeterEC6701 RF&MW - VSWR Meter
EC6701 RF&MW - VSWR Meterchitrarengasamy
 
Amplitude modulation & demodulation
Amplitude modulation & demodulation Amplitude modulation & demodulation
Amplitude modulation & demodulation Bikz013
 

Tendances (20)

Concept of Digital measurement, block Diagram & study of Voltmeter
Concept of Digital measurement, block Diagram & study of VoltmeterConcept of Digital measurement, block Diagram & study of Voltmeter
Concept of Digital measurement, block Diagram & study of Voltmeter
 
Electronics and communication
 Electronics and communication  Electronics and communication
Electronics and communication
 
Digital voltmeter
Digital voltmeterDigital voltmeter
Digital voltmeter
 
Unit 3
Unit 3Unit 3
Unit 3
 
EMI Filter and RFI Filters
EMI Filter and RFI FiltersEMI Filter and RFI Filters
EMI Filter and RFI Filters
 
Smart Antenna
Smart AntennaSmart Antenna
Smart Antenna
 
Carrier and chopper amplifiers
Carrier and chopper amplifiers Carrier and chopper amplifiers
Carrier and chopper amplifiers
 
Analog communication
Analog communicationAnalog communication
Analog communication
 
Oscilloscope tutorial
Oscilloscope tutorialOscilloscope tutorial
Oscilloscope tutorial
 
Am transmitter
Am transmitterAm transmitter
Am transmitter
 
Chapter 3 am receivers
Chapter 3 am receiversChapter 3 am receivers
Chapter 3 am receivers
 
Radio receiver characteristics
Radio receiver characteristicsRadio receiver characteristics
Radio receiver characteristics
 
Receivers
ReceiversReceivers
Receivers
 
ACD-instrumentation amplifier & peaking amplifier
ACD-instrumentation amplifier & peaking amplifier  ACD-instrumentation amplifier & peaking amplifier
ACD-instrumentation amplifier & peaking amplifier
 
RECONFIGURABLE ANTENAA
RECONFIGURABLE ANTENAARECONFIGURABLE ANTENAA
RECONFIGURABLE ANTENAA
 
Signal generators
Signal generatorsSignal generators
Signal generators
 
Telemetry system
Telemetry systemTelemetry system
Telemetry system
 
EC6701 RF&MW - VSWR Meter
EC6701 RF&MW - VSWR MeterEC6701 RF&MW - VSWR Meter
EC6701 RF&MW - VSWR Meter
 
AC & DC bridges
AC & DC bridgesAC & DC bridges
AC & DC bridges
 
Amplitude modulation & demodulation
Amplitude modulation & demodulation Amplitude modulation & demodulation
Amplitude modulation & demodulation
 

Similaire à Emi unit iv ppt

Electromagnetic Interference & Electromagnetic Compatibility
Electromagnetic Interference  & Electromagnetic CompatibilityElectromagnetic Interference  & Electromagnetic Compatibility
Electromagnetic Interference & Electromagnetic CompatibilitySabeel Irshad
 
Electro magnetic interference and compatibility(ECM,ECI)
Electro magnetic interference and compatibility(ECM,ECI)Electro magnetic interference and compatibility(ECM,ECI)
Electro magnetic interference and compatibility(ECM,ECI)Palani murugan
 
Electromagnetic compatibility and its effects
Electromagnetic compatibility and its effectsElectromagnetic compatibility and its effects
Electromagnetic compatibility and its effectsSubhashMSubhash
 
Chapter8 emc
Chapter8 emcChapter8 emc
Chapter8 emcVin Voro
 
Electrical System Design Initial
Electrical System Design InitialElectrical System Design Initial
Electrical System Design InitialMohammed Atahar Ali
 
“Microcontroller Based Substation Monitoring system with gsm modem”.
“Microcontroller Based Substation Monitoring system with gsm modem”.“Microcontroller Based Substation Monitoring system with gsm modem”.
“Microcontroller Based Substation Monitoring system with gsm modem”.Priya Rachakonda
 
Design and Implementation of a Single Phase Earth Fault Relay
Design and Implementation of a Single  Phase Earth Fault RelayDesign and Implementation of a Single  Phase Earth Fault Relay
Design and Implementation of a Single Phase Earth Fault RelayIJSRED
 
Presentation best practice earthing and protection
Presentation   best practice earthing and protectionPresentation   best practice earthing and protection
Presentation best practice earthing and protectionMahesh Chandra Manav
 
unit-iii- Sphere Gap.ppt
unit-iii- Sphere Gap.pptunit-iii- Sphere Gap.ppt
unit-iii- Sphere Gap.pptVijayHiremath26
 
SUBSTATION DESIGN powerpoint presentation.pptx
SUBSTATION DESIGN powerpoint presentation.pptxSUBSTATION DESIGN powerpoint presentation.pptx
SUBSTATION DESIGN powerpoint presentation.pptxHimanshuShrivastava74
 
Lightning concepts iii
Lightning concepts iiiLightning concepts iii
Lightning concepts iiiILDTECH
 
WIRELESS POWER TRANSMISSION -DILEEP
WIRELESS POWER TRANSMISSION -DILEEPWIRELESS POWER TRANSMISSION -DILEEP
WIRELESS POWER TRANSMISSION -DILEEPDileep A P
 

Similaire à Emi unit iv ppt (20)

Electromagnetic Interference & Electromagnetic Compatibility
Electromagnetic Interference  & Electromagnetic CompatibilityElectromagnetic Interference  & Electromagnetic Compatibility
Electromagnetic Interference & Electromagnetic Compatibility
 
Electro magnetic interference and compatibility(ECM,ECI)
Electro magnetic interference and compatibility(ECM,ECI)Electro magnetic interference and compatibility(ECM,ECI)
Electro magnetic interference and compatibility(ECM,ECI)
 
Emt and emc
Emt and emcEmt and emc
Emt and emc
 
Transmission Line
Transmission LineTransmission Line
Transmission Line
 
Electromagnetic compatibility and its effects
Electromagnetic compatibility and its effectsElectromagnetic compatibility and its effects
Electromagnetic compatibility and its effects
 
Chapter8 emc
Chapter8 emcChapter8 emc
Chapter8 emc
 
Arrester
ArresterArrester
Arrester
 
Electrical System Design Initial
Electrical System Design InitialElectrical System Design Initial
Electrical System Design Initial
 
Wireless Power Transfer
Wireless Power TransferWireless Power Transfer
Wireless Power Transfer
 
“Microcontroller Based Substation Monitoring system with gsm modem”.
“Microcontroller Based Substation Monitoring system with gsm modem”.“Microcontroller Based Substation Monitoring system with gsm modem”.
“Microcontroller Based Substation Monitoring system with gsm modem”.
 
Lecture no.1 emi new
Lecture no.1 emi newLecture no.1 emi new
Lecture no.1 emi new
 
Design and Implementation of a Single Phase Earth Fault Relay
Design and Implementation of a Single  Phase Earth Fault RelayDesign and Implementation of a Single  Phase Earth Fault Relay
Design and Implementation of a Single Phase Earth Fault Relay
 
witricity
witricitywitricity
witricity
 
Presentation jmv internal
Presentation jmv internalPresentation jmv internal
Presentation jmv internal
 
Presentation best practice earthing and protection
Presentation   best practice earthing and protectionPresentation   best practice earthing and protection
Presentation best practice earthing and protection
 
unit-iii- Sphere Gap.ppt
unit-iii- Sphere Gap.pptunit-iii- Sphere Gap.ppt
unit-iii- Sphere Gap.ppt
 
SUBSTATION DESIGN powerpoint presentation.pptx
SUBSTATION DESIGN powerpoint presentation.pptxSUBSTATION DESIGN powerpoint presentation.pptx
SUBSTATION DESIGN powerpoint presentation.pptx
 
Introduction to mv switchgear
Introduction to mv switchgearIntroduction to mv switchgear
Introduction to mv switchgear
 
Lightning concepts iii
Lightning concepts iiiLightning concepts iii
Lightning concepts iii
 
WIRELESS POWER TRANSMISSION -DILEEP
WIRELESS POWER TRANSMISSION -DILEEPWIRELESS POWER TRANSMISSION -DILEEP
WIRELESS POWER TRANSMISSION -DILEEP
 

Plus de SIVA NAGENDRA REDDY (13)

Vlsi Synthesis
Vlsi SynthesisVlsi Synthesis
Vlsi Synthesis
 
Advance Peripheral Bus
Advance Peripheral Bus Advance Peripheral Bus
Advance Peripheral Bus
 
Dica iv chapter slides
Dica iv chapter slidesDica iv chapter slides
Dica iv chapter slides
 
Dica iii chapter slides
Dica iii chapter slidesDica iii chapter slides
Dica iii chapter slides
 
Dica ii chapter slides
Dica ii chapter slidesDica ii chapter slides
Dica ii chapter slides
 
Lica 3rd chapter slides
Lica 3rd chapter slidesLica 3rd chapter slides
Lica 3rd chapter slides
 
Lica 7th chapter slides
Lica 7th chapter slidesLica 7th chapter slides
Lica 7th chapter slides
 
LICA- DIFFERENTIAL APLIFIERS
LICA- DIFFERENTIAL APLIFIERSLICA- DIFFERENTIAL APLIFIERS
LICA- DIFFERENTIAL APLIFIERS
 
LICA-
LICA- LICA-
LICA-
 
Emi unit iii ppt
Emi unit iii pptEmi unit iii ppt
Emi unit iii ppt
 
Emi unit ii ppt
Emi unit ii pptEmi unit ii ppt
Emi unit ii ppt
 
Emi unit 1 ppt
Emi unit 1 pptEmi unit 1 ppt
Emi unit 1 ppt
 
Arduino simulation procedure
Arduino simulation procedureArduino simulation procedure
Arduino simulation procedure
 

Dernier

Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduitsrknatarajan
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdfankushspencer015
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...ranjana rawat
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
 

Dernier (20)

Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduits
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 

Emi unit iv ppt

  • 1. By Dr. G.N. Kodanda Ramaiah / P. Siva Nagendra Reddy
  • 2. Introduction DC & AC Bridge are used to measure resistance, inductance, capacitance and impedance. Operate on a null indication principle. This means the indication is independent of the calibration of the indicating device or any characteristics of it. Very high degrees of accuracy can be achieved using the bridges
  • 3. Types of bridges Two types of bridge are used in measurement: 1) DC bridge: a) Wheatstone Bridge b) Kelvin Bridge 2) AC bridge: a) Similar Angle Bridge b) Opposite Angle Bridge/Hay Bridge c) Maxwell Bridge d) Wein Bridge e) Radio Frequency Bridge f) Schering Bridge
  • 4. Wheatstone Bridge A Wheatstone bridge is a measuring instrument invented by Samuel Hunter Christie (British scientist & mathematician) in 1833 and improved and popularized by Sir Charles Wheatstone in 1843. It is used to measure an unknown electrical resistance by balancing two legs of a bridge circuit, one leg of which includes the unknown component. Its operation is similar to the original potentiometer except that in potentiometer circuits the meter used is a sensitive galvanometer. Sir Charles Wheatstone (1802 – 1875)
  • 5. Thévenin’s Theorem An analytical tool used to extensively analyze an unbalance bridge. Thévenin's theorem for electrical networks states that any combination of voltage sources and resistors with two terminals is electrically equivalent to a single voltage source V and a single series resistor R. For single frequency AC systems the theorem can also be applied to general impedances, not just resistors. The theorem was first discovered by German physicist Hermann von Helmholtz in 1853, but was then rediscovered in 1883 by French telegraph engineer Léon Charles Thévenin (1857-1926). Hermann von Helmholtz (1821 – 1894) Léon Charles Thévenin (1857-1926)German Physicist French Engineer
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.
  • 45.
  • 46.
  • 47.
  • 48.
  • 49.
  • 50.
  • 51.
  • 52.
  • 53.
  • 54.
  • 55.
  • 56.
  • 57.
  • 58.
  • 59.
  • 60.
  • 61.
  • 62. Hay’s Bridge It is also a modification of the Maxwell’s Wien Bridge and is particularly useful if the phase angle of the inductive impedance is large. In this case a comparatively smaller series resistance R1 is used instead of a parallel résistance.( which has to be of a very large value) as shown in fig.
  • 63. Fig L3= C1 R2 R4 R3= w C1 R1 R2 R4 1+w R1 C1 1+w R1 C1
  • 64. Wien Series Bridge It is a simple ratio bridge and is used for audio-frequency measurement of capacitance over a wide range. As shown in fig.
  • 66. Wien Parallel Bridge It is also a ratio bridge used mainly as the feedback network in the wide range audio- frequency R-C oscillators. It is may be used for the measurement of the audio-frequency but it is not as accurate as the modern digital frequency meters. As shown in fig.
  • 67. Fig. C2 = R2 = R3 C1 R1 R4
  • 68.
  • 69. EMI AMD EMC  EM interference (EMI): The unwanted effect of EM noise interfering with our signals  The absence of Electromagnetic Interference (EMI) in a system is called Electromagnetic Compatibility (EMC). (or)  EM compatibility means the ability of equipment to function satisfactorily in its EM environment without introducing intolerable EM disturbances to other equipment in that environment.
  • 70. INTRODUCTION:  Electromagnetics (EM) is a branch of physics or electrical engineering in which electric and magnetic phenomena are studied.  Electromagnetic interference exist in every communication link. it manifests itself as noise.  Electromagnetic interference (EMI) is electromagnetic energy that adversely affects the performance of electrical/electronic equipment by creating undesirable responses or complete operational failure.  Electromagnetic compatibility (EMC) is the ability of electrical or electronic equipment/systems to function in the intended operating environment without causing or experiencing performance degradation due to intentional EMI.  The most common methods of noise reduction include proper equipment circuit design, shielding , grounding, filtering, isolation, separation and orientation and noise cancellation techniques. 70
  • 71. DEFINITION OF EMI & EMC: EMI???  Electromagnetic interference is the degradation in the performance of a device due to the fields making up the electromagnetic environment. EMC???  Electromagnetic compatibility is achieved when a device functions satisfactorily without introducing intolerable disturbances to the electromagnetic environment. 71
  • 74. CAUSES OF EMI/EMC  SOURCES  Refrigerators, washing machine, electric motors.  Arc welding machine.  Electric shavers, AC, Computers.  Fast switching digital devices, ICs etc  Power chords of computers, UPS etc.  Aircraft navigation and Military equipments.  VICTIMS  Communication Receivers.  Microprocessors, Computers.  Industrial Controls.  Medical Devices.  Household Appliances.  Living Beings.
  • 75. BASIC ELEMENTS OF EMI SITUATION 75 Interference occurs if the received energy causes the receptor to function in unwanted manner. Whether the receiver is functioning in wanted or unwanted manner, depends on the coupling path as well as the source and victim. The medium is to be made as inefficient as possible.
  • 77. RADIATED INTERFERENCE 77 Narrow band interference usually arises from intentional transmissions such as radio and TV stations, pager transmitters , cell phones etc. It is a high frequency operation . Example: proximity effect Broad band interference usually comes from incidental radio frequency emitters. These includes electric power transmission lines, electric motors etc. It is a low frequency operation Example : skin effect
  • 78. CONDUCTED INTERFERENCE  Conducted electromagnetic interference is caused by the physical contact of the conductors as opposed to radiated EMI, which is caused by induction (without physical contact of the conductors).  Electromagnetic disturbances in the EM field of a conductor will no longer be confined to the surface of the conductor and will radiate away from it.  This persists in all conductors and mutual inductance between two radiated electromagnetic fields will result in EMI 78
  • 79. Differences between conducted and radiated interference 79
  • 80. 80
  • 81.  Intra system EMI causes  Inter system EMI causes 81 Effects of EMI Momentary disturbance in TV and radio reception due to operation of mixer- grinder/electric shavers/a passing vehicles etc Reset of computers and loss of data. Change of setting of status of control equipments. Failure of pace maker implemented in a patient due to a ‘walkie talkie’ Malfunctioning of flight controlling system due to use of laptop by passenger. Biological hazards.
  • 82. Sources of EMI: The sources of EMI can be broadly classified into two groups  Natural sources of EMI example: lightning  Manmade sources of EMI example: commercial radio and telephone communications In specific we can classify as  Functional: EMI can originate from any source designed to generate electromagnetic energy and which may create interference as a normal part of its operation  Incidental: EMI can originate from man made sources .These sources are not designed specifically to generate electromagnetic energy but which do infact cause interference.  Natural: EMI can be caused by natural phenomena, such as electrical storms , rain particles , solar and interstellar radiation. 82
  • 83. 83 Fig:1 Fig: 2 Fig1-lightning hitting between the Buildings. Fig2-lightning hitting a tree
  • 84. EMI CONTROL TECHNIQUES: To control or suppress EMI, the three common means employed in the design process are Grounding Shielding Filtering 84
  • 85. Grounding: 85 Grounding is the establishment of an electrically conductive path between two points to connect electrical and electronic elements of a system to one another or to some reference point, which may be designated as the ground. .An ideal ground plane is a zero-potential ,zero-impedance body that can be used as a reference for all signals in associated circuitry and to which any undesired current can be transferred for the elimination of its effects. Bonds provide protection from electrical shock, power circuit current return paths, and antenna ground plane connections, and also minimize the potential difference between the devices. They have the ability to carry large fault current. Bonding is the establishment of a low-impedance path between two metal surfaces. Grounding is a circuit concept, while bonding denotes the physical implementation of that concept.
  • 86. Shielding:  The purpose of shielding is to confine radiated energy to a specific region or to prevent radiated energy from entering a specific region.  Shields may be in the form of partitions and boxes as well as in the form of cable and connector shields.  Shield types include solid, nonsolid (e.g., screen), and braid, as is used on cables. In all cases, a shield can be characterized by its shielding effectiveness.  The shielding effectiveness is defined as SE=10 log incident power density transmitted power density  where the incident power density is the power density at a measuring point before a shield is installed and the transmitted power is the power density at the same point after the shield is in place. 86 10
  • 87. Filtering:  An electrical filter is a network of lumped or distributed constant resistors, inductors, and capacitors that offers comparatively little opposition to certain frequencies, while blocking the passage of other frequencies.  Filter provides the means whereby levels of conducted interference are substantially reduced.  The most significant characteristic of a filter is the insertion loss it provides as a function of frequency.  Insertion loss is defined as IL=20 log V2/V1  Where V1 is the output voltage of a signal source with the filter in the circuit, and V2 is the output voltage of the signal source without the use of the filter. 87 10
  • 88. ELECTRO MAGNETIC COMPATIBILITY  Electromagnetic compatibility (EMC) is the branch of electrical science which studies the unintentional generation, propagation and reception of electromagnetic energy with reference to the unwanted effects (Electromagnetic interference, or EMI) that such energy may induce.  The goal of EMC is the correct operation, in the same electromagnetic environment, of different equipment which use electromagnetic phenomena, and the avoidance of any interference effects.  A system is said to be electro magnetically compatible if :- • It doesn't cause interference with other system . • It is not susceptible to emissions from other systems. • It doesn’t cause interference with itself.  EMI is a phenomenon while EMC is an equipment characteristic or a property not to generate EMI above a certain limit and not to be affected or disturbed by EMI. The statement "Live and let live" is the best way to describe EMC. 88
  • 89. The methodologies used to prevent EMI are:-  Suppress the emissions at source point , best method to control EMI.  Make the coupling path as inefficient as possible.  Make the receiver less susceptible to emission. 89
  • 90. COUPLING MECHANISM: 90 The basic arrangement of noise source, coupling path and victim, receptor or sink is shown in the figure below. Source and victim are usually electronic hardware devices, though the source may be a natural phenomenon such as a lightning strike, electrostatic discharge(ESD) or, in one famous case, the Big Bang at the origin of the Universe.
  • 91. There are four basic coupling mechanism : 1. Conductive 2. Capacitive 3. Magnetic/Inductive 4. Radiative Conductive coupling: Conductive coupling occurs when the coupling path between the source and the receptor is formed by direct contact with a conducting body, for example a transmission line, wire, cable, PCB trace or metal enclosure. Conduction modes: Conducted noise is also characterized by the way it appears on different conductors:  Common mode or common impedance coupling: Noise appears in phase(in the same direction) on two conductors.  Differential mode coupling: Noise appears out of phase(in the opposite direction)on two conductors. 91
  • 92. Capacitive coupling:  Capacitive coupling occurs when a varying electrical field exists between two adjacent conductors typically less than a wavelength apart, inducing a change in voltage across the gap. Inductive coupling:  Inductive coupling occurs where the source and receiver are separated by a short distance (typically less than a wavelength).  Strictly, "Inductive coupling" can be of two kinds, electrical induction and magnetic induction.  It is common to refer to electrical induction as capacitive coupling, and to magnetic induction as inductive coupling. Magnetic coupling:  Magnetic coupling (MC) occurs when a varying magnetic field exists between two parallel conductors typically less than a wavelength apart, inducing a change in voltage along the receiving conductor. 92
  • 93. Radiative coupling:  Radiative coupling or electromagnetic coupling occurs when source and victim are separated by a large distance, typically more than a wavelength.  Source and victim act as radio antennas: the source emits or radiates an electromagnetic wave which propagates across the open space in between and is picked up or received by the victim. 93
  • 94. NEED FOR EMC STANDARDS:  The EMC standards are required for trouble free co-existence and to ensure satisfactory operation.  They are also required to provide compatibility between electrical, electronic, computer, control and other systems.  Standards are required as manufacturer-user interaction and user’s knowledge on EMI are limited.  They are also required for establishing harmonized standards to reduce international trade barriers and to improve product reliability and life of the product.
  • 95. EMC STANDARDS: These are of two types  Military Standards : Military EMC standards are made in order to ensure system-to-system compatibility in the real time military environment. Military standards are more stringent than civilian standards. Most of the military standards are broadly based on MIL-STD 461 and 462.  Civilian Standards: The civilian EMC standards are applicable for equipments used for commercial, industrial and domestic applications. The emission standards are specified to protect the broadcast services from interference.. 95
  • 96. ADVANTAGES OF EMC STANDARDS The advantages are: Compatibility, reliability and maintainability are increased. Design safety margin is provided.  The equipment operates in EMI scenario satisfactorily.  Product life and profits are increased. 96
  • 97. DEPARTMENT OF ECE, KUPPAM ENGINEERING COLLEGE,KUPPAM.
  • 98. DEPARTMENT OF ECE, KUPPAM ENGINEERING COLLEGE,KUPPAM.