SlideShare une entreprise Scribd logo
1  sur  41
Télécharger pour lire hors ligne
franco.bontempi@uniroma1.it
Str
o N
GER
www.stronger2012.com
Wt ĂŶĚ ŝƚƐ ĂƉƉůŝĐĂƚŝŽŶ ƚŽ
KĨĨƐŚŽƌĞ tŝŶĚ dƵƌďŝŶĞƐ
ƌĂŶĐĞƐĐŽ WĞƚƌŝŶŝ
^ƚƌŽE'Z Ɛ͘ƌ͘ů͘
ĂĐŽůƚĂ͛ Ěŝ /ŶŐĞŐŶĞƌŝĂ ŝǀŝůĞ Ğ
/ŶĚƵƐƚƌŝĂůĞ
^ĂƉŝĞŶnjĂ hŶŝǀĞƌƐŝƚĂ͛ Ěŝ ZŽŵĂ
Performance-Based Wind
Engineering (PBWE) procedure
Background
ENVIRONMENT
Wind
actions
Structural
systems
Non
environmental
actions
EXCHANGE ZONE
Site-specific
Wind
Aerodynamic and
aeroelastic
phenomena
Wind site basic
parameters
Environmental
effects (like
waves)
Structural
system as modified
by service loads
STRUCTURAL SYSTEM
Vm
Mean wind velocity profile
Vm+ v(t)
Turbulent wind velocity profile
river
Vm
Mean wind velocity profile
Vm+ v(t)
Turbulent wind velocity profile
river
river
ENVIRONMENT EXCHANGE ZONE
Ciampoli M, Petrini F., Augusti G., (2011). “Performance-Based Wind Engineering: towards a general procedure”, Structural
Safety, 33 (6), 367-378. DOI: 10.1016/j.strusafe.2011.07.001.
Schematization of uncertainty in Wind Engineering (I)
Str
o N
GER
www.stronger2012.com
Types of uncertainties
ENVIRONMENT
Wind
actions
Structural
systems
Non
environmental
actions
EXCHANGE ZONE
1. Aleatory
2. Epistemic
3. Model
Interaction
parameters
Structural parameters
Site-specific
Wind
Aerodynamic and
aeroelastic
phenomena
Wind site basic
parameters
Intensity
measure
1. Aleatory
2. Epistemic
3. Model
1. Aleatory
2. Epistemic
3. Model
Environmental
effects (like
waves)
Structural
system as modified
by service loads
( )IM ( )IP ( )SP
STRUCTURAL SYSTEM
Ciampoli M, Petrini F., Augusti G., (2011). “Performance-Based Wind Engineering: towards a general procedure”, Structural
Safety, 33 (6), 367-378. DOI: 10.1016/j.strusafe.2011.07.001.
Schematization of uncertainty in Wind Engineering (II)
( ) ( ) ( ) ( )SPPIMPSP,IMIPPSP,IP,IMP ⋅⋅=
Str
o N
GER
www.stronger2012.com
O
f(IM|O)
f(IM) f(IP|IM,SP)
f(IP)
f(EDP|IM,IP,SP)
G(EDP)
f(DM|EDP)
G(DM)
f(DV|DM)
G(DV)
Hazard analysis
Interaction
analysis
Structuralanalysis Damageanalysis Loss analysis
IM: intensity
measure
IP: interaction
parameters
EDP:engineering
demand param.
DM:damage
measure
DV:decision
variable
Select
O, D
O:location
D:design
Environme
nt info
Decision-
making
D
f(SP|D)
f(SP)
Structural
characterization
SP:structural
system parameters
Structural
system
info
WtͲ ƌĂŵĞǁŽƌŬ
';sͿ с œ͙œ ';s|DͿ ͼ Ĩ;D|WͿ ͼ Ĩ;W|/D͕ /W͕ ^WͿ ͼ Ĩ;/W||||/D͕^WͿ ͼ
ͼ Ĩ;/DͿ ͼ Ĩ;^WͿ ͼ ĚD ͼ ĚW ͼ Ě/W ͼ Ě/D ͼ Ě^W
/ŶƚĞƌĂĐƚŝŽŶ
WĂƌĂŵĞƚĞƌƐ
^ƚƌƵĐƚƵƌĂů
WĂƌĂŵĞƚĞƌƐ
/ŶƚĞŶƐŝƚLJ
ŵĞĂƐƵƌĞ /D /W^W
ŶŐŝŶĞĞƌŝŶŐ
ĞŵĂŶĚ
WĂƌĂŵĞƚĞƌƐ
W
ĂŵĂŐĞ
DĞĂƐƵƌĞ D
ĞĐŝƐŝŽŶ
sĂƌŝĂďůĞ s
Ciampoli M., Petrini F., Augusti G., (2011). “Performance-Based Wind Engineering: towards a general
procedure”, Structural Safety, 33 (6), 367-378
';ͼͮͼͿ ŝƐ Ă ĐŽŶĚŝƚŝŽŶĂů
ĐŽŵƉůĞŵĞŶƚĂƌLJ
ĐƵŵƵůĂƚŝǀĞ ĚŝƐƚƌŝďƵƚŝŽŶ
ĨƵŶĐƚŝŽŶ
Ĩ;ͼͮͼͿ ŝƐ Ă ĐŽŶĚŝƚŝŽŶĂů
ƉƌŽďĂďŝůŝƚLJ ĚĞŶƐŝƚLJ
ĨƵŶĐƚŝŽŶ= progress with respect to the
Performance-Based Seismic Design
*
* *
Extension of the
Performance-Based
Seismic Design
procedure proposed
by PEER Research
center
Str
o N
GER
www.stronger2012.com
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0 5 10 15 20 25 30 35
P(Av  av*|Vm(zdeck))
Vm(zdeck)[m/s]
Ciampoli M., Petrini F., Augusti G., (2011). “Performance-Based Wind Engineering: towards a general
procedure”, Structural Safety, 33 (6), 367-378
EDP =Av - DM=max (av) [m/s2]
1.0
0.8
0.6
0.4
0.2
0
G(EDP)
0 1 2 3
WĞƌĨŽƌŵĂŶĐĞ ǀĂůƵĂƚŝŽŶ ;WсsĞƌƚŝĐĂů ĂĐĐĞůĞƌĂƚŝŽŶͿ
ƌĂŐŝůŝƚLJĐƵƌǀĞƐW;Wͮ/DͿ
ĂŝůƵƌĞƉƌŽďĂďŝůŝƚLJ';WͿ
WtͲ ƉƉůŝĐĂƚŝŽŶ ŽŶ Ă ůŽŶŐ ƐƉĂŶ ƐƵƐƉĞŶƐŝŽŶ ďƌŝĚŐĞ
Vento = f(s,t)
Vento = f(s,t)
Vento = f(s,t)
Vento = f(s,t)
WƐ
Ϭ͘Ϭ
ϳ ϭ͘ϭ
ŝĨĨĞƌĞŶƚ
ƚŚƌĞƐŚŽůĚ
ǀĂůƵĞƐ
Str
o N
GER
www.stronger2012.com
Preliminary studies:
Offshore Wind Turbines
(parked configuration)
ϭ
University of Notre Dame , South Bend, IN, USA
June 19, 2012 – EMI/PMC Conference
Francesco Petrini, PhD, PE
x,x’
z’
y’
Waves
Current
P
(t)vP
(t)w P
(t)uP
Turbulent
wind
P
Mean
wind
Vm(zP)
z
y
H
h
vw(z’)
Vcur(z’)
d
Terrain
ĞƐŝŐŶ ĞŶǀŝƌŽŶŵĞŶƚ ƌĞƉƌĞƐĞŶƚĂƚŝŽŶ ;ϭͿ
Str
o N
GER
www.stronger2012.com
( ) ( ) ( ) ( )( )nfexpnSnSnS jkuuuuuu kkjjkj
−⋅=
( )( ) 2
t0
0
u
2
u u1.75)log(zarctan1.16(n)dnSı ⋅+⋅−== ∫
∞
5.0
0
uu2
x
u
200
300(x)dxR
u
1
L 





⋅== ∫
∞
z
x
z
The mean velocity magnitude varies with the
height.
MeancontributionStochasticcontribution
( )
( )[ ]5/3
ju
ju
2
V
uu
/z10,302fL1Ȧ/2ʌ
/zfL6,686ı
ȦS jj
+
=
( )j
j
zV2ʌ
Ȧz
f = ( )
( )
( ) ( )( )kj
2
kj
2
z
jk
zVzV2ʌ
zzCȦ
Ȧf
+
−
=
Autospectrum
where:
α






=
hub
hub
z
z
UzU )(
0.14=α
For normal wind condition
( )
( )
¡¡¢£
¤¤¥¦
§§¨©

−
−−
−














−=
2
5.0exp4
5
4
2
4
5
exp
2
P
P
f
ff
Pf
f
f
g
fS
σ
γ
π
α
where f=2π/T is the frequency, fP=2π/TP is the peak
frequency, α is the equilibrium coefficient, g is gravity
acceleration, ɍ and γ parameters dependent from HS e
TP






−=
−
R
yearHTS
T
FH SR
1
1
1
1max,,,
Extreme events
analysis (Return
period TR).
7
1
,)( 




 +
⋅=
d
zd
UzU refc
x
z
d
water mean level
Wind Current and waves
JONSWAP spectrum
ĞƐŝŐŶ ĞŶǀŝƌŽŶŵĞŶƚ ƌĞƉƌĞƐĞŶƚĂƚŝŽŶ ;ϮͿ
Cross-
spectrum
 




 
 




 
 





 





 




 




!
 



 
 
 





 




#
 





 




#
 





$
%

'
(
)
0
1
23456786594@AB
C
DEFG
H
I
P
Q
H
R
S
T
EDP: )()( hgrhr rrm
p
σ⋅+=
)T(log2
577.0
)T(log2g
winde
winder
⋅
+⋅=
η
η
1°1°1°1°
rp
1°1°1°1°
rp
tŝŶĚ ĂŶĚ ǁĂǀĞ ĨŽƌĐĞ ƐƉĞĐƚƌĂ
U
V
W
X
Y
W
`
U
V
W
X
Y
W
a
U
V
W
X
Y
W
U
U
V
W
X
b
W
W
U
V
W
X
b
W
U
U
V
X
Y
W
c
U
V
X
Y
W
`
U
V
X
Y
W
a
U
V
X
Y
W
U
U
V
X
b
W
W
d
e
f
g
h
i
p
q
rstuvwtstusxy€‚ƒ„…†‡ˆ
‰

‘
’
“
”
•
‘
–
—
˜

‘
’
“
”
•
‘
–
—
^ƚƌƵĐƚƵƌĂů ƌĞƐƉŽŶƐĞ
Basis of the numerical modeling
Structural response (EDP) in frequency domain
(parked configuration)
Peak along- and across- wind displacements
Davenport’s
peak factor
Str
o N
GER
www.stronger2012.com
Previous studies: Numerical application
Uncertainties overview
(parked configuration)
Importance of SPs
as stochastic
parameters
Effects of the
interactions in the
environment
Effects of dominant
aeroelastic phenomena
1°1°1°1°
rp
1°1°1°1°
rp
EDP = peak
displacement
at the rotor
KE' t/E /Zd/KE
᧊᧊᧊᧊[EDP]
EDP [m]
᧊᧊᧊᧊[EDP] EDP [m]
ZK^^ t/E /Zd/KE
Comparison of mean annual frequencies ᧊[EDP] of
exceeding any value of the EDP:
Previous studies: Relevance of SP uncertainty
Risk Including SP Uncertainty (Monte Carlo 5000 samples)
Barbato M., Ciampoli M., Petrini F. (2010). “Effects of Modelling Parameter Uncertainty on the Structural Response of Offshore
Wind Turbines”, Proceedings of the 12th biennial ASCE Aerospace Division International Conference (Earth  Space 2010),
Honolulu, USA, 14 – 17 March 2010. ISBN 978-0-7844-1096-7.
Str
o N
GER
www.stronger2012.com
Aerodynamic uncertainty characterization
by the meso-scale modeling
(Rotating Configuration)
Ϯ
Physics (1): Mean wind rotational sampling
Murtagh, P.J., Basu, B., Broderick, B.M., 2005. Along-wind response of a wind turbine tower with blade
coupling subjected to rotationally sampled wind loading. Eng. Struct. 27(8), 1209-1219
( ) ( ) ( )12 ddd zFzFF iii S
X
S
X
S
X −=∆
z1
Ω
z2
Ω
Time t2Time t1
Vm(z1)
Vm(z2)
Tributary
area
S
Ω
dFX
S
Angular
rotational
velocity
hub
( ) ( ) ( )tFFtF ii
hub
i S
X
S
X
S
X ⋅⋅∆+= ȍcosd
2
1
d
Additional peak in
the wind force
spectra
1.E-15
1.E-11
1.E-07
1.E-03
1.E+01
1.E+05
0.00001 0.001 0.1 10
Frequency [Hz]
ForceSpectraSFXFX
1
ᦸ
Str
o N
GER
www.stronger2012.com
Physics (2): Turbulent wind rotational sampling
Variation of the turbulent force spectra with the blade position
during its rotational motion
The correlation of the turbulent wind field felt by the BE is a function of its rotational motion
t+
᧓
t
Halfpenny A. (1988). Dynamic Analysis of Both On and Offshore Wind Turbines in the Frequency Domain. Ph.D. thesis.
University College London..
Connell J.R. (1988). “A PRIMER OF TURBULENCE AT THE WIND TURBINE ROTOR”, Solar Energy, 41 (3), 281-293
Auto-correlation Coherence
Ordinary wind spectra
Separation distance (is
function of the motion)
R
ΩΩΩΩ
Vm(r)
r
Vm(zhub)
u(r,t)
XY
Z
Aerodynamic actions by the BEM theory
Wind velocities and reference systems
- Evaluate the relative angle of attack and the relative speed of the wind with respect to specific
blade portions (BEs) at different locations
ȍÂrÂ(1+a’)
Į
Y
X
D
L
ȕ
φφφφ
VmR(r)=
Vm(r)Â(1-a)
W
Rotor
plane
u(r,t)
v(r,t)
Į’
FX= ½*ȡ*Vm
2 (cLÂcos‫+׋‬cDÂsin‫)׋‬
aerodynamicforce
referencesystem axis
wind velocity
Str
o N
GER
www.stronger2012.com
ENVIRONMENT
Structure
Non
environmental
solicitations
STRUCTURE
Structural (non-
environmental)
system
Site-specific
environment
Wind site
basic
parameters
Other
environmental
agents
Waves site
basic
parameters
Wind, wave
and current
actions
Aerodynamic
and Aeroelastic
phenomena
Hydrodynamic
phenomena
1. Aleatoric
2. Epistemic
3. Model
Types of uncertainties
1. Aleatoric
2. Epistemic
3. Model
1. Aleatoric
2. Epistemic
3. Model
Propagation Propagation
Interaction
parameters
Structural parametersIntensity
Measure
( )IM ( )IP ( )SP
EXCHANGE ZONE
/ŶƚĞƌĂĐƚŝŽŶ ƉŚĞŶŽŵĞŶĂ ŝŶ ƚŚĞ ĞŶǀŝƌŽŶŵĞŶƚ
tŝŶĚͲǁĂǀĞͲĐƵƌƌĞŶƚ ŝŶƚĞƌĂĐƚŝŽŶ
ĞŽůŝĂŶͲŚLJĚƌŽĚLJŶĂŵŝĐ ŝŶƚĞƌĂĐƚŝŽŶƐ
)10(01.0 1 mzVVcurr hourwind =⋅=
tŝŶĚ ƐƉĞĞĚͲ ǁĂǀĞ
ŚĞŝŐŚƚ ĐŽƌƌĞůĂƚŝŽŶ
Wind generated
currents
)164.00291.0221.0(
2
1
10
2
10 +⋅−⋅= VVHs
Correlation data by Zaaijer, 2006, taking into account the
Italy Waves Atlas.
ENVIRONMENT
Structure
Non
environmental
solicitations
STRUCTURE
Structural (non-
environmental)
system
Site-specific
environment
Wind site
basic
parameters
Other
environmental
agents
Waves site
basic
parameters
Wind, wave
and current
actions
Aerodynamic
and Aeroelastic
phenomena
Hydrodynamic
phenomena
1. Aleatoric
2. Epistemic
3. Model
Types of uncertainties
1. Aleatoric
2. Epistemic
3. Model
1. Aleatoric
2. Epistemic
3. Model
Propagation Propagation
Interaction
parameters
Structural parametersIntensity
Measure
( )IM ( )IP ( )SP
EXCHANGE ZONE
Uncertainties in Wind-Blade interactions
Vm
a, a’, cD,cL
ȍÂrÂ(1+a’)
Į
Y
X
D
L
ȕ
φφφφ
VmR(r)=
Vm(r)Â(1-a)
W
Rotor
plane
u(r,t)
v(r,t)
Į’
FX= ½*ȡ*Vm
2 (cLÂcos‫+׋‬cDÂsin‫)׋‬
ENVIRONMENT
EXCHANGE
STRUCTURE ᧁ, ᦸ
Str
o N
GER
www.stronger2012.com
3
2
1
M3
R1
Blade-hub
main reactions
X
Y
r
FS
X
VmR(r)
u(r,t)
Numerical application
Main features of the meso-scale problem
The blade considered in this study
has a length of 38 meters and is
made of glass fiber (elastic
modulus E= 15000ᰝ106 N/m2).
™
d
e
f
g
h
i
j
k
l
m
n
o
m
k
™
m
m
p
q
h
r
™
o
n
s
p
t
u
t
t
v
w
x
y
w
z
u
{
|
{
u
}
~
v
w
x

€
z
u
{

‚
u
‚
‚
v
v
x
w
ƒ
z
u
t
„

u
t
t
…
y
x
†
y
{
u
|
~
}
u
}
~
…

x
w
‡
{
u
„
‚
„
u
‚
‚
ˆ
x
…

{
u
}
„
{
t
u
t
t
ƒ
x
‡
w
{
u


{
{
u
}
~
w
x
†
ƒ
{
u
‚
|
{
‚
u
‚
‚

x
y
y
{
u
z
z
{

u
t
t

x
ˆ
w
{
u
t
„
{
}
u
}
~

x
‡
v
t
u
|
‚
{
„
u
‚
‚
v
x
ƒ
v
t
u
„
{
z
t
u
t
t
…
x
v
…
t
u
}
|
z
{
u
}
~
‰
€
x
†
w
t
u

~
z
‚
u
‚
‚
‰
v
x
v
v
t
u
Š
„
z

u
t
t
‰

x
ƒ
€
t
u
Š
{
z
}
u
}
~
‰
w
x
w
€
t
u
‚
}
z
„
u
‚
‚
‰
‡
x
€
…
t
u
‚
{
‚
t
u
t
t
‰
‡
x
€
‡
t
u
z
|
‚
{
u
}
~
‰
‡
x

w
t
u
z
~
‚
‚
u
‚
‚
‰
‡
x
‡
y
t
u
z
}
‚

u
t
t
‰
‡
x
v
ƒ
t
u
z
‚
‚
}
u
}
~
‰
w
x
ˆ

t
u
{
„
‚
~
u
‚
‚
‰
w
x
ƒ
€
t
u
{
{
‚
~
u
Š
z
‹
Š
u
}
t
t
u
{
{
Only the along-wind turbulent component has been considered to
generate the drag and lift actions on the blade. The turbulent wind is
modeled by an eight-variate Gaussian stochastic process with the wind
acting in eight locations along the blade.
Str
o N
GER
www.stronger2012.com
1.E-13
1.E-09
1.E-05
1.E-01
1.E+03
1.E+07
0.0 0.1 1.0 10.0
1P 2P n13P n2 n3
ForceSpectraSR1R1
[N2/Hz]
Frequency [Hz]
1.E-12
1.E-08
1.E-04
1.E+00
1.E+04
1.E+08
0.0 0.1 1.0 10.0 n [Hz]
ForceSpectraSR1R1
[N2/Hz]
1P 2Pn1 3P n2 n3
Frequency [Hz]
Evaluation of the blade stress state
PSD of the fluctuating component of the reaction R1
produced on the hub by the rotating blade - ᦸ= 16 rpm
and ᦸ= 20 rpm
Str
o N
GER
www.stronger2012.com
10
12
14
16
18
20
22
24
25
0.00
0.01
0.02
0.03
0.04
0.05
0.33
0.4
0.5
a
ıx [m]
Uncertainties affecting the meso-level problem
Standard deviation of the blade tip displacement (᧒x) in function of
the rotating speed (ᦸ) and the induction coefficient (a)
( ) ( )
( )hubm
hubmRhubm
hV
hVhV
a
−
=
Vm(hhub): mean wind velocity at the hub
height
VmR(hhub): mean wind velocity at the hub
height and at the rotor plane
Str
o N
GER
www.stronger2012.com
Open Issues for Life-Cycle Performance
evaluation
• Identification of additional interaction
parameters (IP) determining the uncertainty
in the response (e.g. parameters modeling
aeroelasticity)
• Appropriate probabilistic characterization of
these parameters (e.g. the relevance of the
mean wind field sampling depends on the
daily hours)
• Appropriate and efficient numerical methods
to evaluate parameters of multimodal power
spectral densities (e.g. for fatigue
calculations)
Str
o N
GER
www.stronger2012.com
Analyses for investigating other
performances
ϯ
1- SHIP IMPACT
Str
o N
GER
www.stronger2012.com
1. Tipi di imbarcazione 2. Parametri caratteristici
3. Forma della prua
4. Velocità d’impatto
v § 4 - 8 nodi ĺ 2 - 4 m/s
SHIP IMPACT
Str
o N
GER
www.stronger2012.com
MODELLAZIONE
• 580 nodi
• 555 elementi Beam188
• 40 elementi Combin14
• 1 elemento
•Mass21Str
o N
GER
www.stronger2012.com
TERRENO
• Volume di terreno
modellato: cubo di
lato 80m,
discretizzato con
elementi 2x2x2 m
• 5 sottostrati in
materiale elastico
lineare con modulo
di rigidezza variabile
Elementi SOLID
Str
o N
GER
www.stronger2012.com
Ϯϵͬϭϳ
Terreno modellato
con molle lineari
lungo x e y poste a
metà dei sottostrati
Costante k variabile
con la profondità in
proporzione al
modulo E del terreno
ZŝĐĐĂƌĚŽ ^ĐŚǁĂƌnj
ŶĂůŝƐŝ Ěŝ ƐŝƚƵĂnjŝŽŶŝ ĂĐĐŝĚĞŶƚĂůŝ Ěŝ ƵƌƚŽ Ěŝ
ŶĂǀŝ ĐŽŶƚƌŽ ƚƵƌďŝŶĞ ĞŽůŝĐŚĞ ŽĨĨƐŚŽƌĞ
Molle + smorzatori
SCELTA DEI VINCOLI
WƌŽĨŽŶĚŝƚă ;ŵͿ ZŝŐŝĚĞnjnjĂ ;EͬŵͿ
ϰ ϯϲϮϳϵϬϳ
ϭϮ ϳϮϱϱϴϭϰ
ϮϬ ϭϮϬϵϯϬϮϯ
Ϯϴ ϭϵϯϰϴϴϯϳ
ϰϬ ϱϮϬϬϬϬϬϬ
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
Str
o N
GER
www.stronger2012.com
Molle + smorzatori
Dai parametri relativi al 1° e 2° modo di vibrare ricavo una stima del
coefficiente di smorzamento critico
SCELTA DEI VINCOLI
VERIFICA
• impongo uno spostamento in un punto significativo
• rilascio e monitoro l’andamento nel tempo ȟ equivalente/reale
ȟeq = 5.30 % ȟeq = 4.08%
2
3
4
1
nodo 144
Dynamic behavior
Str
o N
GER
www.stronger2012.com
nodo 168
Dynamic behavior
Str
o N
GER
www.stronger2012.com
Increase of damage from the reference baseline ULS
configuration to the last equilibrium configuration
λλλλ = 1.44λλλλ = 1.00 λλλλ = 1.32λλλλ = 1.10
hůƚŝŵĂƚĞ ĐĂƉĂĐŝƚLJ ŽĨ
KĨĨƐŚŽƌĞ tŝŶĚ dƵƌďŝŶĞƐ ;KtdͿ
Str
o N
GER
www.stronger2012.com
2 - Tower Buckling under extreme winds
Str
o N
GER
www.stronger2012.com
Dimopoulos C.A., Koulatsou K., Petrini F., Gantes C.J. (2015). Assessment of Stiffening Type of the Cutout in Tubular Wind
Turbine Towers Under Artificial Dynamic Wind Actions. Journal of Computational and Nonlinear Dynamics. 10(4),041004-
041004-9.
Stiffening types of the cutout in tubular tower
Str
o N
GER
www.stronger2012.com
Dimopoulos C.A., Koulatsou K., Petrini F., Gantes C.J. (2015). Assessment of Stiffening Type of the Cutout in Tubular Wind
Turbine Towers Under Artificial Dynamic Wind Actions. Journal of Computational and Nonlinear Dynamics. 10(4),041004-
041004-9.
FE model
Str
o N
GER
www.stronger2012.com
Dimopoulos C.A., Koulatsou K., Petrini F., Gantes C.J. (2015). Assessment of Stiffening Type of the Cutout in Tubular Wind
Turbine Towers Under Artificial Dynamic Wind Actions. Journal of Computational and Nonlinear Dynamics. 10(4),041004-
041004-9.
Static pushover analysis
Str
o N
GER
www.stronger2012.com
Dimopoulos C.A., Koulatsou K., Petrini F., Gantes C.J. (2015).
Assessment of Stiffening Type of the Cutout in Tubular Wind
Turbine Towers Under Artificial Dynamic Wind Actions. Journal of
Computational and Nonlinear Dynamics. 10(4),041004-041004-9.
Incremental dynamic analysis
Str
o N
GER
www.stronger2012.com
Dimopoulos C.A., Koulatsou K., Petrini F., Gantes C.J. (2015). Assessment of Stiffening Type of the Cutout in Tubular Wind
Turbine Towers Under Artificial Dynamic Wind Actions. Journal of Computational and Nonlinear Dynamics. 10(4),041004-
041004-9.
Loss of shape Vs Elephant foot buckling
Str
o N
GER
www.stronger2012.com
Dimopoulos C.A., Koulatsou K., Petrini F., Gantes C.J. (2015). Assessment of Stiffening Type of the Cutout in Tubular Wind
Turbine Towers Under Artificial Dynamic Wind Actions. Journal of Computational and Nonlinear Dynamics. 10(4),041004-
041004-9.
Dynamic vs Static
Petrini sapienza-may2015

Contenu connexe

Tendances

Tendances (20)

Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...
Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...
Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...
 
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
 
Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...
Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...
Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...
 
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...
 
Sachpazis gabion retaining wall analysis & design bs8002-1994
Sachpazis gabion retaining wall analysis & design bs8002-1994Sachpazis gabion retaining wall analysis & design bs8002-1994
Sachpazis gabion retaining wall analysis & design bs8002-1994
 
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_plain slab w...
Sachpazis: Raft Foundation Analysis & Design  BS8110:part 1-1997_plain slab w...Sachpazis: Raft Foundation Analysis & Design  BS8110:part 1-1997_plain slab w...
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_plain slab w...
 
SDEE: Lectures 3 and 4
SDEE: Lectures 3 and 4SDEE: Lectures 3 and 4
SDEE: Lectures 3 and 4
 
Eq Decipher
Eq DecipherEq Decipher
Eq Decipher
 
Sachpazis_ANCHORED PILED RETAINING WALL to EC2
Sachpazis_ANCHORED PILED RETAINING WALL to EC2Sachpazis_ANCHORED PILED RETAINING WALL to EC2
Sachpazis_ANCHORED PILED RETAINING WALL to EC2
 
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...
 
Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997
 
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
 
Sachpazis_CHS Column base plate to EC3 1993-1 with NA CEN
Sachpazis_CHS Column base plate to EC3 1993-1 with NA CENSachpazis_CHS Column base plate to EC3 1993-1 with NA CEN
Sachpazis_CHS Column base plate to EC3 1993-1 with NA CEN
 
Sachpazis pile analysis & design, in accordance with en 1997 1-2004
Sachpazis pile analysis & design, in accordance with en 1997 1-2004Sachpazis pile analysis & design, in accordance with en 1997 1-2004
Sachpazis pile analysis & design, in accordance with en 1997 1-2004
 
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)
 
SDEE: Lecture 6
SDEE: Lecture 6SDEE: Lecture 6
SDEE: Lecture 6
 
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
 
Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...
Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...
Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...
 
Basic concepts on structural dynamics
Basic concepts on structural dynamicsBasic concepts on structural dynamics
Basic concepts on structural dynamics
 
CVD020 - Lecture Week 2
CVD020 - Lecture Week 2CVD020 - Lecture Week 2
CVD020 - Lecture Week 2
 

En vedette

First hearing and government notes
First hearing and government notesFirst hearing and government notes
First hearing and government notes
keralawatchnews
 
Velocity problem
Velocity problemVelocity problem
Velocity problem
occam98
 
LA STATICA DEGLI ALLESTIMENTI TEMPORANEI PER EVENTI: Quadro normativo e verif...
LA STATICA DEGLI ALLESTIMENTI TEMPORANEI PER EVENTI: Quadro normativo e verif...LA STATICA DEGLI ALLESTIMENTI TEMPORANEI PER EVENTI: Quadro normativo e verif...
LA STATICA DEGLI ALLESTIMENTI TEMPORANEI PER EVENTI: Quadro normativo e verif...
Franco Bontempi Org Didattica
 
2° WORKSHOP GRUPPO ITALIANO IABMAS - IABMAS ITALIAN GROUP
2° WORKSHOP GRUPPO ITALIANO IABMAS - IABMAS ITALIAN GROUP2° WORKSHOP GRUPPO ITALIANO IABMAS - IABMAS ITALIAN GROUP
2° WORKSHOP GRUPPO ITALIANO IABMAS - IABMAS ITALIAN GROUP
StroNGER2012
 

En vedette (20)

Advertising Lecture Consumer and Marketing 101309
Advertising Lecture Consumer and    Marketing 101309Advertising Lecture Consumer and    Marketing 101309
Advertising Lecture Consumer and Marketing 101309
 
First hearing and government notes
First hearing and government notesFirst hearing and government notes
First hearing and government notes
 
Spaces Unlimited by Quality Infratech Pvt Ltd
Spaces Unlimited by Quality Infratech Pvt LtdSpaces Unlimited by Quality Infratech Pvt Ltd
Spaces Unlimited by Quality Infratech Pvt Ltd
 
Velocity problem
Velocity problemVelocity problem
Velocity problem
 
Erdogmus sapienza-may2015
Erdogmus sapienza-may2015Erdogmus sapienza-may2015
Erdogmus sapienza-may2015
 
VULNERABILITA’ DELLE COSTRUZIONI AI FENOMENI GEOLOGICI E IDROGEOLOGICI Parte II
VULNERABILITA’ DELLE COSTRUZIONI AI FENOMENI GEOLOGICI E IDROGEOLOGICI Parte IIVULNERABILITA’ DELLE COSTRUZIONI AI FENOMENI GEOLOGICI E IDROGEOLOGICI Parte II
VULNERABILITA’ DELLE COSTRUZIONI AI FENOMENI GEOLOGICI E IDROGEOLOGICI Parte II
 
Applicazione dal Corso di dottorato: Ottimizzazione Strutturale - Bontempi
Applicazione dal Corso di dottorato: Ottimizzazione Strutturale - BontempiApplicazione dal Corso di dottorato: Ottimizzazione Strutturale - Bontempi
Applicazione dal Corso di dottorato: Ottimizzazione Strutturale - Bontempi
 
CM - Jauregui - Sapienza University of Rome (60 min, part i, members modified)
CM - Jauregui - Sapienza University of Rome (60 min, part i, members modified)CM - Jauregui - Sapienza University of Rome (60 min, part i, members modified)
CM - Jauregui - Sapienza University of Rome (60 min, part i, members modified)
 
CM - Petrini - Fatica nelle strutture metalliche - 21/11/2013
CM - Petrini - Fatica nelle strutture metalliche - 21/11/2013CM - Petrini - Fatica nelle strutture metalliche - 21/11/2013
CM - Petrini - Fatica nelle strutture metalliche - 21/11/2013
 
Uso delle fibre di basalto nel risanamento degli edifici storici
Uso delle fibre di basalto nel risanamento degli edifici storiciUso delle fibre di basalto nel risanamento degli edifici storici
Uso delle fibre di basalto nel risanamento degli edifici storici
 
Two years 2
Two years 2Two years 2
Two years 2
 
LA STATICA DEGLI ALLESTIMENTI TEMPORANEI PER EVENTI: Quadro normativo e verif...
LA STATICA DEGLI ALLESTIMENTI TEMPORANEI PER EVENTI: Quadro normativo e verif...LA STATICA DEGLI ALLESTIMENTI TEMPORANEI PER EVENTI: Quadro normativo e verif...
LA STATICA DEGLI ALLESTIMENTI TEMPORANEI PER EVENTI: Quadro normativo e verif...
 
2° WORKSHOP GRUPPO ITALIANO IABMAS - IABMAS ITALIAN GROUP
2° WORKSHOP GRUPPO ITALIANO IABMAS - IABMAS ITALIAN GROUP2° WORKSHOP GRUPPO ITALIANO IABMAS - IABMAS ITALIAN GROUP
2° WORKSHOP GRUPPO ITALIANO IABMAS - IABMAS ITALIAN GROUP
 
Arangio sapienza-may2015
Arangio sapienza-may2015Arangio sapienza-may2015
Arangio sapienza-may2015
 
CM - robustezza resilienza CTA 2013
CM - robustezza resilienza CTA 2013CM - robustezza resilienza CTA 2013
CM - robustezza resilienza CTA 2013
 
Applications of Structural Optimization: Corso di dottorato INTRODUZIONE ALL'...
Applications of Structural Optimization: Corso di dottorato INTRODUZIONE ALL'...Applications of Structural Optimization: Corso di dottorato INTRODUZIONE ALL'...
Applications of Structural Optimization: Corso di dottorato INTRODUZIONE ALL'...
 
Una visione ampia dei sistemi: robustezza e resilienza.
Una visione ampia dei sistemi: robustezza e resilienza.Una visione ampia dei sistemi: robustezza e resilienza.
Una visione ampia dei sistemi: robustezza e resilienza.
 
Avila sapienza-may2015
Avila sapienza-may2015Avila sapienza-may2015
Avila sapienza-may2015
 
Bontempi - Laboratorio "Azioni eccezionali sulle strutture" - Cagliari
Bontempi - Laboratorio "Azioni eccezionali sulle strutture" - CagliariBontempi - Laboratorio "Azioni eccezionali sulle strutture" - Cagliari
Bontempi - Laboratorio "Azioni eccezionali sulle strutture" - Cagliari
 
Analisi strutturale dei meccanismi di collasso di barriere stradali tipo New-...
Analisi strutturale dei meccanismi di collasso di barriere stradali tipo New-...Analisi strutturale dei meccanismi di collasso di barriere stradali tipo New-...
Analisi strutturale dei meccanismi di collasso di barriere stradali tipo New-...
 

Similaire à Petrini sapienza-may2015

Pbwe fp palmeri_barbato
Pbwe fp palmeri_barbatoPbwe fp palmeri_barbato
Pbwe fp palmeri_barbato
StroNGER2012
 
PSG-Civil 22.03.2014 02
PSG-Civil 22.03.2014 02PSG-Civil 22.03.2014 02
PSG-Civil 22.03.2014 02
cotopaxi1987
 
AkaydinStanfordCTRteaSeminar
AkaydinStanfordCTRteaSeminarAkaydinStanfordCTRteaSeminar
AkaydinStanfordCTRteaSeminar
Doğuş Akaydın
 
(12 03-13)--wind effects
(12 03-13)--wind effects(12 03-13)--wind effects
(12 03-13)--wind effects
Rajesh Sharma
 
tribology presentation Final2 [Autosaved]
tribology presentation Final2 [Autosaved]tribology presentation Final2 [Autosaved]
tribology presentation Final2 [Autosaved]
Atul Verma
 
6%2E2015-2384
6%2E2015-23846%2E2015-2384
6%2E2015-2384
Alex Sano
 

Similaire à Petrini sapienza-may2015 (20)

5 - Dynamic Analysis of an Offshore Wind Turbine: Wind-Waves Nonlinear Intera...
5 - Dynamic Analysis of an Offshore Wind Turbine: Wind-Waves Nonlinear Intera...5 - Dynamic Analysis of an Offshore Wind Turbine: Wind-Waves Nonlinear Intera...
5 - Dynamic Analysis of an Offshore Wind Turbine: Wind-Waves Nonlinear Intera...
 
Pbwe fp palmeri_barbato
Pbwe fp palmeri_barbatoPbwe fp palmeri_barbato
Pbwe fp palmeri_barbato
 
Design of windmill power generation using multi generator and single rotor (h...
Design of windmill power generation using multi generator and single rotor (h...Design of windmill power generation using multi generator and single rotor (h...
Design of windmill power generation using multi generator and single rotor (h...
 
PSG-Civil 22.03.2014 02
PSG-Civil 22.03.2014 02PSG-Civil 22.03.2014 02
PSG-Civil 22.03.2014 02
 
Dynamics of wind & marine turbines
Dynamics of wind & marine turbinesDynamics of wind & marine turbines
Dynamics of wind & marine turbines
 
AkaydinStanfordCTRteaSeminar
AkaydinStanfordCTRteaSeminarAkaydinStanfordCTRteaSeminar
AkaydinStanfordCTRteaSeminar
 
Concetti e metodi del Performance- Based Wind Engineering (PBWE) - Francesco ...
Concetti e metodi del Performance- Based Wind Engineering (PBWE) - Francesco ...Concetti e metodi del Performance- Based Wind Engineering (PBWE) - Francesco ...
Concetti e metodi del Performance- Based Wind Engineering (PBWE) - Francesco ...
 
Concetti e metodi del Performance- Based Wind Engineering (PBWE) - Francesco ...
Concetti e metodi del Performance- Based Wind Engineering (PBWE) - Francesco ...Concetti e metodi del Performance- Based Wind Engineering (PBWE) - Francesco ...
Concetti e metodi del Performance- Based Wind Engineering (PBWE) - Francesco ...
 
FE Analysis of Bolted Connections for Wind Turbine Towers by Yadneshwar S. Joshi
FE Analysis of Bolted Connections for Wind Turbine Towers by Yadneshwar S. JoshiFE Analysis of Bolted Connections for Wind Turbine Towers by Yadneshwar S. Joshi
FE Analysis of Bolted Connections for Wind Turbine Towers by Yadneshwar S. Joshi
 
Mechanics of WT.ppt
Mechanics of WT.pptMechanics of WT.ppt
Mechanics of WT.ppt
 
Wind excitation control in skyscraper static and dynamic study
Wind excitation control in skyscraper static and dynamic studyWind excitation control in skyscraper static and dynamic study
Wind excitation control in skyscraper static and dynamic study
 
(12 03-13)--wind effects
(12 03-13)--wind effects(12 03-13)--wind effects
(12 03-13)--wind effects
 
IPS Buoy
IPS BuoyIPS Buoy
IPS Buoy
 
tribology presentation Final2 [Autosaved]
tribology presentation Final2 [Autosaved]tribology presentation Final2 [Autosaved]
tribology presentation Final2 [Autosaved]
 
4 - Structural Optimization of Offshore Wind Turbines - Petrini
4 - Structural Optimization of Offshore Wind Turbines - Petrini4 - Structural Optimization of Offshore Wind Turbines - Petrini
4 - Structural Optimization of Offshore Wind Turbines - Petrini
 
6%2E2015-2384
6%2E2015-23846%2E2015-2384
6%2E2015-2384
 
Advances in fatigue and fracture mechanics by grzegorz (greg) glinka
Advances in fatigue and fracture mechanics by grzegorz (greg) glinkaAdvances in fatigue and fracture mechanics by grzegorz (greg) glinka
Advances in fatigue and fracture mechanics by grzegorz (greg) glinka
 
Model Predictive Control based on Reduced-Order Models
Model Predictive Control based on Reduced-Order ModelsModel Predictive Control based on Reduced-Order Models
Model Predictive Control based on Reduced-Order Models
 
Hover Ige
Hover IgeHover Ige
Hover Ige
 
DOC-20160401-WA0001
DOC-20160401-WA0001DOC-20160401-WA0001
DOC-20160401-WA0001
 

Plus de StroNGER2012

L’investigazione antincendio sugli aspetti strutturali: una proposta di codifica
L’investigazione antincendio sugli aspetti strutturali: una proposta di codificaL’investigazione antincendio sugli aspetti strutturali: una proposta di codifica
L’investigazione antincendio sugli aspetti strutturali: una proposta di codifica
StroNGER2012
 
IF CRASC'15 summary
IF CRASC'15 summaryIF CRASC'15 summary
IF CRASC'15 summary
StroNGER2012
 
Design Knowledge Gain by Structural Health Monitoring
Design Knowledge Gain by Structural Health MonitoringDesign Knowledge Gain by Structural Health Monitoring
Design Knowledge Gain by Structural Health Monitoring
StroNGER2012
 

Plus de StroNGER2012 (20)

Corso di dottorato & Corso di formazione
Corso di dottorato & Corso di formazione Corso di dottorato & Corso di formazione
Corso di dottorato & Corso di formazione
 
I Restauri e la Città: l’esempio del Colosseo e della Casa di Augusto
I Restauri e la Città: l’esempio del Colosseo e della Casa di AugustoI Restauri e la Città: l’esempio del Colosseo e della Casa di Augusto
I Restauri e la Città: l’esempio del Colosseo e della Casa di Augusto
 
SISTEMILA RETE STRADALE URBANA:UN’EMERGENZA DEL QUOTIDIANO O UN’OPPORTUNITA’ ...
SISTEMILA RETE STRADALE URBANA:UN’EMERGENZA DEL QUOTIDIANO O UN’OPPORTUNITA’ ...SISTEMILA RETE STRADALE URBANA:UN’EMERGENZA DEL QUOTIDIANO O UN’OPPORTUNITA’ ...
SISTEMILA RETE STRADALE URBANA:UN’EMERGENZA DEL QUOTIDIANO O UN’OPPORTUNITA’ ...
 
INFRASTRUTTURE IN AMBITO URBANO: COMPLESSITA’ DI PROGETTO E DURABILITA’
INFRASTRUTTURE IN AMBITO URBANO: COMPLESSITA’ DI PROGETTO E DURABILITA’INFRASTRUTTURE IN AMBITO URBANO: COMPLESSITA’ DI PROGETTO E DURABILITA’
INFRASTRUTTURE IN AMBITO URBANO: COMPLESSITA’ DI PROGETTO E DURABILITA’
 
61Resilienza dei centri urbani e rilievo delle costruzioni: un binomio indivi...
61Resilienza dei centri urbani e rilievo delle costruzioni: un binomio indivi...61Resilienza dei centri urbani e rilievo delle costruzioni: un binomio indivi...
61Resilienza dei centri urbani e rilievo delle costruzioni: un binomio indivi...
 
Roma e le sue acque:il punto di vista della Protezione Civile
Roma e le sue acque:il punto di vista della Protezione CivileRoma e le sue acque:il punto di vista della Protezione Civile
Roma e le sue acque:il punto di vista della Protezione Civile
 
L’investigazione antincendio sugli aspetti strutturali: una proposta di codifica
L’investigazione antincendio sugli aspetti strutturali: una proposta di codificaL’investigazione antincendio sugli aspetti strutturali: una proposta di codifica
L’investigazione antincendio sugli aspetti strutturali: una proposta di codifica
 
Progetto e analisi di ospedali come costruzioni strategiche: visione di siste...
Progetto e analisi di ospedali come costruzioni strategiche: visione di siste...Progetto e analisi di ospedali come costruzioni strategiche: visione di siste...
Progetto e analisi di ospedali come costruzioni strategiche: visione di siste...
 
norme tecniche di prevenzione incendi
norme tecniche di prevenzione incendinorme tecniche di prevenzione incendi
norme tecniche di prevenzione incendi
 
Programma IF CRASC 15
Programma IF CRASC 15Programma IF CRASC 15
Programma IF CRASC 15
 
IDENTIFICAZIONE STRUTTURALE DEL COMPORTAMENTO SPERIMENTALE DI CENTINE INNOVAT...
IDENTIFICAZIONE STRUTTURALE DEL COMPORTAMENTO SPERIMENTALE DI CENTINE INNOVAT...IDENTIFICAZIONE STRUTTURALE DEL COMPORTAMENTO SPERIMENTALE DI CENTINE INNOVAT...
IDENTIFICAZIONE STRUTTURALE DEL COMPORTAMENTO SPERIMENTALE DI CENTINE INNOVAT...
 
IF CRASC'15 summary
IF CRASC'15 summaryIF CRASC'15 summary
IF CRASC'15 summary
 
Corso Ottimizzazione Strutturale Sapienza 2015
Corso Ottimizzazione Strutturale Sapienza 2015Corso Ottimizzazione Strutturale Sapienza 2015
Corso Ottimizzazione Strutturale Sapienza 2015
 
MIGLIORAMENTO ED ADEGUAMENTO SISMICO DI STRUTTURE ESISTENTI ATTRAVERSO L’UTIL...
MIGLIORAMENTO ED ADEGUAMENTO SISMICO DI STRUTTURE ESISTENTI ATTRAVERSO L’UTIL...MIGLIORAMENTO ED ADEGUAMENTO SISMICO DI STRUTTURE ESISTENTI ATTRAVERSO L’UTIL...
MIGLIORAMENTO ED ADEGUAMENTO SISMICO DI STRUTTURE ESISTENTI ATTRAVERSO L’UTIL...
 
Design Knowledge Gain by Structural Health Monitoring
Design Knowledge Gain by Structural Health MonitoringDesign Knowledge Gain by Structural Health Monitoring
Design Knowledge Gain by Structural Health Monitoring
 
VULNERABILITA’ DELLE COSTRUZIONI AI FENOMENI GEOLOGICI E IDROGEOLOGICI Parte I
VULNERABILITA’ DELLE COSTRUZIONI AI FENOMENI GEOLOGICI E IDROGEOLOGICI Parte IVULNERABILITA’ DELLE COSTRUZIONI AI FENOMENI GEOLOGICI E IDROGEOLOGICI Parte I
VULNERABILITA’ DELLE COSTRUZIONI AI FENOMENI GEOLOGICI E IDROGEOLOGICI Parte I
 
Strutture temporanee crosti ottobre 2014 sapienza
Strutture temporanee crosti ottobre 2014 sapienzaStrutture temporanee crosti ottobre 2014 sapienza
Strutture temporanee crosti ottobre 2014 sapienza
 
Strutture temporanee arangio ottobre 2014 sapienza
Strutture temporanee arangio ottobre 2014 sapienzaStrutture temporanee arangio ottobre 2014 sapienza
Strutture temporanee arangio ottobre 2014 sapienza
 
Strutture temporanee pellegrini ottobre 2014 sapienza
Strutture temporanee pellegrini ottobre 2014 sapienzaStrutture temporanee pellegrini ottobre 2014 sapienza
Strutture temporanee pellegrini ottobre 2014 sapienza
 
Strutture temporanee bontempi ottobre 2014 sapienza
Strutture temporanee bontempi ottobre 2014 sapienzaStrutture temporanee bontempi ottobre 2014 sapienza
Strutture temporanee bontempi ottobre 2014 sapienza
 

Dernier

VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ssuser89054b
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
ankushspencer015
 
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoorTop Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
dharasingh5698
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 

Dernier (20)

VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
 
Intro To Electric Vehicles PDF Notes.pdf
Intro To Electric Vehicles PDF Notes.pdfIntro To Electric Vehicles PDF Notes.pdf
Intro To Electric Vehicles PDF Notes.pdf
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
 
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank  Design by Working Stress - IS Method.pdfIntze Overhead Water Tank  Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoorTop Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
Unit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdfUnit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdf
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 

Petrini sapienza-may2015

  • 1. franco.bontempi@uniroma1.it Str o N GER www.stronger2012.com Wt ĂŶĚ ŝƚƐ ĂƉƉůŝĐĂƚŝŽŶ ƚŽ KĨĨƐŚŽƌĞ tŝŶĚ dƵƌďŝŶĞƐ ƌĂŶĐĞƐĐŽ WĞƚƌŝŶŝ ^ƚƌŽE'Z Ɛ͘ƌ͘ů͘ ĂĐŽůƚĂ͛ Ěŝ /ŶŐĞŐŶĞƌŝĂ ŝǀŝůĞ Ğ /ŶĚƵƐƚƌŝĂůĞ ^ĂƉŝĞŶnjĂ hŶŝǀĞƌƐŝƚĂ͛ Ěŝ ZŽŵĂ
  • 3. ENVIRONMENT Wind actions Structural systems Non environmental actions EXCHANGE ZONE Site-specific Wind Aerodynamic and aeroelastic phenomena Wind site basic parameters Environmental effects (like waves) Structural system as modified by service loads STRUCTURAL SYSTEM Vm Mean wind velocity profile Vm+ v(t) Turbulent wind velocity profile river Vm Mean wind velocity profile Vm+ v(t) Turbulent wind velocity profile river river ENVIRONMENT EXCHANGE ZONE Ciampoli M, Petrini F., Augusti G., (2011). “Performance-Based Wind Engineering: towards a general procedure”, Structural Safety, 33 (6), 367-378. DOI: 10.1016/j.strusafe.2011.07.001. Schematization of uncertainty in Wind Engineering (I) Str o N GER www.stronger2012.com
  • 4. Types of uncertainties ENVIRONMENT Wind actions Structural systems Non environmental actions EXCHANGE ZONE 1. Aleatory 2. Epistemic 3. Model Interaction parameters Structural parameters Site-specific Wind Aerodynamic and aeroelastic phenomena Wind site basic parameters Intensity measure 1. Aleatory 2. Epistemic 3. Model 1. Aleatory 2. Epistemic 3. Model Environmental effects (like waves) Structural system as modified by service loads ( )IM ( )IP ( )SP STRUCTURAL SYSTEM Ciampoli M, Petrini F., Augusti G., (2011). “Performance-Based Wind Engineering: towards a general procedure”, Structural Safety, 33 (6), 367-378. DOI: 10.1016/j.strusafe.2011.07.001. Schematization of uncertainty in Wind Engineering (II) ( ) ( ) ( ) ( )SPPIMPSP,IMIPPSP,IP,IMP ⋅⋅= Str o N GER www.stronger2012.com
  • 5. O f(IM|O) f(IM) f(IP|IM,SP) f(IP) f(EDP|IM,IP,SP) G(EDP) f(DM|EDP) G(DM) f(DV|DM) G(DV) Hazard analysis Interaction analysis Structuralanalysis Damageanalysis Loss analysis IM: intensity measure IP: interaction parameters EDP:engineering demand param. DM:damage measure DV:decision variable Select O, D O:location D:design Environme nt info Decision- making D f(SP|D) f(SP) Structural characterization SP:structural system parameters Structural system info WtͲ ƌĂŵĞǁŽƌŬ ';sͿ с œ͙œ ';s|DͿ ͼ Ĩ;D|WͿ ͼ Ĩ;W|/D͕ /W͕ ^WͿ ͼ Ĩ;/W||||/D͕^WͿ ͼ ͼ Ĩ;/DͿ ͼ Ĩ;^WͿ ͼ ĚD ͼ ĚW ͼ Ě/W ͼ Ě/D ͼ Ě^W /ŶƚĞƌĂĐƚŝŽŶ WĂƌĂŵĞƚĞƌƐ ^ƚƌƵĐƚƵƌĂů WĂƌĂŵĞƚĞƌƐ /ŶƚĞŶƐŝƚLJ ŵĞĂƐƵƌĞ /D /W^W ŶŐŝŶĞĞƌŝŶŐ ĞŵĂŶĚ WĂƌĂŵĞƚĞƌƐ W ĂŵĂŐĞ DĞĂƐƵƌĞ D ĞĐŝƐŝŽŶ sĂƌŝĂďůĞ s Ciampoli M., Petrini F., Augusti G., (2011). “Performance-Based Wind Engineering: towards a general procedure”, Structural Safety, 33 (6), 367-378 ';ͼͮͼͿ ŝƐ Ă ĐŽŶĚŝƚŝŽŶĂů ĐŽŵƉůĞŵĞŶƚĂƌLJ ĐƵŵƵůĂƚŝǀĞ ĚŝƐƚƌŝďƵƚŝŽŶ ĨƵŶĐƚŝŽŶ Ĩ;ͼͮͼͿ ŝƐ Ă ĐŽŶĚŝƚŝŽŶĂů ƉƌŽďĂďŝůŝƚLJ ĚĞŶƐŝƚLJ ĨƵŶĐƚŝŽŶ= progress with respect to the Performance-Based Seismic Design * * * Extension of the Performance-Based Seismic Design procedure proposed by PEER Research center Str o N GER www.stronger2012.com
  • 6. 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 5 10 15 20 25 30 35 P(Av av*|Vm(zdeck)) Vm(zdeck)[m/s] Ciampoli M., Petrini F., Augusti G., (2011). “Performance-Based Wind Engineering: towards a general procedure”, Structural Safety, 33 (6), 367-378 EDP =Av - DM=max (av) [m/s2] 1.0 0.8 0.6 0.4 0.2 0 G(EDP) 0 1 2 3 WĞƌĨŽƌŵĂŶĐĞ ǀĂůƵĂƚŝŽŶ ;WсsĞƌƚŝĐĂů ĂĐĐĞůĞƌĂƚŝŽŶͿ ƌĂŐŝůŝƚLJĐƵƌǀĞƐW;Wͮ/DͿ ĂŝůƵƌĞƉƌŽďĂďŝůŝƚLJ';WͿ WtͲ ƉƉůŝĐĂƚŝŽŶ ŽŶ Ă ůŽŶŐ ƐƉĂŶ ƐƵƐƉĞŶƐŝŽŶ ďƌŝĚŐĞ Vento = f(s,t) Vento = f(s,t) Vento = f(s,t) Vento = f(s,t) WƐ Ϭ͘Ϭ ϳ ϭ͘ϭ ŝĨĨĞƌĞŶƚ ƚŚƌĞƐŚŽůĚ ǀĂůƵĞƐ Str o N GER www.stronger2012.com
  • 7. Preliminary studies: Offshore Wind Turbines (parked configuration) ϭ
  • 8. University of Notre Dame , South Bend, IN, USA June 19, 2012 – EMI/PMC Conference Francesco Petrini, PhD, PE x,x’ z’ y’ Waves Current P (t)vP (t)w P (t)uP Turbulent wind P Mean wind Vm(zP) z y H h vw(z’) Vcur(z’) d Terrain ĞƐŝŐŶ ĞŶǀŝƌŽŶŵĞŶƚ ƌĞƉƌĞƐĞŶƚĂƚŝŽŶ ;ϭͿ Str o N GER www.stronger2012.com
  • 9. ( ) ( ) ( ) ( )( )nfexpnSnSnS jkuuuuuu kkjjkj −⋅= ( )( ) 2 t0 0 u 2 u u1.75)log(zarctan1.16(n)dnSı ⋅+⋅−== ∫ ∞ 5.0 0 uu2 x u 200 300(x)dxR u 1 L       ⋅== ∫ ∞ z x z The mean velocity magnitude varies with the height. MeancontributionStochasticcontribution ( ) ( )[ ]5/3 ju ju 2 V uu /z10,302fL1Ȧ/2ʌ /zfL6,686ı ȦS jj + = ( )j j zV2ʌ Ȧz f = ( ) ( ) ( ) ( )( )kj 2 kj 2 z jk zVzV2ʌ zzCȦ Ȧf + − = Autospectrum where: α       = hub hub z z UzU )( 0.14=α For normal wind condition ( ) ( ) ¡¡¢£ ¤¤¥¦ §§¨© − −− −               −= 2 5.0exp4 5 4 2 4 5 exp 2 P P f ff Pf f f g fS σ γ π α where f=2π/T is the frequency, fP=2π/TP is the peak frequency, α is the equilibrium coefficient, g is gravity acceleration, ɍ and γ parameters dependent from HS e TP       −= − R yearHTS T FH SR 1 1 1 1max,,, Extreme events analysis (Return period TR). 7 1 ,)(       + ⋅= d zd UzU refc x z d water mean level Wind Current and waves JONSWAP spectrum ĞƐŝŐŶ ĞŶǀŝƌŽŶŵĞŶƚ ƌĞƉƌĞƐĞŶƚĂƚŝŽŶ ;ϮͿ Cross- spectrum
  • 10.                 !           #     #   $ % ' ( ) 0 1 23456786594@AB C DEFG H I P Q H R S T EDP: )()( hgrhr rrm p σ⋅+= )T(log2 577.0 )T(log2g winde winder ⋅ +⋅= η η 1°1°1°1° rp 1°1°1°1° rp tŝŶĚ ĂŶĚ ǁĂǀĞ ĨŽƌĐĞ ƐƉĞĐƚƌĂ U V W X Y W ` U V W X Y W a U V W X Y W U U V W X b W W U V W X b W U U V X Y W c U V X Y W ` U V X Y W a U V X Y W U U V X b W W d e f g h i p q rstuvwtstusxy€‚ƒ„…†‡ˆ ‰  ‘ ’ “ ” • ‘ – — ˜  ‘ ’ “ ” • ‘ – — ^ƚƌƵĐƚƵƌĂů ƌĞƐƉŽŶƐĞ Basis of the numerical modeling Structural response (EDP) in frequency domain (parked configuration) Peak along- and across- wind displacements Davenport’s peak factor Str o N GER www.stronger2012.com
  • 11. Previous studies: Numerical application Uncertainties overview (parked configuration) Importance of SPs as stochastic parameters Effects of the interactions in the environment Effects of dominant aeroelastic phenomena 1°1°1°1° rp 1°1°1°1° rp EDP = peak displacement at the rotor
  • 12. KE' t/E /Zd/KE ᧊᧊᧊᧊[EDP] EDP [m] ᧊᧊᧊᧊[EDP] EDP [m] ZK^^ t/E /Zd/KE Comparison of mean annual frequencies ᧊[EDP] of exceeding any value of the EDP: Previous studies: Relevance of SP uncertainty Risk Including SP Uncertainty (Monte Carlo 5000 samples) Barbato M., Ciampoli M., Petrini F. (2010). “Effects of Modelling Parameter Uncertainty on the Structural Response of Offshore Wind Turbines”, Proceedings of the 12th biennial ASCE Aerospace Division International Conference (Earth Space 2010), Honolulu, USA, 14 – 17 March 2010. ISBN 978-0-7844-1096-7. Str o N GER www.stronger2012.com
  • 13. Aerodynamic uncertainty characterization by the meso-scale modeling (Rotating Configuration) Ϯ
  • 14. Physics (1): Mean wind rotational sampling Murtagh, P.J., Basu, B., Broderick, B.M., 2005. Along-wind response of a wind turbine tower with blade coupling subjected to rotationally sampled wind loading. Eng. Struct. 27(8), 1209-1219 ( ) ( ) ( )12 ddd zFzFF iii S X S X S X −=∆ z1 Ω z2 Ω Time t2Time t1 Vm(z1) Vm(z2) Tributary area S Ω dFX S Angular rotational velocity hub ( ) ( ) ( )tFFtF ii hub i S X S X S X ⋅⋅∆+= ȍcosd 2 1 d Additional peak in the wind force spectra 1.E-15 1.E-11 1.E-07 1.E-03 1.E+01 1.E+05 0.00001 0.001 0.1 10 Frequency [Hz] ForceSpectraSFXFX 1 ᦸ Str o N GER www.stronger2012.com
  • 15. Physics (2): Turbulent wind rotational sampling Variation of the turbulent force spectra with the blade position during its rotational motion The correlation of the turbulent wind field felt by the BE is a function of its rotational motion t+ ᧓ t Halfpenny A. (1988). Dynamic Analysis of Both On and Offshore Wind Turbines in the Frequency Domain. Ph.D. thesis. University College London.. Connell J.R. (1988). “A PRIMER OF TURBULENCE AT THE WIND TURBINE ROTOR”, Solar Energy, 41 (3), 281-293 Auto-correlation Coherence Ordinary wind spectra Separation distance (is function of the motion)
  • 16. R ΩΩΩΩ Vm(r) r Vm(zhub) u(r,t) XY Z Aerodynamic actions by the BEM theory Wind velocities and reference systems - Evaluate the relative angle of attack and the relative speed of the wind with respect to specific blade portions (BEs) at different locations ȍÂrÂ(1+a’) Į Y X D L ȕ φφφφ VmR(r)= Vm(r)Â(1-a) W Rotor plane u(r,t) v(r,t) Į’ FX= ½*ȡ*Vm 2 (cLÂcos‫+׋‬cDÂsin‫)׋‬ aerodynamicforce referencesystem axis wind velocity Str o N GER www.stronger2012.com
  • 17. ENVIRONMENT Structure Non environmental solicitations STRUCTURE Structural (non- environmental) system Site-specific environment Wind site basic parameters Other environmental agents Waves site basic parameters Wind, wave and current actions Aerodynamic and Aeroelastic phenomena Hydrodynamic phenomena 1. Aleatoric 2. Epistemic 3. Model Types of uncertainties 1. Aleatoric 2. Epistemic 3. Model 1. Aleatoric 2. Epistemic 3. Model Propagation Propagation Interaction parameters Structural parametersIntensity Measure ( )IM ( )IP ( )SP EXCHANGE ZONE /ŶƚĞƌĂĐƚŝŽŶ ƉŚĞŶŽŵĞŶĂ ŝŶ ƚŚĞ ĞŶǀŝƌŽŶŵĞŶƚ tŝŶĚͲǁĂǀĞͲĐƵƌƌĞŶƚ ŝŶƚĞƌĂĐƚŝŽŶ ĞŽůŝĂŶͲŚLJĚƌŽĚLJŶĂŵŝĐ ŝŶƚĞƌĂĐƚŝŽŶƐ )10(01.0 1 mzVVcurr hourwind =⋅= tŝŶĚ ƐƉĞĞĚͲ ǁĂǀĞ ŚĞŝŐŚƚ ĐŽƌƌĞůĂƚŝŽŶ Wind generated currents )164.00291.0221.0( 2 1 10 2 10 +⋅−⋅= VVHs Correlation data by Zaaijer, 2006, taking into account the Italy Waves Atlas.
  • 18. ENVIRONMENT Structure Non environmental solicitations STRUCTURE Structural (non- environmental) system Site-specific environment Wind site basic parameters Other environmental agents Waves site basic parameters Wind, wave and current actions Aerodynamic and Aeroelastic phenomena Hydrodynamic phenomena 1. Aleatoric 2. Epistemic 3. Model Types of uncertainties 1. Aleatoric 2. Epistemic 3. Model 1. Aleatoric 2. Epistemic 3. Model Propagation Propagation Interaction parameters Structural parametersIntensity Measure ( )IM ( )IP ( )SP EXCHANGE ZONE Uncertainties in Wind-Blade interactions Vm a, a’, cD,cL ȍÂrÂ(1+a’) Į Y X D L ȕ φφφφ VmR(r)= Vm(r)Â(1-a) W Rotor plane u(r,t) v(r,t) Į’ FX= ½*ȡ*Vm 2 (cLÂcos‫+׋‬cDÂsin‫)׋‬ ENVIRONMENT EXCHANGE STRUCTURE ᧁ, ᦸ Str o N GER www.stronger2012.com
  • 19. 3 2 1 M3 R1 Blade-hub main reactions X Y r FS X VmR(r) u(r,t) Numerical application Main features of the meso-scale problem The blade considered in this study has a length of 38 meters and is made of glass fiber (elastic modulus E= 15000ᰝ106 N/m2). ™ d e f g h i j k l m n o m k ™ m m p q h r ™ o n s p t u t t v w x y w z u { | { u } ~ v w x  € z u {  ‚ u ‚ ‚ v v x w ƒ z u t „  u t t … y x † y { u | ~ } u } ~ …  x w ‡ { u „ ‚ „ u ‚ ‚ ˆ x …  { u } „ { t u t t ƒ x ‡ w { u   { { u } ~ w x † ƒ { u ‚ | { ‚ u ‚ ‚  x y y { u z z {  u t t  x ˆ w { u t „ { } u } ~  x ‡ v t u | ‚ { „ u ‚ ‚ v x ƒ v t u „ { z t u t t … x v … t u } | z { u } ~ ‰ € x † w t u  ~ z ‚ u ‚ ‚ ‰ v x v v t u Š „ z  u t t ‰  x ƒ € t u Š { z } u } ~ ‰ w x w € t u ‚ } z „ u ‚ ‚ ‰ ‡ x € … t u ‚ { ‚ t u t t ‰ ‡ x € ‡ t u z | ‚ { u } ~ ‰ ‡ x  w t u z ~ ‚ ‚ u ‚ ‚ ‰ ‡ x ‡ y t u z } ‚  u t t ‰ ‡ x v ƒ t u z ‚ ‚ } u } ~ ‰ w x ˆ  t u { „ ‚ ~ u ‚ ‚ ‰ w x ƒ € t u { { ‚ ~ u Š z ‹ Š u } t t u { { Only the along-wind turbulent component has been considered to generate the drag and lift actions on the blade. The turbulent wind is modeled by an eight-variate Gaussian stochastic process with the wind acting in eight locations along the blade. Str o N GER www.stronger2012.com
  • 20. 1.E-13 1.E-09 1.E-05 1.E-01 1.E+03 1.E+07 0.0 0.1 1.0 10.0 1P 2P n13P n2 n3 ForceSpectraSR1R1 [N2/Hz] Frequency [Hz] 1.E-12 1.E-08 1.E-04 1.E+00 1.E+04 1.E+08 0.0 0.1 1.0 10.0 n [Hz] ForceSpectraSR1R1 [N2/Hz] 1P 2Pn1 3P n2 n3 Frequency [Hz] Evaluation of the blade stress state PSD of the fluctuating component of the reaction R1 produced on the hub by the rotating blade - ᦸ= 16 rpm and ᦸ= 20 rpm Str o N GER www.stronger2012.com
  • 21. 10 12 14 16 18 20 22 24 25 0.00 0.01 0.02 0.03 0.04 0.05 0.33 0.4 0.5 a ıx [m] Uncertainties affecting the meso-level problem Standard deviation of the blade tip displacement (᧒x) in function of the rotating speed (ᦸ) and the induction coefficient (a) ( ) ( ) ( )hubm hubmRhubm hV hVhV a − = Vm(hhub): mean wind velocity at the hub height VmR(hhub): mean wind velocity at the hub height and at the rotor plane Str o N GER www.stronger2012.com
  • 22. Open Issues for Life-Cycle Performance evaluation • Identification of additional interaction parameters (IP) determining the uncertainty in the response (e.g. parameters modeling aeroelasticity) • Appropriate probabilistic characterization of these parameters (e.g. the relevance of the mean wind field sampling depends on the daily hours) • Appropriate and efficient numerical methods to evaluate parameters of multimodal power spectral densities (e.g. for fatigue calculations) Str o N GER www.stronger2012.com
  • 23. Analyses for investigating other performances ϯ
  • 24. 1- SHIP IMPACT Str o N GER www.stronger2012.com
  • 25. 1. Tipi di imbarcazione 2. Parametri caratteristici 3. Forma della prua 4. Velocità d’impatto v § 4 - 8 nodi ĺ 2 - 4 m/s SHIP IMPACT
  • 27. MODELLAZIONE • 580 nodi • 555 elementi Beam188 • 40 elementi Combin14 • 1 elemento •Mass21Str o N GER www.stronger2012.com
  • 28. TERRENO • Volume di terreno modellato: cubo di lato 80m, discretizzato con elementi 2x2x2 m • 5 sottostrati in materiale elastico lineare con modulo di rigidezza variabile Elementi SOLID Str o N GER www.stronger2012.com
  • 29. Ϯϵͬϭϳ Terreno modellato con molle lineari lungo x e y poste a metà dei sottostrati Costante k variabile con la profondità in proporzione al modulo E del terreno ZŝĐĐĂƌĚŽ ^ĐŚǁĂƌnj ŶĂůŝƐŝ Ěŝ ƐŝƚƵĂnjŝŽŶŝ ĂĐĐŝĚĞŶƚĂůŝ Ěŝ ƵƌƚŽ Ěŝ ŶĂǀŝ ĐŽŶƚƌŽ ƚƵƌďŝŶĞ ĞŽůŝĐŚĞ ŽĨĨƐŚŽƌĞ Molle + smorzatori SCELTA DEI VINCOLI WƌŽĨŽŶĚŝƚă ;ŵͿ ZŝŐŝĚĞnjnjĂ ;EͬŵͿ ϰ ϯϲϮϳϵϬϳ ϭϮ ϳϮϱϱϴϭϰ ϮϬ ϭϮϬϵϯϬϮϯ Ϯϴ ϭϵϯϰϴϴϯϳ ϰϬ ϱϮϬϬϬϬϬϬ 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 Str o N GER www.stronger2012.com
  • 30. Molle + smorzatori Dai parametri relativi al 1° e 2° modo di vibrare ricavo una stima del coefficiente di smorzamento critico SCELTA DEI VINCOLI VERIFICA • impongo uno spostamento in un punto significativo • rilascio e monitoro l’andamento nel tempo ȟ equivalente/reale ȟeq = 5.30 % ȟeq = 4.08%
  • 31. 2 3 4 1 nodo 144 Dynamic behavior Str o N GER www.stronger2012.com
  • 32. nodo 168 Dynamic behavior Str o N GER www.stronger2012.com
  • 33. Increase of damage from the reference baseline ULS configuration to the last equilibrium configuration λλλλ = 1.44λλλλ = 1.00 λλλλ = 1.32λλλλ = 1.10 hůƚŝŵĂƚĞ ĐĂƉĂĐŝƚLJ ŽĨ KĨĨƐŚŽƌĞ tŝŶĚ dƵƌďŝŶĞƐ ;KtdͿ Str o N GER www.stronger2012.com
  • 34. 2 - Tower Buckling under extreme winds
  • 35. Str o N GER www.stronger2012.com Dimopoulos C.A., Koulatsou K., Petrini F., Gantes C.J. (2015). Assessment of Stiffening Type of the Cutout in Tubular Wind Turbine Towers Under Artificial Dynamic Wind Actions. Journal of Computational and Nonlinear Dynamics. 10(4),041004- 041004-9. Stiffening types of the cutout in tubular tower
  • 36. Str o N GER www.stronger2012.com Dimopoulos C.A., Koulatsou K., Petrini F., Gantes C.J. (2015). Assessment of Stiffening Type of the Cutout in Tubular Wind Turbine Towers Under Artificial Dynamic Wind Actions. Journal of Computational and Nonlinear Dynamics. 10(4),041004- 041004-9. FE model
  • 37. Str o N GER www.stronger2012.com Dimopoulos C.A., Koulatsou K., Petrini F., Gantes C.J. (2015). Assessment of Stiffening Type of the Cutout in Tubular Wind Turbine Towers Under Artificial Dynamic Wind Actions. Journal of Computational and Nonlinear Dynamics. 10(4),041004- 041004-9. Static pushover analysis
  • 38. Str o N GER www.stronger2012.com Dimopoulos C.A., Koulatsou K., Petrini F., Gantes C.J. (2015). Assessment of Stiffening Type of the Cutout in Tubular Wind Turbine Towers Under Artificial Dynamic Wind Actions. Journal of Computational and Nonlinear Dynamics. 10(4),041004-041004-9. Incremental dynamic analysis
  • 39. Str o N GER www.stronger2012.com Dimopoulos C.A., Koulatsou K., Petrini F., Gantes C.J. (2015). Assessment of Stiffening Type of the Cutout in Tubular Wind Turbine Towers Under Artificial Dynamic Wind Actions. Journal of Computational and Nonlinear Dynamics. 10(4),041004- 041004-9. Loss of shape Vs Elephant foot buckling
  • 40. Str o N GER www.stronger2012.com Dimopoulos C.A., Koulatsou K., Petrini F., Gantes C.J. (2015). Assessment of Stiffening Type of the Cutout in Tubular Wind Turbine Towers Under Artificial Dynamic Wind Actions. Journal of Computational and Nonlinear Dynamics. 10(4),041004- 041004-9. Dynamic vs Static