SlideShare une entreprise Scribd logo
1  sur  39
Line Coding
Acknowledgments:
I would like to thank Wg Cdr (retd) Ramzan for his time and
guidance which were very helpful in planning and preparing
this lecture. I would also like to thank Dr. Ali Khayam and Mr.
Saadat Iqbal for their help and support.
Most of the material for this lecture has been taken from
“Digital Communications” 2nd
Edition by P. M. Grant and Ian
A. Glover.
Line Coding
Introduction:
Binary data can be transmitted using a number of different types of pulses. The
choice of a particular pair of pulses to represent the symbols 1 and 0 is called Line
Coding and the choice is generally made on the grounds of one or more of the
following considerations:
– Presence or absence of a DC level.
– Power Spectral Density- particularly its value at 0 Hz.
– Bandwidth.
– BER performance (this particular aspect is not covered in this lecture).
– Transparency (i.e. the property that any arbitrary symbol, or bit, pattern can
be transmitted and received).
– Ease of clock signal recovery for symbol synchronisation.
– Presence or absence of inherent error detection properties.
Line Coding
Introduction:
After line coding pulses may be filtered or otherwise shaped to further improve
their properties: for example, their spectral efficiency and/ or immunity to
intersymbol interference. .
Different Types of Line Coding
Unipolar Signalling
Unipolar signalling (also called on-off keying, OOK) is the type of line coding in
which one binary symbol (representing a 0 for example) is represented by the
absence of a pulse (i.e. a SPACE) and the other binary symbol (denoting a 1) is
represented by the presence of a pulse (i.e. a MARK).
There are two common variations of unipolar signalling: Non-Return to Zero (NRZ)
and Return to Zero (RZ).
Unipolar Signalling
Unipolar Non-Return to Zero (NRZ):
In unipolar NRZ the duration of the MARK pulse (Ƭ ) is equal to the duration (To) of the
symbol slot.
1 0 1 0 1 1 1 1 1 0
V
0
Unipolar Signalling
Unipolar Non-Return to Zero (NRZ):
In unipolar NRZ the duration of the MARK pulse (Ƭ ) is equal to the duration (To) of the
symbol slot. (put figure here).
Advantages:
– Simplicity in implementation.
– Doesn’t require a lot of bandwidth for transmission.
Disadvantages:
– Presence of DC level (indicated by spectral line at 0 Hz).
– Contains low frequency components. Causes “Signal Droop” (explained later).
– Does not have any error correction capability.
– Does not posses any clocking component for ease of synchronisation.
– Is not Transparent. Long string of zeros causes loss of synchronisation.
Unipolar Signalling
Unipolar Non-Return to Zero (NRZ):
Figure. PSD of Unipolar NRZ
Unipolar Signalling
Unipolar Non-Return to Zero (NRZ):
When Unipolar NRZ signals are transmitted over links with either transformer or
capacitor coupled (AC) repeaters, the DC level is removed converting them into a
polar format.
The continuous part of the PSD is also non-zero at 0 Hz (i.e. contains low
frequency components). This means that AC coupling will result in distortion of the
transmitted pulse shapes. AC coupled transmission lines typically behave like high-
pass RC filters and the distortion takes the form of an exponential decay of the
signal amplitude after each transition. This effect is referred to as “Signal Droop”
and is illustrated in figure below.
Unipolar Signalling
-V/2
V/2
1 0 1 0 1 1 1 1 1 0
V
0
-V/2
V/2
0
1 0 1 0 1 1 1 1 1 0
V
0
-V/2
V/2
0
Figure Distortion (Signal Droop) due to AC coupling of unipolar NRZ signal
Unipolar Signalling
Return to Zero (RZ):
In unipolar RZ the duration of the MARK pulse (Ƭ ) is less than the duration (To) of the symbol slot.
Typically RZ pulses fill only the first half of the time slot, returning to zero for the second half.
1 0 1 0 1 1 1 0 0 0
V
0
To
Ƭ
Unipolar Signalling
Return to Zero (RZ):
In unipolar RZ the duration of the MARK pulse (Ƭ ) is less than the duration (To) of the symbol slot.
Typically RZ pulses fill only the first half of the time slot, returning to zero for the second half.
1 0 1 0 1 1 1 0 0 0
V
0
To
Ƭ
Unipolar Signalling
Unipolar Return to Zero (RZ):
Advantages:
– Simplicity in implementation.
– Presence of a spectral line at symbol rate which can be used as symbol
timing clock signal.
Disadvantages:
– Presence of DC level (indicated by spectral line at 0 Hz).
– Continuous part is non-zero at 0 Hz. Causes “Signal Droop”.
– Does not have any error correction capability.
– Occupies twice as much bandwidth as Unipolar NRZ.
– Is not Transparent
Unipolar Signalling
Unipolar Return to Zero (RZ):
Figure. PSD of Unipolar RZ
Unipolar Signalling
In conclusion it can be said that neither variety of unipolar signals is suitable for
transmission over AC coupled lines.
Polar Signalling
In polar signalling a binary 1 is represented by a pulse g1(t) and a binary 0 by the
opposite (or antipodal) pulse g0(t) = -g1(t). Polar signalling also has NRZ and RZ
forms.
1 0 1 0 1 1 1 1 1 0
+V
-V
0
Figure. Polar NRZ
Polar Signalling
In polar signalling a binary 1 is represented by a pulse g1(t) and a binary 0 by the
opposite (or antipodal) pulse g0(t) = -g1(t). Polar signalling also has NRZ and RZ
forms.
+V
-V
0
Figure. Polar RZ
1 0 1 0 1 1 1 0 0 0
Polar Signalling
PSD of Polar Signalling:
Polar NRZ and RZ have almost identical spectra to the Unipolar NRZ and RZ. However,
due to the opposite polarity of the 1 and 0 symbols, neither contain any spectral lines.
Figure. PSD of Polar NRZ
Polar Signalling
PSD of Polar Signalling:
Polar NRZ and RZ have almost identical spectra to the Unipolar NRZ and RZ. However,
due to the opposite polarity of the 1 and 0 symbols, neither contain any spectral lines.
Figure. PSD of Polar RZ
Polar Signalling
Polar Non-Return to Zero (NRZ):
Advantages:
– Simplicity in implementation.
– No DC component.
Disadvantages:
– Continuous part is non-zero at 0 Hz. Causes “Signal Droop”.
– Does not have any error correction capability.
– Does not posses any clocking component for ease of synchronisation.
– Is not transparent.
Polar Signalling
Polar Return to Zero (RZ):
Advantages:
– Simplicity in implementation.
– No DC component.
Disadvantages:
– Continuous part is non-zero at 0 Hz. Causes “Signal Droop”.
– Does not have any error correction capability.
– Does not posses any clocking component for easy synchronisation. However, clock
can be extracted by rectifying the received signal.
– Occupies twice as much bandwidth as Polar NRZ.
BiPolar Signalling
Bipolar Signalling is also called “alternate mark inversion” (AMI) uses three voltage
levels (+V, 0, -V) to represent two binary symbols. Zeros, as in unipolar, are
represented by the absence of a pulse and ones (or marks) are represented by
alternating voltage levels of +V and –V.
Alternating the mark level voltage ensures that the bipolar spectrum has a null at DC
And that signal droop on AC coupled lines is avoided.
The alternating mark voltage also gives bipolar signalling a single error detection
capability.
Like the Unipolar and Polar cases, Bipolar also has NRZ and RZ variations.
BiPolar Signalling
Figure. BiPolar NRZ
1 0 1 0 1 1 1 1 1 0
+V
-V
0
Polar Signalling
PSD of BiPolar/ AMI NRZ Signalling:
Figure. PSD of BiPolar NRZ
BiPolar Signalling
BiPolar / AMI NRZ:
Advantages:
– No DC component.
– Occupies less bandwidth than unipolar and polar NRZ schemes.
– Does not suffer from signal droop (suitable for transmission over AC coupled lines).
– Possesses single error detection capability.
Disadvantages:
– Does not posses any clocking component for ease of synchronisation.
– Is not Transparent.
BiPolar Signalling
Figure. BiPolar RZ
1 0 1 0 1 1 1 1 1 0
+V
-V
0
Polar Signalling
PSD of BiPolar/ AMI RZ Signalling:
Figure. PSD of BiPolar RZ
BiPolar Signalling
BiPolar / AMI RZ:
Advantages:
– No DC component.
– Occupies less bandwidth than unipolar and polar RZ schemes.
– Does not suffer from signal droop (suitable for transmission over AC coupled lines).
– Possesses single error detection capability.
– Clock can be extracted by rectifying (a copy of) the received signal.
Disadvantages:
–Is not Transparent.
HDBn Signalling
HDBn is an enhancement of Bipolar Signalling. It overcomes the transparency
problem encountered in Bipolar signalling. In HDBn systems when the number of
continuous zeros exceeds n they are replaced by a special code.
The code recommended by the ITU-T for European PCM systems is HDB-3 (i.e. n=3).
In HDB-3 a string of 4 consecutive zeros are replaced by either 000V or B00V.
Where,
‘B’ conforms to the Alternate Mark Inversion Rule.
‘V’ is a violation of the Alternate Mark Inversion Rule
HDBn Signalling
The reason for two different substitutions is to make consecutive Violation pulses
alternate in polarity to avoid introduction of a DC component.
The substitution is chosen according to the following rules:
1. If the number of nonzero pulses after the last substitution is odd, the
substitution pattern will be 000V.
2. If the number of nonzero pulses after the last substitution is even, the
substitution pattern will be B00V.
HDBn Signalling
1 0 1 0 0 0 0 1 0 0 0 0
B 0 0 V 0 0 0 V
HDBn Signalling
PSD of HDB3 (RZ) Signalling:
Figure. PSD of HDB3 RZ
The PSD of HDB3
(RZ) is similar to the
PSD of Bipolar RZ.
HDBn Signalling
HDBn RZ:
Advantages:
– No DC component.
– Occupies less bandwidth than unipolar and polar RZ schemes.
– Does not suffer from signal droop (suitable for transmission over AC coupled lines).
– Possesses single error detection capability.
– Clock can be extracted by rectifying (a copy of) the received signal.
– Is Transparent.
These characteristic make this scheme ideal for use in Wide Area Networks
Manchester Signalling
In Manchester encoding , the duration of the bit is divided into two halves. The voltage
remains at one level during the first half and moves to the other level during the
second half.
A ‘One’ is +ve in 1st
half and -ve in 2nd
half.
A ‘Zero’ is -ve in 1st
half and +ve in 2nd
half.
Note: Some books use different conventions.
Manchester Signalling
Figure. Manchester Encoding.
1 0 1 0 1 1 1 1 1 0
+V
-V
0
Note: There is always a transition at
the centre of bit duration.
Manchester Signalling
PSD of Manchester Signalling:
Figure. PSD of Manchester
Manchester Signalling
The transition at the centre of every bit interval is used for synchronization at the
receiver.
Manchester encoding is called self-synchronizing. Synchronization at the receiving end
can be achieved by locking on to the the transitions, which indicate the middle of the bits.
It is worth highlighting that the traditional synchronization technique used for unipolar,
polar and bipolar schemes, which employs a narrow BPF to extract the clock signal
cannot be used for synchronization in Manchester encoding. This is because the PSD of
Manchester encoding does not include a spectral line/ impulse at symbol rate (1/To).
Even rectification does not help.
Manchester Signalling
Manchester Signalling:
Advantages:
– No DC component.
– Does not suffer from signal droop (suitable for transmission over AC coupled lines).
– Easy to synchronise with.
– Is Transparent.
Disadvantages:
– Because of the greater number of transitions it occupies a significantly large
bandwidth.
– Does not have error detection capability.
These characteristic make this scheme unsuitable for use in Wide Area Networks. However,
it is widely used in Local Area Networks such as Ethernet and Token Ring.
Reference Text Books
1. “Digital Communications” 2nd
Edition by Ian A. Glover and Peter M. Grant.
2. “Modern Digital & Analog Communications” 3rd
Edition by B. P. Lathi.
3. “Digital & Analog Communication Systems” 6th
Edition by Leon W. Couch, II.
4. “Communication Systems” 4th
Edition by Simon Haykin.
5. “Analog & Digital Communication Systems” by Martin S. Roden.
6. “Data Communication & Networking” 4th
Edition by Behrouz A. Forouzan.
39

Contenu connexe

Tendances

Introduction of digital communication
Introduction of digital communicationIntroduction of digital communication
Introduction of digital communication
asodariyabhavesh
 

Tendances (20)

Line coding
Line codingLine coding
Line coding
 
Radio receiver characteristics
Radio receiver characteristicsRadio receiver characteristics
Radio receiver characteristics
 
Super heterodyne receiver
Super heterodyne receiverSuper heterodyne receiver
Super heterodyne receiver
 
Generation of fm
Generation of fmGeneration of fm
Generation of fm
 
Pulse modulation, Pulse Amplitude (PAM), Pulse Width (PWM/PLM/PDM), Pulse Pos...
Pulse modulation, Pulse Amplitude (PAM), Pulse Width (PWM/PLM/PDM), Pulse Pos...Pulse modulation, Pulse Amplitude (PAM), Pulse Width (PWM/PLM/PDM), Pulse Pos...
Pulse modulation, Pulse Amplitude (PAM), Pulse Width (PWM/PLM/PDM), Pulse Pos...
 
Digital communication unit II
Digital communication unit IIDigital communication unit II
Digital communication unit II
 
Line coding presentation
Line coding presentationLine coding presentation
Line coding presentation
 
Companding and DPCM and ADPCM
Companding and DPCM and ADPCMCompanding and DPCM and ADPCM
Companding and DPCM and ADPCM
 
Sonjoy kundu line coding
Sonjoy kundu    line codingSonjoy kundu    line coding
Sonjoy kundu line coding
 
Frequency Modulation
Frequency ModulationFrequency Modulation
Frequency Modulation
 
Transmission line, single and double matching
Transmission line, single and double matchingTransmission line, single and double matching
Transmission line, single and double matching
 
Introduction of digital communication
Introduction of digital communicationIntroduction of digital communication
Introduction of digital communication
 
Comparison of Amplitude Modulation Techniques.pptx
Comparison of Amplitude Modulation Techniques.pptxComparison of Amplitude Modulation Techniques.pptx
Comparison of Amplitude Modulation Techniques.pptx
 
Pre-emphasis and de-emphasis circuits
Pre-emphasis and de-emphasis circuitsPre-emphasis and de-emphasis circuits
Pre-emphasis and de-emphasis circuits
 
Pcm
PcmPcm
Pcm
 
Pulse shaping
Pulse shapingPulse shaping
Pulse shaping
 
FM Demodulator
FM DemodulatorFM Demodulator
FM Demodulator
 
Fm demodulation using zero crossing detector
Fm demodulation using zero crossing detectorFm demodulation using zero crossing detector
Fm demodulation using zero crossing detector
 
AM and FM Transmitters and receivers
AM and FM Transmitters and receiversAM and FM Transmitters and receivers
AM and FM Transmitters and receivers
 
Z Transform
Z TransformZ Transform
Z Transform
 

En vedette

Clinical Trainer and Assessor Role Description
Clinical Trainer and Assessor Role Description Clinical Trainer and Assessor Role Description
Clinical Trainer and Assessor Role Description
Peter Griffiths
 

En vedette (15)

What is network marketing
What is network marketingWhat is network marketing
What is network marketing
 
Operaciones aritmeticas con button
Operaciones aritmeticas con buttonOperaciones aritmeticas con button
Operaciones aritmeticas con button
 
Types of government
Types of governmentTypes of government
Types of government
 
Piramide
PiramidePiramide
Piramide
 
Final Portfolio
Final PortfolioFinal Portfolio
Final Portfolio
 
Федеральная программа «Ты – предприниматель» (Самарская область). Модуль-7....
Федеральная программа «Ты – предприниматель» (Самарская область). Модуль-7....Федеральная программа «Ты – предприниматель» (Самарская область). Модуль-7....
Федеральная программа «Ты – предприниматель» (Самарская область). Модуль-7....
 
Modelling Increase in Low Pay 18th May 2016
Modelling Increase in Low Pay 18th May 2016Modelling Increase in Low Pay 18th May 2016
Modelling Increase in Low Pay 18th May 2016
 
NERI SEminar - Investment and the Fiscal Rules - Eddie Casey - IFAC - 8/2/17
NERI SEminar - Investment and the Fiscal Rules - Eddie Casey - IFAC - 8/2/17NERI SEminar - Investment and the Fiscal Rules - Eddie Casey - IFAC - 8/2/17
NERI SEminar - Investment and the Fiscal Rules - Eddie Casey - IFAC - 8/2/17
 
It handllingsplan förskolan
It handllingsplan förskolanIt handllingsplan förskolan
It handllingsplan förskolan
 
Pêcha kucha
Pêcha kuchaPêcha kucha
Pêcha kucha
 
ямал с ягодами
ямал с ягодамиямал с ягодами
ямал с ягодами
 
In Toto Marketing Services
In Toto Marketing ServicesIn Toto Marketing Services
In Toto Marketing Services
 
Clinical Trainer and Assessor Role Description
Clinical Trainer and Assessor Role Description Clinical Trainer and Assessor Role Description
Clinical Trainer and Assessor Role Description
 
Mary murphy nui maynooth post budget seminar slides 19 oct 16
Mary murphy nui maynooth post budget seminar slides 19 oct 16Mary murphy nui maynooth post budget seminar slides 19 oct 16
Mary murphy nui maynooth post budget seminar slides 19 oct 16
 
Kaizen 改善
Kaizen 改善Kaizen 改善
Kaizen 改善
 

Similaire à Line coding adcs

Linecodingstudent 140716233501-phpapp01
Linecodingstudent 140716233501-phpapp01Linecodingstudent 140716233501-phpapp01
Linecodingstudent 140716233501-phpapp01
Gita Patil
 
digital-analog_22222222222222222222222.pdf
digital-analog_22222222222222222222222.pdfdigital-analog_22222222222222222222222.pdf
digital-analog_22222222222222222222222.pdf
KiranG731731
 
Digital data transmission,line coding and pulse shaping
Digital data transmission,line coding and pulse shapingDigital data transmission,line coding and pulse shaping
Digital data transmission,line coding and pulse shaping
Aayush Kumar
 
Line coding Tec hniques.pptx
Line coding Tec                 hniques.pptxLine coding Tec                 hniques.pptx
Line coding Tec hniques.pptx
naveen088888
 
Binary to digital encoding tbs 301
Binary to digital encoding tbs 301Binary to digital encoding tbs 301
Binary to digital encoding tbs 301
Bhupesh Rawat
 
base-band_digital_data_transmission-Line coding - Copy.ppt
base-band_digital_data_transmission-Line coding - Copy.pptbase-band_digital_data_transmission-Line coding - Copy.ppt
base-band_digital_data_transmission-Line coding - Copy.ppt
AbyThomas54
 

Similaire à Line coding adcs (20)

Line coding
Line coding Line coding
Line coding
 
Linecodingstudent 140716233501-phpapp01
Linecodingstudent 140716233501-phpapp01Linecodingstudent 140716233501-phpapp01
Linecodingstudent 140716233501-phpapp01
 
Chapter4
Chapter4Chapter4
Chapter4
 
Sonjoy kundu 007
Sonjoy kundu 007Sonjoy kundu 007
Sonjoy kundu 007
 
Line coding
Line codingLine coding
Line coding
 
Unipolar
UnipolarUnipolar
Unipolar
 
digital-analog_22222222222222222222222.pdf
digital-analog_22222222222222222222222.pdfdigital-analog_22222222222222222222222.pdf
digital-analog_22222222222222222222222.pdf
 
Unipolar Encoding Techniques: NRZ & RZ
Unipolar Encoding Techniques: NRZ & RZUnipolar Encoding Techniques: NRZ & RZ
Unipolar Encoding Techniques: NRZ & RZ
 
Digital data transmission,line coding and pulse shaping
Digital data transmission,line coding and pulse shapingDigital data transmission,line coding and pulse shaping
Digital data transmission,line coding and pulse shaping
 
Line coding
Line codingLine coding
Line coding
 
DCN 5th ed. slides ch04 Digital Transmission.pdf
DCN 5th ed. slides ch04 Digital Transmission.pdfDCN 5th ed. slides ch04 Digital Transmission.pdf
DCN 5th ed. slides ch04 Digital Transmission.pdf
 
DC_PPT.pptx
DC_PPT.pptxDC_PPT.pptx
DC_PPT.pptx
 
Koding
KodingKoding
Koding
 
Digital Data, Digital Signal | Scrambling Techniques
Digital Data, Digital Signal | Scrambling TechniquesDigital Data, Digital Signal | Scrambling Techniques
Digital Data, Digital Signal | Scrambling Techniques
 
Lecture 08
Lecture 08Lecture 08
Lecture 08
 
line coding techniques, block coding and all type of coding
line coding techniques, block coding and all type of codingline coding techniques, block coding and all type of coding
line coding techniques, block coding and all type of coding
 
Line coding Tec hniques.pptx
Line coding Tec                 hniques.pptxLine coding Tec                 hniques.pptx
Line coding Tec hniques.pptx
 
Binary to digital encoding tbs 301
Binary to digital encoding tbs 301Binary to digital encoding tbs 301
Binary to digital encoding tbs 301
 
a159298339623 differential amplifier.pdf
a159298339623 differential amplifier.pdfa159298339623 differential amplifier.pdf
a159298339623 differential amplifier.pdf
 
base-band_digital_data_transmission-Line coding - Copy.ppt
base-band_digital_data_transmission-Line coding - Copy.pptbase-band_digital_data_transmission-Line coding - Copy.ppt
base-band_digital_data_transmission-Line coding - Copy.ppt
 

Dernier

Mg Road Call Girls Service: 🍓 7737669865 🍓 High Profile Model Escorts | Banga...
Mg Road Call Girls Service: 🍓 7737669865 🍓 High Profile Model Escorts | Banga...Mg Road Call Girls Service: 🍓 7737669865 🍓 High Profile Model Escorts | Banga...
Mg Road Call Girls Service: 🍓 7737669865 🍓 High Profile Model Escorts | Banga...
amitlee9823
 
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al Barsha
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al BarshaAl Barsha Escorts $#$ O565212860 $#$ Escort Service In Al Barsha
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al Barsha
AroojKhan71
 
Call Girls In Shalimar Bagh ( Delhi) 9953330565 Escorts Service
Call Girls In Shalimar Bagh ( Delhi) 9953330565 Escorts ServiceCall Girls In Shalimar Bagh ( Delhi) 9953330565 Escorts Service
Call Girls In Shalimar Bagh ( Delhi) 9953330565 Escorts Service
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
FESE Capital Markets Fact Sheet 2024 Q1.pdf
FESE Capital Markets Fact Sheet 2024 Q1.pdfFESE Capital Markets Fact Sheet 2024 Q1.pdf
FESE Capital Markets Fact Sheet 2024 Q1.pdf
MarinCaroMartnezBerg
 
Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...
Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...
Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...
amitlee9823
 
Call Girls Bommasandra Just Call 👗 7737669865 👗 Top Class Call Girl Service B...
Call Girls Bommasandra Just Call 👗 7737669865 👗 Top Class Call Girl Service B...Call Girls Bommasandra Just Call 👗 7737669865 👗 Top Class Call Girl Service B...
Call Girls Bommasandra Just Call 👗 7737669865 👗 Top Class Call Girl Service B...
amitlee9823
 
Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
amitlee9823
 
CHEAP Call Girls in Saket (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
CHEAP Call Girls in Saket (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICECHEAP Call Girls in Saket (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
CHEAP Call Girls in Saket (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 

Dernier (20)

Mg Road Call Girls Service: 🍓 7737669865 🍓 High Profile Model Escorts | Banga...
Mg Road Call Girls Service: 🍓 7737669865 🍓 High Profile Model Escorts | Banga...Mg Road Call Girls Service: 🍓 7737669865 🍓 High Profile Model Escorts | Banga...
Mg Road Call Girls Service: 🍓 7737669865 🍓 High Profile Model Escorts | Banga...
 
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al Barsha
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al BarshaAl Barsha Escorts $#$ O565212860 $#$ Escort Service In Al Barsha
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al Barsha
 
Invezz.com - Grow your wealth with trading signals
Invezz.com - Grow your wealth with trading signalsInvezz.com - Grow your wealth with trading signals
Invezz.com - Grow your wealth with trading signals
 
Call Girls In Shalimar Bagh ( Delhi) 9953330565 Escorts Service
Call Girls In Shalimar Bagh ( Delhi) 9953330565 Escorts ServiceCall Girls In Shalimar Bagh ( Delhi) 9953330565 Escorts Service
Call Girls In Shalimar Bagh ( Delhi) 9953330565 Escorts Service
 
FESE Capital Markets Fact Sheet 2024 Q1.pdf
FESE Capital Markets Fact Sheet 2024 Q1.pdfFESE Capital Markets Fact Sheet 2024 Q1.pdf
FESE Capital Markets Fact Sheet 2024 Q1.pdf
 
Cheap Rate Call girls Sarita Vihar Delhi 9205541914 shot 1500 night
Cheap Rate Call girls Sarita Vihar Delhi 9205541914 shot 1500 nightCheap Rate Call girls Sarita Vihar Delhi 9205541914 shot 1500 night
Cheap Rate Call girls Sarita Vihar Delhi 9205541914 shot 1500 night
 
April 2024 - Crypto Market Report's Analysis
April 2024 - Crypto Market Report's AnalysisApril 2024 - Crypto Market Report's Analysis
April 2024 - Crypto Market Report's Analysis
 
Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...
Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...
Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...
 
Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...
Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...
Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...
 
Accredited-Transport-Cooperatives-Jan-2021-Web.pdf
Accredited-Transport-Cooperatives-Jan-2021-Web.pdfAccredited-Transport-Cooperatives-Jan-2021-Web.pdf
Accredited-Transport-Cooperatives-Jan-2021-Web.pdf
 
Call Girls Bommasandra Just Call 👗 7737669865 👗 Top Class Call Girl Service B...
Call Girls Bommasandra Just Call 👗 7737669865 👗 Top Class Call Girl Service B...Call Girls Bommasandra Just Call 👗 7737669865 👗 Top Class Call Girl Service B...
Call Girls Bommasandra Just Call 👗 7737669865 👗 Top Class Call Girl Service B...
 
Carero dropshipping via API with DroFx.pptx
Carero dropshipping via API with DroFx.pptxCarero dropshipping via API with DroFx.pptx
Carero dropshipping via API with DroFx.pptx
 
Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
 
CHEAP Call Girls in Saket (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
CHEAP Call Girls in Saket (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICECHEAP Call Girls in Saket (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
CHEAP Call Girls in Saket (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
 
Capstone Project on IBM Data Analytics Program
Capstone Project on IBM Data Analytics ProgramCapstone Project on IBM Data Analytics Program
Capstone Project on IBM Data Analytics Program
 
ALSO dropshipping via API with DroFx.pptx
ALSO dropshipping via API with DroFx.pptxALSO dropshipping via API with DroFx.pptx
ALSO dropshipping via API with DroFx.pptx
 
Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...
Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...
Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...
 
Mature dropshipping via API with DroFx.pptx
Mature dropshipping via API with DroFx.pptxMature dropshipping via API with DroFx.pptx
Mature dropshipping via API with DroFx.pptx
 
VIP Model Call Girls Hinjewadi ( Pune ) Call ON 8005736733 Starting From 5K t...
VIP Model Call Girls Hinjewadi ( Pune ) Call ON 8005736733 Starting From 5K t...VIP Model Call Girls Hinjewadi ( Pune ) Call ON 8005736733 Starting From 5K t...
VIP Model Call Girls Hinjewadi ( Pune ) Call ON 8005736733 Starting From 5K t...
 
Edukaciniai dropshipping via API with DroFx
Edukaciniai dropshipping via API with DroFxEdukaciniai dropshipping via API with DroFx
Edukaciniai dropshipping via API with DroFx
 

Line coding adcs

  • 1. Line Coding Acknowledgments: I would like to thank Wg Cdr (retd) Ramzan for his time and guidance which were very helpful in planning and preparing this lecture. I would also like to thank Dr. Ali Khayam and Mr. Saadat Iqbal for their help and support. Most of the material for this lecture has been taken from “Digital Communications” 2nd Edition by P. M. Grant and Ian A. Glover.
  • 2. Line Coding Introduction: Binary data can be transmitted using a number of different types of pulses. The choice of a particular pair of pulses to represent the symbols 1 and 0 is called Line Coding and the choice is generally made on the grounds of one or more of the following considerations: – Presence or absence of a DC level. – Power Spectral Density- particularly its value at 0 Hz. – Bandwidth. – BER performance (this particular aspect is not covered in this lecture). – Transparency (i.e. the property that any arbitrary symbol, or bit, pattern can be transmitted and received). – Ease of clock signal recovery for symbol synchronisation. – Presence or absence of inherent error detection properties.
  • 3. Line Coding Introduction: After line coding pulses may be filtered or otherwise shaped to further improve their properties: for example, their spectral efficiency and/ or immunity to intersymbol interference. .
  • 4. Different Types of Line Coding
  • 5. Unipolar Signalling Unipolar signalling (also called on-off keying, OOK) is the type of line coding in which one binary symbol (representing a 0 for example) is represented by the absence of a pulse (i.e. a SPACE) and the other binary symbol (denoting a 1) is represented by the presence of a pulse (i.e. a MARK). There are two common variations of unipolar signalling: Non-Return to Zero (NRZ) and Return to Zero (RZ).
  • 6. Unipolar Signalling Unipolar Non-Return to Zero (NRZ): In unipolar NRZ the duration of the MARK pulse (Ƭ ) is equal to the duration (To) of the symbol slot. 1 0 1 0 1 1 1 1 1 0 V 0
  • 7. Unipolar Signalling Unipolar Non-Return to Zero (NRZ): In unipolar NRZ the duration of the MARK pulse (Ƭ ) is equal to the duration (To) of the symbol slot. (put figure here). Advantages: – Simplicity in implementation. – Doesn’t require a lot of bandwidth for transmission. Disadvantages: – Presence of DC level (indicated by spectral line at 0 Hz). – Contains low frequency components. Causes “Signal Droop” (explained later). – Does not have any error correction capability. – Does not posses any clocking component for ease of synchronisation. – Is not Transparent. Long string of zeros causes loss of synchronisation.
  • 8. Unipolar Signalling Unipolar Non-Return to Zero (NRZ): Figure. PSD of Unipolar NRZ
  • 9. Unipolar Signalling Unipolar Non-Return to Zero (NRZ): When Unipolar NRZ signals are transmitted over links with either transformer or capacitor coupled (AC) repeaters, the DC level is removed converting them into a polar format. The continuous part of the PSD is also non-zero at 0 Hz (i.e. contains low frequency components). This means that AC coupling will result in distortion of the transmitted pulse shapes. AC coupled transmission lines typically behave like high- pass RC filters and the distortion takes the form of an exponential decay of the signal amplitude after each transition. This effect is referred to as “Signal Droop” and is illustrated in figure below.
  • 10. Unipolar Signalling -V/2 V/2 1 0 1 0 1 1 1 1 1 0 V 0 -V/2 V/2 0 1 0 1 0 1 1 1 1 1 0 V 0 -V/2 V/2 0 Figure Distortion (Signal Droop) due to AC coupling of unipolar NRZ signal
  • 11. Unipolar Signalling Return to Zero (RZ): In unipolar RZ the duration of the MARK pulse (Ƭ ) is less than the duration (To) of the symbol slot. Typically RZ pulses fill only the first half of the time slot, returning to zero for the second half. 1 0 1 0 1 1 1 0 0 0 V 0 To Ƭ
  • 12. Unipolar Signalling Return to Zero (RZ): In unipolar RZ the duration of the MARK pulse (Ƭ ) is less than the duration (To) of the symbol slot. Typically RZ pulses fill only the first half of the time slot, returning to zero for the second half. 1 0 1 0 1 1 1 0 0 0 V 0 To Ƭ
  • 13. Unipolar Signalling Unipolar Return to Zero (RZ): Advantages: – Simplicity in implementation. – Presence of a spectral line at symbol rate which can be used as symbol timing clock signal. Disadvantages: – Presence of DC level (indicated by spectral line at 0 Hz). – Continuous part is non-zero at 0 Hz. Causes “Signal Droop”. – Does not have any error correction capability. – Occupies twice as much bandwidth as Unipolar NRZ. – Is not Transparent
  • 14. Unipolar Signalling Unipolar Return to Zero (RZ): Figure. PSD of Unipolar RZ
  • 15. Unipolar Signalling In conclusion it can be said that neither variety of unipolar signals is suitable for transmission over AC coupled lines.
  • 16. Polar Signalling In polar signalling a binary 1 is represented by a pulse g1(t) and a binary 0 by the opposite (or antipodal) pulse g0(t) = -g1(t). Polar signalling also has NRZ and RZ forms. 1 0 1 0 1 1 1 1 1 0 +V -V 0 Figure. Polar NRZ
  • 17. Polar Signalling In polar signalling a binary 1 is represented by a pulse g1(t) and a binary 0 by the opposite (or antipodal) pulse g0(t) = -g1(t). Polar signalling also has NRZ and RZ forms. +V -V 0 Figure. Polar RZ 1 0 1 0 1 1 1 0 0 0
  • 18. Polar Signalling PSD of Polar Signalling: Polar NRZ and RZ have almost identical spectra to the Unipolar NRZ and RZ. However, due to the opposite polarity of the 1 and 0 symbols, neither contain any spectral lines. Figure. PSD of Polar NRZ
  • 19. Polar Signalling PSD of Polar Signalling: Polar NRZ and RZ have almost identical spectra to the Unipolar NRZ and RZ. However, due to the opposite polarity of the 1 and 0 symbols, neither contain any spectral lines. Figure. PSD of Polar RZ
  • 20. Polar Signalling Polar Non-Return to Zero (NRZ): Advantages: – Simplicity in implementation. – No DC component. Disadvantages: – Continuous part is non-zero at 0 Hz. Causes “Signal Droop”. – Does not have any error correction capability. – Does not posses any clocking component for ease of synchronisation. – Is not transparent.
  • 21. Polar Signalling Polar Return to Zero (RZ): Advantages: – Simplicity in implementation. – No DC component. Disadvantages: – Continuous part is non-zero at 0 Hz. Causes “Signal Droop”. – Does not have any error correction capability. – Does not posses any clocking component for easy synchronisation. However, clock can be extracted by rectifying the received signal. – Occupies twice as much bandwidth as Polar NRZ.
  • 22. BiPolar Signalling Bipolar Signalling is also called “alternate mark inversion” (AMI) uses three voltage levels (+V, 0, -V) to represent two binary symbols. Zeros, as in unipolar, are represented by the absence of a pulse and ones (or marks) are represented by alternating voltage levels of +V and –V. Alternating the mark level voltage ensures that the bipolar spectrum has a null at DC And that signal droop on AC coupled lines is avoided. The alternating mark voltage also gives bipolar signalling a single error detection capability. Like the Unipolar and Polar cases, Bipolar also has NRZ and RZ variations.
  • 23. BiPolar Signalling Figure. BiPolar NRZ 1 0 1 0 1 1 1 1 1 0 +V -V 0
  • 24. Polar Signalling PSD of BiPolar/ AMI NRZ Signalling: Figure. PSD of BiPolar NRZ
  • 25. BiPolar Signalling BiPolar / AMI NRZ: Advantages: – No DC component. – Occupies less bandwidth than unipolar and polar NRZ schemes. – Does not suffer from signal droop (suitable for transmission over AC coupled lines). – Possesses single error detection capability. Disadvantages: – Does not posses any clocking component for ease of synchronisation. – Is not Transparent.
  • 26. BiPolar Signalling Figure. BiPolar RZ 1 0 1 0 1 1 1 1 1 0 +V -V 0
  • 27. Polar Signalling PSD of BiPolar/ AMI RZ Signalling: Figure. PSD of BiPolar RZ
  • 28. BiPolar Signalling BiPolar / AMI RZ: Advantages: – No DC component. – Occupies less bandwidth than unipolar and polar RZ schemes. – Does not suffer from signal droop (suitable for transmission over AC coupled lines). – Possesses single error detection capability. – Clock can be extracted by rectifying (a copy of) the received signal. Disadvantages: –Is not Transparent.
  • 29. HDBn Signalling HDBn is an enhancement of Bipolar Signalling. It overcomes the transparency problem encountered in Bipolar signalling. In HDBn systems when the number of continuous zeros exceeds n they are replaced by a special code. The code recommended by the ITU-T for European PCM systems is HDB-3 (i.e. n=3). In HDB-3 a string of 4 consecutive zeros are replaced by either 000V or B00V. Where, ‘B’ conforms to the Alternate Mark Inversion Rule. ‘V’ is a violation of the Alternate Mark Inversion Rule
  • 30. HDBn Signalling The reason for two different substitutions is to make consecutive Violation pulses alternate in polarity to avoid introduction of a DC component. The substitution is chosen according to the following rules: 1. If the number of nonzero pulses after the last substitution is odd, the substitution pattern will be 000V. 2. If the number of nonzero pulses after the last substitution is even, the substitution pattern will be B00V.
  • 31. HDBn Signalling 1 0 1 0 0 0 0 1 0 0 0 0 B 0 0 V 0 0 0 V
  • 32. HDBn Signalling PSD of HDB3 (RZ) Signalling: Figure. PSD of HDB3 RZ The PSD of HDB3 (RZ) is similar to the PSD of Bipolar RZ.
  • 33. HDBn Signalling HDBn RZ: Advantages: – No DC component. – Occupies less bandwidth than unipolar and polar RZ schemes. – Does not suffer from signal droop (suitable for transmission over AC coupled lines). – Possesses single error detection capability. – Clock can be extracted by rectifying (a copy of) the received signal. – Is Transparent. These characteristic make this scheme ideal for use in Wide Area Networks
  • 34. Manchester Signalling In Manchester encoding , the duration of the bit is divided into two halves. The voltage remains at one level during the first half and moves to the other level during the second half. A ‘One’ is +ve in 1st half and -ve in 2nd half. A ‘Zero’ is -ve in 1st half and +ve in 2nd half. Note: Some books use different conventions.
  • 35. Manchester Signalling Figure. Manchester Encoding. 1 0 1 0 1 1 1 1 1 0 +V -V 0 Note: There is always a transition at the centre of bit duration.
  • 36. Manchester Signalling PSD of Manchester Signalling: Figure. PSD of Manchester
  • 37. Manchester Signalling The transition at the centre of every bit interval is used for synchronization at the receiver. Manchester encoding is called self-synchronizing. Synchronization at the receiving end can be achieved by locking on to the the transitions, which indicate the middle of the bits. It is worth highlighting that the traditional synchronization technique used for unipolar, polar and bipolar schemes, which employs a narrow BPF to extract the clock signal cannot be used for synchronization in Manchester encoding. This is because the PSD of Manchester encoding does not include a spectral line/ impulse at symbol rate (1/To). Even rectification does not help.
  • 38. Manchester Signalling Manchester Signalling: Advantages: – No DC component. – Does not suffer from signal droop (suitable for transmission over AC coupled lines). – Easy to synchronise with. – Is Transparent. Disadvantages: – Because of the greater number of transitions it occupies a significantly large bandwidth. – Does not have error detection capability. These characteristic make this scheme unsuitable for use in Wide Area Networks. However, it is widely used in Local Area Networks such as Ethernet and Token Ring.
  • 39. Reference Text Books 1. “Digital Communications” 2nd Edition by Ian A. Glover and Peter M. Grant. 2. “Modern Digital & Analog Communications” 3rd Edition by B. P. Lathi. 3. “Digital & Analog Communication Systems” 6th Edition by Leon W. Couch, II. 4. “Communication Systems” 4th Edition by Simon Haykin. 5. “Analog & Digital Communication Systems” by Martin S. Roden. 6. “Data Communication & Networking” 4th Edition by Behrouz A. Forouzan. 39