SlideShare une entreprise Scribd logo
1  sur  10
Télécharger pour lire hors ligne
April 25th, 26th & 27th 2018 1
Roundtable moderated by Alfredo PARRES
BRINGING ELECTRICITY BACK TO SHORE :
GRID ISSUES, METHODS, SOLUTIONS AND INNOVATIONS
April 25th, 26th & 27th 2018 2
Francesco Boscolo Papo, Researcher, Offshore Energy Area, Tecnalia R&I
A METHODOLOGY FOR TECHNO-ECONOMIC
DESIGN OF THE UMBILICAL CABLE
FOR FLOATING OFFSHORE RENEWABLE ENERGY STRUCTURES
April 25th, 26th & 27th 2018 3
TECNALIA
Offshore Energy Area
SINCE 2003
OUR TEAM CARRIES
OUT RESEARCH IN
OFFSHORE ENERGY
SECTOR
OCEANTEC ENERGÍAS MARINAS S.L.
Joint Venture with the main objective of developing a floating
oscillating water column wave energy converter.
NAUTILUS FLOATING SOLUTIONS
A joint venture to develop a floating platform for offshore wind turbines
with the objective of providing the lowest cost of energy by minimizing
logistics from the very early design stages.
EU FP7 funded research project that aims to provide an important
breakthrough in offshore wind industrial solutions by designing an
innovative, lightweight, robust and reliable 10 MW class offshore wind
turbine based on a superconducting synchronous generator patented by
TECNALIA.
SUPRAPOWER
(SUPERCONDUCTING,
RELIABLE, LIGHTWEIGHT,
AND MORE POWERFUL
OFFSHORE WIND TURBINES)
CONNECTORS FOR FLOATING DEVICES It is
a submarine cable to device or floating
platform connection solution that includes
common electrical components used in
onshore applications. Besides the power cables
(13,2 kV) the connector also connects low
voltage cables for ancillary equipment and fiber
optic cables for data transmission.
HARSHLAB
Offshore laboratory for testing of renewable
energy components in harsh enviroment
1. Method behind the design
• Static design tool;
• Umbilical cable designed as a simple catenary line;
• Floating modules modelled as inverse catenary lines;
• A catenary curve is governed by a hyperbolic cosine function:
ZB
ZS
X
Fairlead
point
Touchdown
point
For a simplified analysis, we impose that: ZS = ZB = Z
Sag bend
Arch bend
Only 2 design
parameters
Only 2 design
parameters
· ·
1) An adequate bending radius,
larger than the Allowable
Bending Radius (ABR)
Constraints in the umbilical cable design:
2) The maximum analyzed
tension in the umbilical cable
shall be under a maximum
value
• Mean position (no offset)
• Far position (positive offset)
• Near position (negative offset)
3 positions analysis:
April 25th, 26th & 27th 2018 4
4. Study case: 66kV umbilical cable for Floating Offshore Wind Platforms
• Here is presented a methodology for the design of an umbilical cable characterized by 66kV voltage and designed
for Offshore Wind Energy Platforms.
• Water Depth of 60m
• Umbilical cable of 66kV (500mm2 copper section; 169mm external diameter; about 70kg/m linear mass)
• Lazy Wave shape
• ULS analysis characterized by a TR=50 years, HS=14.00m sea state, VC=1.31m/s current
Orcaflex
model
Orcaflex
model
April 25th, 26th & 27th 2018 5
70 75 80 85 90 95 100 105 110 115 120
5 0,572 0,507 0,453 0,407 0,368 0,335 0,306 0,281 0,259 0,239 0,222
6 0,565 0,501 0,447 0,402 0,363 0,330 0,302 0,277 0,255 0,235 0,218
7 0,558 0,494 0,441 0,396 0,358 0,325 0,297 0,272 0,251 0,232 0,215
8 0,551 0,487 0,435 0,390 0,353 0,320 0,292 0,268 0,247 0,228 0,211
9 0,543 0,481 0,428 0,384 0,347 0,315 0,288 0,264 0,242 0,224 0,207
10 0,536 0,473 0,422 0,378 0,342 0,310 0,283 0,259 0,238 0,220 0,203
11 0,528 0,466 0,415 0,372 0,336 0,305 0,278 0,254 0,233 0,215 0,199
12 0,519 0,458 0,408 0,365 0,330 0,299 0,272 0,249 0,229 0,211 0,195
13 0,511 0,450 0,400 0,359 0,323 0,293 0,267 0,244 0,224 0,206 0,191
14 0,501 0,442 0,393 0,352 0,317 0,287 0,261 0,239 0,219 0,202 0,186
15 0,492 0,433 0,385 0,344 0,310 0,281 0,255 0,233 0,214 0,197 0,182
16 0,482 0,424 0,377 0,337 0,303 0,274 0,249 0,228 0,209 0,192 0,177
17 0,472 0,415 0,368 0,329 0,296 0,267 0,243 0,222 0,203 0,187 0,173
18 0,461 0,405 0,359 0,321 0,288 0,260 0,236 0,216 0,197 0,182 0,167
19 0,449 0,395 0,350 0,312 0,280 0,253 0,230 0,209 0,192 0,176 0,162
20 0,438 0,384 0,340 0,303 0,272 0,245 0,222 0,203 0,185 0,170 0,157
21 0,425 0,372 0,329 0,293 0,263 0,237 0,215 0,196 0,179 x x
22 0,411 0,360 0,318 0,283 0,254 x x x x x x
23 0,397 x x x x x x x x x x
24 x x x x x x x x x x x
CURVATURE
[1/m]
Horizontal footprint, X [m]
Verticaldistance,Z[m]
70 75 80 85 90 95 100 105 110 115 120
5 0,572 0,507 0,453 0,407 0,368 0,335 0,306 0,281 0,259 0,239 0,222
6 0,565 0,501 0,447 0,402 0,363 0,330 0,302 0,277 0,255 0,235 0,218
7 0,558 0,494 0,441 0,396 0,358 0,325 0,297 0,272 0,251 0,232 0,215
8 0,551 0,487 0,435 0,390 0,353 0,320 0,292 0,268 0,247 0,228 0,211
9 0,543 0,481 0,428 0,384 0,347 0,315 0,288 0,264 0,242 0,224 0,207
10 0,536 0,473 0,422 0,378 0,342 0,310 0,283 0,259 0,238 0,220 0,203
11 0,528 0,466 0,415 0,372 0,336 0,305 0,278 0,254 0,233 0,215 0,199
12 0,519 0,458 0,408 0,365 0,330 0,299 0,272 0,249 0,229 0,211 0,195
13 0,511 0,450 0,400 0,359 0,323 0,293 0,267 0,244 0,224 0,206 0,191
14 0,501 0,442 0,393 0,352 0,317 0,287 0,261 0,239 0,219 0,202 0,186
15 0,492 0,433 0,385 0,344 0,310 0,281 0,255 0,233 0,214 0,197 0,182
16 0,482 0,424 0,377 0,337 0,303 0,274 0,249 0,228 0,209 0,192 0,177
17 0,472 0,415 0,368 0,329 0,296 0,267 0,243 0,222 0,203 0,187 0,173
18 0,461 0,405 0,359 0,321 0,288 0,260 0,236 0,216 0,197 0,182 0,167
19 0,449 0,395 0,350 0,312 0,280 0,253 0,230 0,209 0,192 0,176 0,162
20 0,438 0,384 0,340 0,303 0,272 0,245 0,222 0,203 0,185 0,170 0,157
21 0,425 0,372 0,329 0,293 0,263 0,237 0,215 0,196 0,179 x x
22 0,411 0,360 0,318 0,283 0,254 x x x x x x
23 0,397 x x x x x x x x x x
24 x x x x x x x x x x x
CURVATURE
[1/m]
Horizontal footprint, X [m]
Verticaldistance,Z[m]
5. Static analysis: Curvature Matrix
Admissible Curvature:
Low
Dynamic analysis
Selection of some
combinations for 2nd step:
1
12 ·
0,493	
1
Objective of the analysis:
Minimize the Curvature < AC
High
CurvatureCurvature
April 25th, 26th & 27th 2018 6
70 75 80 85 90 95 100 105 110 115 120
5,0 1,475 1,706 1,937 2,208 2,479 2,722 2,966 3,163 3,361 3,559 3,758
6,0 1,472 1,710 1,948 2,202 2,457 2,695 2,932 3,137 3,342 3,528 3,715
7,0 1,469 1,714 1,958 2,197 2,436 2,667 2,899 3,111 3,324 3,498 3,672
8,0 1,466 1,718 1,969 2,192 2,414 2,639 2,865 3,085 3,305 3,467 3,629
9,0 1,463 1,722 1,980 2,186 2,392 2,612 2,832 3,059 3,287 3,436 3,585
10,0 1,460 1,726 1,991 2,181 2,370 2,584 2,798 3,033 3,268 3,405 3,542
11,0 1,445 1,702 1,959 2,145 2,331 2,524 2,717 2,941 3,166 3,305 3,444
12,0 1,429 1,678 1,928 2,110 2,292 2,464 2,636 2,850 3,064 3,205 3,346
13,0 1,413 1,655 1,896 2,074 2,253 2,404 2,555 2,758 2,961 3,105 3,248
14,0 1,397 1,631 1,864 2,039 2,214 2,344 2,474 2,667 2,859 3,004 3,150
15,0 1,381 1,607 1,833 2,004 2,174 2,284 2,393 2,575 2,757 2,904 3,051
16,0 1,374 1,569 1,765 1,908 2,050 2,158 2,265 2,440 2,616 2,777 2,939
17,0 1,367 1,532 1,697 1,812 1,926 2,032 2,137 2,306 2,474 2,650 2,826
18,0 1,359 1,494 1,629 1,715 1,802 1,906 2,009 2,171 2,332 2,523 2,713
19,0 1,352 1,456 1,561 1,619 1,678 1,780 1,882 2,036 2,191 2,396 2,600
20,0 1,344 1,418 1,493 1,523 1,554 1,654 1,754 1,902 2,049 2,268 2,487
21,0 1,337 1,381 1,424 1,427 1,430 1,528 1,626 1,767 1,908 x x
22,0 1,329 1,343 1,356 1,331 1,306 x x x x x x
23,0 1,322 x x x x x x x x x x
24,0 x x x x x x x x x x x
CURVATURE
DAF
Horizontal footprint, X [m]
Verticaldistance,Z[m]
6. Dynamic analysis (a): Dynamic Amplification Factors for Curvature
DAF directly proportional to X
DAF inversely proportional to Z
Curvature DAF
Increasing = f(X)
Increasing=f(Z)
! "
#$ % 	 &'($)&'*
+)$)% 	 &'($)&'*
Low High
April 25th, 26th & 27th 2018 7
70 75 80 85 90 95 100 105 110 115 120
5 0,844 0,865 0,877 0,899 0,913 0,912 0,908 0,889 0,870 0,851 0,833
6 0,832 0,856 0,871 0,884 0,892 0,890 0,885 0,868 0,852 0,831 0,810
7 0,820 0,847 0,864 0,870 0,872 0,868 0,861 0,848 0,834 0,810 0,788
8 0,808 0,837 0,856 0,855 0,851 0,846 0,838 0,827 0,815 0,790 0,765
9 0,795 0,827 0,848 0,840 0,830 0,823 0,815 0,806 0,797 0,769 0,743
10 0,782 0,817 0,839 0,825 0,809 0,801 0,791 0,785 0,778 0,748 0,720
11 0,762 0,793 0,813 0,798 0,782 0,769 0,754 0,748 0,739 0,712 0,686
12 0,742 0,769 0,786 0,771 0,755 0,736 0,718 0,710 0,701 0,676 0,653
13 0,721 0,745 0,759 0,744 0,728 0,704 0,682 0,673 0,663 0,641 0,620
14 0,701 0,721 0,732 0,717 0,701 0,673 0,646 0,637 0,626 0,606 0,587
15 0,680 0,696 0,706 0,690 0,674 0,641 0,611 0,601 0,590 0,572 0,555
16 0,663 0,666 0,665 0,643 0,621 0,592 0,564 0,555 0,546 0,533 0,521
17 0,645 0,636 0,625 0,596 0,570 0,543 0,519 0,511 0,503 0,495 0,488
18 0,626 0,605 0,585 0,550 0,519 0,496 0,475 0,468 0,461 0,458 0,454
19 0,608 0,575 0,546 0,505 0,470 0,450 0,432 0,426 0,420 0,422 0,422
20 0,588 0,545 0,507 0,461 0,422 0,405 0,390 0,385 0,380 0,386 0,390
21 0,568 0,514 0,469 0,419 0,376 0,362 0,349 0,346 0,341 x x
22 0,547 0,484 0,432 0,377 0,331 x x x x x x
23 0,524 x x x x x x x x x x
24 x x x x x x x x x x x
CURVATURE
[1/m]
Horizontal footprint, X [m]
Verticaldistance,Z[m]
70 75 80 85 90 95 100 105 110 115 120
5 0,844 0,865 0,877 0,899 0,913 0,912 0,908 0,889 0,870 0,851 0,833
6 0,832 0,856 0,871 0,884 0,892 0,890 0,885 0,868 0,852 0,831 0,810
7 0,820 0,847 0,864 0,870 0,872 0,868 0,861 0,848 0,834 0,810 0,788
8 0,808 0,837 0,856 0,855 0,851 0,846 0,838 0,827 0,815 0,790 0,765
9 0,795 0,827 0,848 0,840 0,830 0,823 0,815 0,806 0,797 0,769 0,743
10 0,782 0,817 0,839 0,825 0,809 0,801 0,791 0,785 0,778 0,748 0,720
11 0,762 0,793 0,813 0,798 0,782 0,769 0,754 0,748 0,739 0,712 0,686
12 0,742 0,769 0,786 0,771 0,755 0,736 0,718 0,710 0,701 0,676 0,653
13 0,721 0,745 0,759 0,744 0,728 0,704 0,682 0,673 0,663 0,641 0,620
14 0,701 0,721 0,732 0,717 0,701 0,673 0,646 0,637 0,626 0,606 0,587
15 0,680 0,696 0,706 0,690 0,674 0,641 0,611 0,601 0,590 0,572 0,555
16 0,663 0,666 0,665 0,643 0,621 0,592 0,564 0,555 0,546 0,533 0,521
17 0,645 0,636 0,625 0,596 0,570 0,543 0,519 0,511 0,503 0,495 0,488
18 0,626 0,605 0,585 0,550 0,519 0,496 0,475 0,468 0,461 0,458 0,454
19 0,608 0,575 0,546 0,505 0,470 0,450 0,432 0,426 0,420 0,422 0,422
20 0,588 0,545 0,507 0,461 0,422 0,405 0,390 0,385 0,380 0,386 0,390
21 0,568 0,514 0,469 0,419 0,376 0,362 0,349 0,346 0,341 x x
22 0,547 0,484 0,432 0,377 0,331 x x x x x x
23 0,524 x x x x x x x x x x
24 x x x x x x x x x x x
CURVATURE
[1/m]
Horizontal footprint, X [m]
Verticaldistance,Z[m]
6. Dynamic analysis (b): Interpolated Dynamic Curvature limited by AC
Curvature
0,493	
1
Low High
Admissible Curvature:
April 25th, 26th & 27th 2018 8
Analogous analysis for Tension
70,0 75,0 80,0 85,0 90,0 95,0 100,0 105,0 110,0 115,0 120,0
5,0 89,0 92,7 96,4 98,4 100,5 100,9 101,3 106,7 112,4 115,5 118,8
6,0 86,0 89,1 92,4 94,4 96,5 97,3 98,2 102,1 106,2 109,7 113,4
7,0 83,1 85,7 88,5 90,5 92,6 93,8 95,1 97,6 100,2 104,1 108,2
8,0 80,3 82,4 84,6 86,7 88,8 90,5 92,2 93,3 94,4 98,7 103,2
9,0 77,5 79,2 80,9 83,0 85,2 87,2 89,4 89,0 88,7 93,4 98,2
10,0 74,8 76,0 77,3 79,4 81,6 84,1 86,7 85,0 83,2 88,2 93,5
11,0 71,7 72,9 74,1 76,3 78,6 81,3 84,1 82,7 81,1 86,0 91,2
12,0 68,7 69,9 71,2 73,4 75,7 78,6 81,7 80,5 79,2 84,0 89,1
13,0 65,8 67,0 68,3 70,6 73,0 76,1 79,5 78,5 77,6 82,3 87,3
14,0 63,0 64,2 65,5 67,9 70,4 73,8 77,4 76,8 76,1 80,8 85,8
15,0 60,3 61,6 62,9 65,4 68,0 71,7 75,6 75,3 75,0 79,7 84,8
16,0 58,8 60,3 62,0 64,5 67,2 70,9 74,9 76,1 77,3 87,6 98,9
17,0 57,4 59,2 61,3 63,9 66,8 70,5 74,6 77,4 80,5 96,9 115,0
18,0 56,1 58,4 60,9 63,7 66,8 70,7 75,0 79,7 84,9 108,4 134,7
19,0 55,2 57,9 60,9 64,0 67,5 71,8 76,6 83,5 91,5 124,0 161,4
20,0 54,7 57,9 61,6 65,2 69,4 74,4 80,2 90,5 102,7 148,6 204,3
21,0 54,8 58,9 63,5 68,2 73,6 80,2 88,3 104,6 125,2 x x
22,0 56,1 61,5 68,1 74,6 83,0 x x x x x x
23,0 60,1 x x x x x x x x x x
24,0 x x x x x x x x x x x
TENSION
[kN]
Verticaldistance,Z[m]
Horizontal footprint, X [m]
Tension
70 75 80 85 90 95 100 105 110 115 120
5 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 1
18 0 0 0 0 0 0 1 1 1 1 1
19 0 0 0 0 1 1 1 1 1 1 1
20 0 0 0 1 1 1 1 1 1 1 1
21 0 0 1 1 1 1 1 1 1 0 0
22 0 1 1 1 1 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0
CURVATURE
[1/m]
Horizontal footprint, X [m]
Verticaldistance,Z[m]
+
70 75 80 85 90 95 100 105 110 115 120
5 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0
7 1 0 0 0 0 0 0 0 0 0 0
8 1 1 1 0 0 0 0 0 0 0 0
9 1 1 1 1 1 0 0 0 0 0 0
10 1 1 1 1 1 1 0 1 1 0 0
11 1 1 1 1 1 1 1 1 1 0 0
12 1 1 1 1 1 1 1 1 1 1 0
13 1 1 1 1 1 1 1 1 1 1 0
14 1 1 1 1 1 1 1 1 1 1 0
15 1 1 1 1 1 1 1 1 1 1 1
16 1 1 1 1 1 1 1 1 1 0 0
17 1 1 1 1 1 1 1 1 1 0 0
18 1 1 1 1 1 1 1 1 1 0 0
19 1 1 1 1 1 1 1 1 0 0 0
20 1 1 1 1 1 1 1 0 0 0 0
21 1 1 1 1 1 1 0 0 0 0 0
22 1 1 1 1 1 0 0 0 0 0 0
23 1 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0
Verticaldistance,Z[m]
Horizontal footprint, X [m]TENSION
[kN]
6. Dynamic analysis (c): Curvature & Tension limited
Low High
Decreasing
70 75 80 85 90 95 100 105 110 115 120
5 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 1 1 1 0 0
19 0 0 0 0 1 1 1 1 0 0 0
20 0 0 0 1 1 1 1 0 0 0 0
21 0 0 1 1 1 1 0 0 0 0 0
22 0 1 1 1 1 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0
Horizontal footprint, X [m]Acceptance
Range
Verticaldistance,Z[m]
Design is mainly driven by Curvature
70 75 80 85 90 95 100 105 110 115 120
5
6
7
8
9
10
11
12
13
14
15
16
17
18 75,0 79,7 84,9
19 67,5 71,8 76,6 83,5
20 65,2 69,4 74,4 80,2
21 63,5 68,2 73,6 80,2
22 61,5 68,1 74,6 83,0
23
24
Verticaldistance,Z[m]
Horizontal footprint, X [m]EFFECTIVE
TENSION [kN]70 75 80 85 90 95 100 105 110 115 120
5
6
7
8
9
10
11
12
13
14
15
16
17
18 0,475 0,468 0,461
19 0,470 0,450 0,432 0,426
20 0,461 0,422 0,405 0,390
21 0,469 0,419 0,376 0,362
22 0,484 0,432 0,377 0,331
23
24
Curvature
[1/m]
Horizontal footprint, X [m]
Verticaldistance,Z[m]
TensionTensionCurvatureCurvature
DecreasingDecreasing
April 25th, 26th & 27th 2018 9
CostCost
8. Summary of design procedure
Selection of reasonable ranges
for horizontal footprint and vertical distance for the study case
Run a static analysis
for all the resulted combinations
Run a dynamic analysis
for some combinations among those selected
Find out the DAFs
for Curvature and Tension
Calculate the interpolated results
and complete the whole matrix of dynamic results
Select the optimum configuration,
after taking into account all the output parameters (length, number of floaters, cost)
Run a series of dynamic simulations considering the adequate campaign of DLCs
Verify that the selected combination is actually the optimum one; in case it is not, go
back to the matrix of interpolated results and select another configuration
Iterative
procedure
Iterative
procedure
April 25th, 26th & 27th 2018 10

Contenu connexe

Tendances

Worked example extract_flat_slabs
Worked example extract_flat_slabsWorked example extract_flat_slabs
Worked example extract_flat_slabs
Luan Truong Van
 

Tendances (19)

Pile Eccentricity Analysis for 2 Columns Combined Pilecap
Pile Eccentricity Analysis for 2 Columns Combined PilecapPile Eccentricity Analysis for 2 Columns Combined Pilecap
Pile Eccentricity Analysis for 2 Columns Combined Pilecap
 
Lintech 100series specsheet
Lintech 100series specsheetLintech 100series specsheet
Lintech 100series specsheet
 
SAE 2007-NVC-180
SAE 2007-NVC-180SAE 2007-NVC-180
SAE 2007-NVC-180
 
Assignment course work Bridge design
Assignment course work Bridge designAssignment course work Bridge design
Assignment course work Bridge design
 
Worked example extract_flat_slabs
Worked example extract_flat_slabsWorked example extract_flat_slabs
Worked example extract_flat_slabs
 
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
 
SAE 2005-01-3565
SAE 2005-01-3565SAE 2005-01-3565
SAE 2005-01-3565
 
Robotics (2.008x Lecture Slides)
Robotics (2.008x Lecture Slides)Robotics (2.008x Lecture Slides)
Robotics (2.008x Lecture Slides)
 
Single pile analysis &amp; design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis &amp; design, l=18,00m d=1,10m, by C.SachpazisSingle pile analysis &amp; design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis &amp; design, l=18,00m d=1,10m, by C.Sachpazis
 
Portofolio jacket platform dynamic analysis
Portofolio jacket platform dynamic analysisPortofolio jacket platform dynamic analysis
Portofolio jacket platform dynamic analysis
 
Variation and Quality (2.008x Lecture Slides)
Variation and Quality (2.008x Lecture Slides)Variation and Quality (2.008x Lecture Slides)
Variation and Quality (2.008x Lecture Slides)
 
Allowable charts
Allowable chartsAllowable charts
Allowable charts
 
Design and Analysis of Vibration Exciter
Design and Analysis of Vibration ExciterDesign and Analysis of Vibration Exciter
Design and Analysis of Vibration Exciter
 
Sachpazis: Steel member design in biaxial bending and axial compression examp...
Sachpazis: Steel member design in biaxial bending and axial compression examp...Sachpazis: Steel member design in biaxial bending and axial compression examp...
Sachpazis: Steel member design in biaxial bending and axial compression examp...
 
Sachpazis_PILE Analysis_Design to EC2
Sachpazis_PILE Analysis_Design to EC2Sachpazis_PILE Analysis_Design to EC2
Sachpazis_PILE Analysis_Design to EC2
 
Presentation on A Study On Effect Of Column And Beam Shape And Shear Wall On ...
Presentation onA Study On Effect Of Column And Beam Shape And Shear Wall On ...Presentation onA Study On Effect Of Column And Beam Shape And Shear Wall On ...
Presentation on A Study On Effect Of Column And Beam Shape And Shear Wall On ...
 
New highway project
New highway projectNew highway project
New highway project
 
IRJET- Flow Behaiviour Over Supercritical Aerofoil Respective to NACA Aerofoil
IRJET- Flow Behaiviour Over Supercritical Aerofoil Respective to NACA AerofoilIRJET- Flow Behaiviour Over Supercritical Aerofoil Respective to NACA Aerofoil
IRJET- Flow Behaiviour Over Supercritical Aerofoil Respective to NACA Aerofoil
 
Chapter 15 solutions
Chapter 15 solutionsChapter 15 solutions
Chapter 15 solutions
 

Similaire à Microsoft power point fowt2018-boscolofrancesco_v2.pptx

SPECTRAL-BASED FATIGUE ASSESSMENT OF FSO
SPECTRAL-BASED FATIGUE ASSESSMENT OF FSOSPECTRAL-BASED FATIGUE ASSESSMENT OF FSO
SPECTRAL-BASED FATIGUE ASSESSMENT OF FSO
SUMARDIONO .
 
BW Fittings Brochure
BW Fittings BrochureBW Fittings Brochure
BW Fittings Brochure
Dawn McKendry
 
Ost corp present mei
Ost corp present meiOst corp present mei
Ost corp present mei
wmjenner
 
SOLAR PANEL (INTERNATIONAL)
SOLAR PANEL (INTERNATIONAL) SOLAR PANEL (INTERNATIONAL)
SOLAR PANEL (INTERNATIONAL)
Himanshurai S.
 
Lana formwork timber_beam_habe_h20
Lana formwork timber_beam_habe_h20Lana formwork timber_beam_habe_h20
Lana formwork timber_beam_habe_h20
Kapil Mall
 
HydroKhan Catalog150224
HydroKhan Catalog150224HydroKhan Catalog150224
HydroKhan Catalog150224
Roy Koo
 
MAIN CANOPY BAJAJ HR(22.09.2016)
MAIN CANOPY BAJAJ HR(22.09.2016)MAIN CANOPY BAJAJ HR(22.09.2016)
MAIN CANOPY BAJAJ HR(22.09.2016)
sufiyan shaikh
 

Similaire à Microsoft power point fowt2018-boscolofrancesco_v2.pptx (20)

SPECTRAL-BASED FATIGUE ASSESSMENT OF FSO
SPECTRAL-BASED FATIGUE ASSESSMENT OF FSOSPECTRAL-BASED FATIGUE ASSESSMENT OF FSO
SPECTRAL-BASED FATIGUE ASSESSMENT OF FSO
 
Calculo de volumen
Calculo de volumenCalculo de volumen
Calculo de volumen
 
Pipe fitting . in Butt welded-fitting manufatuers, supplier, dealer in mumba...
Pipe fitting . in Butt welded-fitting manufatuers, supplier, dealer in  mumba...Pipe fitting . in Butt welded-fitting manufatuers, supplier, dealer in  mumba...
Pipe fitting . in Butt welded-fitting manufatuers, supplier, dealer in mumba...
 
BW Fittings Brochure
BW Fittings BrochureBW Fittings Brochure
BW Fittings Brochure
 
Tarea 2 hidraulica iii-cabrera arias roberto alejandro
Tarea 2 hidraulica iii-cabrera arias roberto alejandroTarea 2 hidraulica iii-cabrera arias roberto alejandro
Tarea 2 hidraulica iii-cabrera arias roberto alejandro
 
Método de Mínimos Cuadrados (ejemplo)
Método de Mínimos Cuadrados (ejemplo)Método de Mínimos Cuadrados (ejemplo)
Método de Mínimos Cuadrados (ejemplo)
 
kupdf.net_indian-steel-table.pdf
kupdf.net_indian-steel-table.pdfkupdf.net_indian-steel-table.pdf
kupdf.net_indian-steel-table.pdf
 
Harmonic csg lw_spechseet
Harmonic csg lw_spechseetHarmonic csg lw_spechseet
Harmonic csg lw_spechseet
 
Tablice beton
Tablice betonTablice beton
Tablice beton
 
Ost corp present mei
Ost corp present meiOst corp present mei
Ost corp present mei
 
SOLAR PANEL (INTERNATIONAL)
SOLAR PANEL (INTERNATIONAL) SOLAR PANEL (INTERNATIONAL)
SOLAR PANEL (INTERNATIONAL)
 
Lubi Electronics - Polycrystalline Solar Modules Manufacturer & Exporter
Lubi Electronics - Polycrystalline Solar Modules Manufacturer & ExporterLubi Electronics - Polycrystalline Solar Modules Manufacturer & Exporter
Lubi Electronics - Polycrystalline Solar Modules Manufacturer & Exporter
 
. Narmada Canal ExPresentation for Extradose Bridge for Gandhi Nagar Metro....
.   Narmada Canal ExPresentation for Extradose Bridge for Gandhi Nagar Metro.....   Narmada Canal ExPresentation for Extradose Bridge for Gandhi Nagar Metro....
. Narmada Canal ExPresentation for Extradose Bridge for Gandhi Nagar Metro....
 
Lana formwork timber_beam_habe_h20
Lana formwork timber_beam_habe_h20Lana formwork timber_beam_habe_h20
Lana formwork timber_beam_habe_h20
 
Harmonic csf lw_specsheet
Harmonic csf lw_specsheetHarmonic csf lw_specsheet
Harmonic csf lw_specsheet
 
HydroKhan Catalog150224
HydroKhan Catalog150224HydroKhan Catalog150224
HydroKhan Catalog150224
 
EDrive Actuators L-TAC LS
EDrive Actuators L-TAC LS EDrive Actuators L-TAC LS
EDrive Actuators L-TAC LS
 
ABB MWD High Voltage Surge Arresters AC 4kV - 44kV - AC Surge Arresters & Pr...
ABB MWD High Voltage Surge Arresters AC 4kV - 44kV -  AC Surge Arresters & Pr...ABB MWD High Voltage Surge Arresters AC 4kV - 44kV -  AC Surge Arresters & Pr...
ABB MWD High Voltage Surge Arresters AC 4kV - 44kV - AC Surge Arresters & Pr...
 
MAIN CANOPY BAJAJ HR(22.09.2016)
MAIN CANOPY BAJAJ HR(22.09.2016)MAIN CANOPY BAJAJ HR(22.09.2016)
MAIN CANOPY BAJAJ HR(22.09.2016)
 
Tabel baja standard
Tabel baja standardTabel baja standard
Tabel baja standard
 

Plus de TECNALIA Marine Energy

Plus de TECNALIA Marine Energy (14)

Harsh lab tecnalia windeurope 180927
Harsh lab tecnalia windeurope 180927Harsh lab tecnalia windeurope 180927
Harsh lab tecnalia windeurope 180927
 
M4 e2 en-harslab v1-sept18
M4 e2 en-harslab v1-sept18M4 e2 en-harslab v1-sept18
M4 e2 en-harslab v1-sept18
 
Icoe2018 floorplan and program overview
Icoe2018 floorplan and program overviewIcoe2018 floorplan and program overview
Icoe2018 floorplan and program overview
 
REM - MASTER IN RENEWABLE ENERGY IN THE MARINE ENVIRONMENT
REM - MASTER IN RENEWABLE ENERGY IN THE MARINE ENVIRONMENTREM - MASTER IN RENEWABLE ENERGY IN THE MARINE ENVIRONMENT
REM - MASTER IN RENEWABLE ENERGY IN THE MARINE ENVIRONMENT
 
Icoe2018 eng presentation
Icoe2018 eng presentationIcoe2018 eng presentation
Icoe2018 eng presentation
 
German perez lifes50+ design summary - deep wind 2018
German perez   lifes50+ design summary - deep wind 2018German perez   lifes50+ design summary - deep wind 2018
German perez lifes50+ design summary - deep wind 2018
 
Weetics poster final
Weetics poster finalWeetics poster final
Weetics poster final
 
Gteo 17 nov17 harshlab
Gteo 17 nov17   harshlabGteo 17 nov17   harshlab
Gteo 17 nov17 harshlab
 
Mps report
Mps reportMps report
Mps report
 
MASTER IN OFFSHORE RENEWABLE ENERGY--UPV/EHU (UNIVERSITY OF BASQUE COUNTRY)
MASTER IN OFFSHORE RENEWABLE ENERGY--UPV/EHU (UNIVERSITY OF BASQUE COUNTRY)MASTER IN OFFSHORE RENEWABLE ENERGY--UPV/EHU (UNIVERSITY OF BASQUE COUNTRY)
MASTER IN OFFSHORE RENEWABLE ENERGY--UPV/EHU (UNIVERSITY OF BASQUE COUNTRY)
 
HYWEC (Hydrodynamics of Wave Energy Converters) Workshop at BCAM April 3-7, 2017
HYWEC (Hydrodynamics of Wave Energy Converters) Workshop at BCAM April 3-7, 2017HYWEC (Hydrodynamics of Wave Energy Converters) Workshop at BCAM April 3-7, 2017
HYWEC (Hydrodynamics of Wave Energy Converters) Workshop at BCAM April 3-7, 2017
 
MORE: Master in Offshore Renewable Energy
MORE: Master in Offshore Renewable EnergyMORE: Master in Offshore Renewable Energy
MORE: Master in Offshore Renewable Energy
 
Opera presentation tecnalia_20170306_v1.3
Opera presentation tecnalia_20170306_v1.3Opera presentation tecnalia_20170306_v1.3
Opera presentation tecnalia_20170306_v1.3
 
ENERGIAS-MARINAS_CAT_EN
ENERGIAS-MARINAS_CAT_ENENERGIAS-MARINAS_CAT_EN
ENERGIAS-MARINAS_CAT_EN
 

Dernier

Activity Planning: Objectives, Project Schedule, Network Planning Model. Time...
Activity Planning: Objectives, Project Schedule, Network Planning Model. Time...Activity Planning: Objectives, Project Schedule, Network Planning Model. Time...
Activity Planning: Objectives, Project Schedule, Network Planning Model. Time...
Lovely Professional University
 
Online crime reporting system project.pdf
Online crime reporting system project.pdfOnline crime reporting system project.pdf
Online crime reporting system project.pdf
Kamal Acharya
 
ALCOHOL PRODUCTION- Beer Brewing Process.pdf
ALCOHOL PRODUCTION- Beer Brewing Process.pdfALCOHOL PRODUCTION- Beer Brewing Process.pdf
ALCOHOL PRODUCTION- Beer Brewing Process.pdf
Madan Karki
 
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
drjose256
 

Dernier (20)

5G and 6G refer to generations of mobile network technology, each representin...
5G and 6G refer to generations of mobile network technology, each representin...5G and 6G refer to generations of mobile network technology, each representin...
5G and 6G refer to generations of mobile network technology, each representin...
 
Electrical shop management system project report.pdf
Electrical shop management system project report.pdfElectrical shop management system project report.pdf
Electrical shop management system project report.pdf
 
Activity Planning: Objectives, Project Schedule, Network Planning Model. Time...
Activity Planning: Objectives, Project Schedule, Network Planning Model. Time...Activity Planning: Objectives, Project Schedule, Network Planning Model. Time...
Activity Planning: Objectives, Project Schedule, Network Planning Model. Time...
 
Introduction to Artificial Intelligence and History of AI
Introduction to Artificial Intelligence and History of AIIntroduction to Artificial Intelligence and History of AI
Introduction to Artificial Intelligence and History of AI
 
Linux Systems Programming: Semaphores, Shared Memory, and Message Queues
Linux Systems Programming: Semaphores, Shared Memory, and Message QueuesLinux Systems Programming: Semaphores, Shared Memory, and Message Queues
Linux Systems Programming: Semaphores, Shared Memory, and Message Queues
 
Quiz application system project report..pdf
Quiz application system project report..pdfQuiz application system project report..pdf
Quiz application system project report..pdf
 
Low rpm Generator for efficient energy harnessing from a two stage wind turbine
Low rpm Generator for efficient energy harnessing from a two stage wind turbineLow rpm Generator for efficient energy harnessing from a two stage wind turbine
Low rpm Generator for efficient energy harnessing from a two stage wind turbine
 
Fabrication Of Automatic Star Delta Starter Using Relay And GSM Module By Utk...
Fabrication Of Automatic Star Delta Starter Using Relay And GSM Module By Utk...Fabrication Of Automatic Star Delta Starter Using Relay And GSM Module By Utk...
Fabrication Of Automatic Star Delta Starter Using Relay And GSM Module By Utk...
 
Piping and instrumentation diagram p.pdf
Piping and instrumentation diagram p.pdfPiping and instrumentation diagram p.pdf
Piping and instrumentation diagram p.pdf
 
Operating System chapter 9 (Virtual Memory)
Operating System chapter 9 (Virtual Memory)Operating System chapter 9 (Virtual Memory)
Operating System chapter 9 (Virtual Memory)
 
BORESCOPE INSPECTION for engins CFM56.pdf
BORESCOPE INSPECTION for engins CFM56.pdfBORESCOPE INSPECTION for engins CFM56.pdf
BORESCOPE INSPECTION for engins CFM56.pdf
 
Online crime reporting system project.pdf
Online crime reporting system project.pdfOnline crime reporting system project.pdf
Online crime reporting system project.pdf
 
AI in Healthcare Innovative use cases and applications.pdf
AI in Healthcare Innovative use cases and applications.pdfAI in Healthcare Innovative use cases and applications.pdf
AI in Healthcare Innovative use cases and applications.pdf
 
ALCOHOL PRODUCTION- Beer Brewing Process.pdf
ALCOHOL PRODUCTION- Beer Brewing Process.pdfALCOHOL PRODUCTION- Beer Brewing Process.pdf
ALCOHOL PRODUCTION- Beer Brewing Process.pdf
 
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
 
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
 
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdfInstruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
 
Introduction to Heat Exchangers: Principle, Types and Applications
Introduction to Heat Exchangers: Principle, Types and ApplicationsIntroduction to Heat Exchangers: Principle, Types and Applications
Introduction to Heat Exchangers: Principle, Types and Applications
 
Lesson no16 application of Induction Generator in Wind.ppsx
Lesson no16 application of Induction Generator in Wind.ppsxLesson no16 application of Induction Generator in Wind.ppsx
Lesson no16 application of Induction Generator in Wind.ppsx
 
Introduction to Arduino Programming: Features of Arduino
Introduction to Arduino Programming: Features of ArduinoIntroduction to Arduino Programming: Features of Arduino
Introduction to Arduino Programming: Features of Arduino
 

Microsoft power point fowt2018-boscolofrancesco_v2.pptx

  • 1. April 25th, 26th & 27th 2018 1 Roundtable moderated by Alfredo PARRES BRINGING ELECTRICITY BACK TO SHORE : GRID ISSUES, METHODS, SOLUTIONS AND INNOVATIONS
  • 2. April 25th, 26th & 27th 2018 2 Francesco Boscolo Papo, Researcher, Offshore Energy Area, Tecnalia R&I A METHODOLOGY FOR TECHNO-ECONOMIC DESIGN OF THE UMBILICAL CABLE FOR FLOATING OFFSHORE RENEWABLE ENERGY STRUCTURES
  • 3. April 25th, 26th & 27th 2018 3 TECNALIA Offshore Energy Area SINCE 2003 OUR TEAM CARRIES OUT RESEARCH IN OFFSHORE ENERGY SECTOR OCEANTEC ENERGÍAS MARINAS S.L. Joint Venture with the main objective of developing a floating oscillating water column wave energy converter. NAUTILUS FLOATING SOLUTIONS A joint venture to develop a floating platform for offshore wind turbines with the objective of providing the lowest cost of energy by minimizing logistics from the very early design stages. EU FP7 funded research project that aims to provide an important breakthrough in offshore wind industrial solutions by designing an innovative, lightweight, robust and reliable 10 MW class offshore wind turbine based on a superconducting synchronous generator patented by TECNALIA. SUPRAPOWER (SUPERCONDUCTING, RELIABLE, LIGHTWEIGHT, AND MORE POWERFUL OFFSHORE WIND TURBINES) CONNECTORS FOR FLOATING DEVICES It is a submarine cable to device or floating platform connection solution that includes common electrical components used in onshore applications. Besides the power cables (13,2 kV) the connector also connects low voltage cables for ancillary equipment and fiber optic cables for data transmission. HARSHLAB Offshore laboratory for testing of renewable energy components in harsh enviroment
  • 4. 1. Method behind the design • Static design tool; • Umbilical cable designed as a simple catenary line; • Floating modules modelled as inverse catenary lines; • A catenary curve is governed by a hyperbolic cosine function: ZB ZS X Fairlead point Touchdown point For a simplified analysis, we impose that: ZS = ZB = Z Sag bend Arch bend Only 2 design parameters Only 2 design parameters · · 1) An adequate bending radius, larger than the Allowable Bending Radius (ABR) Constraints in the umbilical cable design: 2) The maximum analyzed tension in the umbilical cable shall be under a maximum value • Mean position (no offset) • Far position (positive offset) • Near position (negative offset) 3 positions analysis: April 25th, 26th & 27th 2018 4
  • 5. 4. Study case: 66kV umbilical cable for Floating Offshore Wind Platforms • Here is presented a methodology for the design of an umbilical cable characterized by 66kV voltage and designed for Offshore Wind Energy Platforms. • Water Depth of 60m • Umbilical cable of 66kV (500mm2 copper section; 169mm external diameter; about 70kg/m linear mass) • Lazy Wave shape • ULS analysis characterized by a TR=50 years, HS=14.00m sea state, VC=1.31m/s current Orcaflex model Orcaflex model April 25th, 26th & 27th 2018 5
  • 6. 70 75 80 85 90 95 100 105 110 115 120 5 0,572 0,507 0,453 0,407 0,368 0,335 0,306 0,281 0,259 0,239 0,222 6 0,565 0,501 0,447 0,402 0,363 0,330 0,302 0,277 0,255 0,235 0,218 7 0,558 0,494 0,441 0,396 0,358 0,325 0,297 0,272 0,251 0,232 0,215 8 0,551 0,487 0,435 0,390 0,353 0,320 0,292 0,268 0,247 0,228 0,211 9 0,543 0,481 0,428 0,384 0,347 0,315 0,288 0,264 0,242 0,224 0,207 10 0,536 0,473 0,422 0,378 0,342 0,310 0,283 0,259 0,238 0,220 0,203 11 0,528 0,466 0,415 0,372 0,336 0,305 0,278 0,254 0,233 0,215 0,199 12 0,519 0,458 0,408 0,365 0,330 0,299 0,272 0,249 0,229 0,211 0,195 13 0,511 0,450 0,400 0,359 0,323 0,293 0,267 0,244 0,224 0,206 0,191 14 0,501 0,442 0,393 0,352 0,317 0,287 0,261 0,239 0,219 0,202 0,186 15 0,492 0,433 0,385 0,344 0,310 0,281 0,255 0,233 0,214 0,197 0,182 16 0,482 0,424 0,377 0,337 0,303 0,274 0,249 0,228 0,209 0,192 0,177 17 0,472 0,415 0,368 0,329 0,296 0,267 0,243 0,222 0,203 0,187 0,173 18 0,461 0,405 0,359 0,321 0,288 0,260 0,236 0,216 0,197 0,182 0,167 19 0,449 0,395 0,350 0,312 0,280 0,253 0,230 0,209 0,192 0,176 0,162 20 0,438 0,384 0,340 0,303 0,272 0,245 0,222 0,203 0,185 0,170 0,157 21 0,425 0,372 0,329 0,293 0,263 0,237 0,215 0,196 0,179 x x 22 0,411 0,360 0,318 0,283 0,254 x x x x x x 23 0,397 x x x x x x x x x x 24 x x x x x x x x x x x CURVATURE [1/m] Horizontal footprint, X [m] Verticaldistance,Z[m] 70 75 80 85 90 95 100 105 110 115 120 5 0,572 0,507 0,453 0,407 0,368 0,335 0,306 0,281 0,259 0,239 0,222 6 0,565 0,501 0,447 0,402 0,363 0,330 0,302 0,277 0,255 0,235 0,218 7 0,558 0,494 0,441 0,396 0,358 0,325 0,297 0,272 0,251 0,232 0,215 8 0,551 0,487 0,435 0,390 0,353 0,320 0,292 0,268 0,247 0,228 0,211 9 0,543 0,481 0,428 0,384 0,347 0,315 0,288 0,264 0,242 0,224 0,207 10 0,536 0,473 0,422 0,378 0,342 0,310 0,283 0,259 0,238 0,220 0,203 11 0,528 0,466 0,415 0,372 0,336 0,305 0,278 0,254 0,233 0,215 0,199 12 0,519 0,458 0,408 0,365 0,330 0,299 0,272 0,249 0,229 0,211 0,195 13 0,511 0,450 0,400 0,359 0,323 0,293 0,267 0,244 0,224 0,206 0,191 14 0,501 0,442 0,393 0,352 0,317 0,287 0,261 0,239 0,219 0,202 0,186 15 0,492 0,433 0,385 0,344 0,310 0,281 0,255 0,233 0,214 0,197 0,182 16 0,482 0,424 0,377 0,337 0,303 0,274 0,249 0,228 0,209 0,192 0,177 17 0,472 0,415 0,368 0,329 0,296 0,267 0,243 0,222 0,203 0,187 0,173 18 0,461 0,405 0,359 0,321 0,288 0,260 0,236 0,216 0,197 0,182 0,167 19 0,449 0,395 0,350 0,312 0,280 0,253 0,230 0,209 0,192 0,176 0,162 20 0,438 0,384 0,340 0,303 0,272 0,245 0,222 0,203 0,185 0,170 0,157 21 0,425 0,372 0,329 0,293 0,263 0,237 0,215 0,196 0,179 x x 22 0,411 0,360 0,318 0,283 0,254 x x x x x x 23 0,397 x x x x x x x x x x 24 x x x x x x x x x x x CURVATURE [1/m] Horizontal footprint, X [m] Verticaldistance,Z[m] 5. Static analysis: Curvature Matrix Admissible Curvature: Low Dynamic analysis Selection of some combinations for 2nd step: 1 12 · 0,493 1 Objective of the analysis: Minimize the Curvature < AC High CurvatureCurvature April 25th, 26th & 27th 2018 6
  • 7. 70 75 80 85 90 95 100 105 110 115 120 5,0 1,475 1,706 1,937 2,208 2,479 2,722 2,966 3,163 3,361 3,559 3,758 6,0 1,472 1,710 1,948 2,202 2,457 2,695 2,932 3,137 3,342 3,528 3,715 7,0 1,469 1,714 1,958 2,197 2,436 2,667 2,899 3,111 3,324 3,498 3,672 8,0 1,466 1,718 1,969 2,192 2,414 2,639 2,865 3,085 3,305 3,467 3,629 9,0 1,463 1,722 1,980 2,186 2,392 2,612 2,832 3,059 3,287 3,436 3,585 10,0 1,460 1,726 1,991 2,181 2,370 2,584 2,798 3,033 3,268 3,405 3,542 11,0 1,445 1,702 1,959 2,145 2,331 2,524 2,717 2,941 3,166 3,305 3,444 12,0 1,429 1,678 1,928 2,110 2,292 2,464 2,636 2,850 3,064 3,205 3,346 13,0 1,413 1,655 1,896 2,074 2,253 2,404 2,555 2,758 2,961 3,105 3,248 14,0 1,397 1,631 1,864 2,039 2,214 2,344 2,474 2,667 2,859 3,004 3,150 15,0 1,381 1,607 1,833 2,004 2,174 2,284 2,393 2,575 2,757 2,904 3,051 16,0 1,374 1,569 1,765 1,908 2,050 2,158 2,265 2,440 2,616 2,777 2,939 17,0 1,367 1,532 1,697 1,812 1,926 2,032 2,137 2,306 2,474 2,650 2,826 18,0 1,359 1,494 1,629 1,715 1,802 1,906 2,009 2,171 2,332 2,523 2,713 19,0 1,352 1,456 1,561 1,619 1,678 1,780 1,882 2,036 2,191 2,396 2,600 20,0 1,344 1,418 1,493 1,523 1,554 1,654 1,754 1,902 2,049 2,268 2,487 21,0 1,337 1,381 1,424 1,427 1,430 1,528 1,626 1,767 1,908 x x 22,0 1,329 1,343 1,356 1,331 1,306 x x x x x x 23,0 1,322 x x x x x x x x x x 24,0 x x x x x x x x x x x CURVATURE DAF Horizontal footprint, X [m] Verticaldistance,Z[m] 6. Dynamic analysis (a): Dynamic Amplification Factors for Curvature DAF directly proportional to X DAF inversely proportional to Z Curvature DAF Increasing = f(X) Increasing=f(Z) ! " #$ % &'($)&'* +)$)% &'($)&'* Low High April 25th, 26th & 27th 2018 7
  • 8. 70 75 80 85 90 95 100 105 110 115 120 5 0,844 0,865 0,877 0,899 0,913 0,912 0,908 0,889 0,870 0,851 0,833 6 0,832 0,856 0,871 0,884 0,892 0,890 0,885 0,868 0,852 0,831 0,810 7 0,820 0,847 0,864 0,870 0,872 0,868 0,861 0,848 0,834 0,810 0,788 8 0,808 0,837 0,856 0,855 0,851 0,846 0,838 0,827 0,815 0,790 0,765 9 0,795 0,827 0,848 0,840 0,830 0,823 0,815 0,806 0,797 0,769 0,743 10 0,782 0,817 0,839 0,825 0,809 0,801 0,791 0,785 0,778 0,748 0,720 11 0,762 0,793 0,813 0,798 0,782 0,769 0,754 0,748 0,739 0,712 0,686 12 0,742 0,769 0,786 0,771 0,755 0,736 0,718 0,710 0,701 0,676 0,653 13 0,721 0,745 0,759 0,744 0,728 0,704 0,682 0,673 0,663 0,641 0,620 14 0,701 0,721 0,732 0,717 0,701 0,673 0,646 0,637 0,626 0,606 0,587 15 0,680 0,696 0,706 0,690 0,674 0,641 0,611 0,601 0,590 0,572 0,555 16 0,663 0,666 0,665 0,643 0,621 0,592 0,564 0,555 0,546 0,533 0,521 17 0,645 0,636 0,625 0,596 0,570 0,543 0,519 0,511 0,503 0,495 0,488 18 0,626 0,605 0,585 0,550 0,519 0,496 0,475 0,468 0,461 0,458 0,454 19 0,608 0,575 0,546 0,505 0,470 0,450 0,432 0,426 0,420 0,422 0,422 20 0,588 0,545 0,507 0,461 0,422 0,405 0,390 0,385 0,380 0,386 0,390 21 0,568 0,514 0,469 0,419 0,376 0,362 0,349 0,346 0,341 x x 22 0,547 0,484 0,432 0,377 0,331 x x x x x x 23 0,524 x x x x x x x x x x 24 x x x x x x x x x x x CURVATURE [1/m] Horizontal footprint, X [m] Verticaldistance,Z[m] 70 75 80 85 90 95 100 105 110 115 120 5 0,844 0,865 0,877 0,899 0,913 0,912 0,908 0,889 0,870 0,851 0,833 6 0,832 0,856 0,871 0,884 0,892 0,890 0,885 0,868 0,852 0,831 0,810 7 0,820 0,847 0,864 0,870 0,872 0,868 0,861 0,848 0,834 0,810 0,788 8 0,808 0,837 0,856 0,855 0,851 0,846 0,838 0,827 0,815 0,790 0,765 9 0,795 0,827 0,848 0,840 0,830 0,823 0,815 0,806 0,797 0,769 0,743 10 0,782 0,817 0,839 0,825 0,809 0,801 0,791 0,785 0,778 0,748 0,720 11 0,762 0,793 0,813 0,798 0,782 0,769 0,754 0,748 0,739 0,712 0,686 12 0,742 0,769 0,786 0,771 0,755 0,736 0,718 0,710 0,701 0,676 0,653 13 0,721 0,745 0,759 0,744 0,728 0,704 0,682 0,673 0,663 0,641 0,620 14 0,701 0,721 0,732 0,717 0,701 0,673 0,646 0,637 0,626 0,606 0,587 15 0,680 0,696 0,706 0,690 0,674 0,641 0,611 0,601 0,590 0,572 0,555 16 0,663 0,666 0,665 0,643 0,621 0,592 0,564 0,555 0,546 0,533 0,521 17 0,645 0,636 0,625 0,596 0,570 0,543 0,519 0,511 0,503 0,495 0,488 18 0,626 0,605 0,585 0,550 0,519 0,496 0,475 0,468 0,461 0,458 0,454 19 0,608 0,575 0,546 0,505 0,470 0,450 0,432 0,426 0,420 0,422 0,422 20 0,588 0,545 0,507 0,461 0,422 0,405 0,390 0,385 0,380 0,386 0,390 21 0,568 0,514 0,469 0,419 0,376 0,362 0,349 0,346 0,341 x x 22 0,547 0,484 0,432 0,377 0,331 x x x x x x 23 0,524 x x x x x x x x x x 24 x x x x x x x x x x x CURVATURE [1/m] Horizontal footprint, X [m] Verticaldistance,Z[m] 6. Dynamic analysis (b): Interpolated Dynamic Curvature limited by AC Curvature 0,493 1 Low High Admissible Curvature: April 25th, 26th & 27th 2018 8 Analogous analysis for Tension 70,0 75,0 80,0 85,0 90,0 95,0 100,0 105,0 110,0 115,0 120,0 5,0 89,0 92,7 96,4 98,4 100,5 100,9 101,3 106,7 112,4 115,5 118,8 6,0 86,0 89,1 92,4 94,4 96,5 97,3 98,2 102,1 106,2 109,7 113,4 7,0 83,1 85,7 88,5 90,5 92,6 93,8 95,1 97,6 100,2 104,1 108,2 8,0 80,3 82,4 84,6 86,7 88,8 90,5 92,2 93,3 94,4 98,7 103,2 9,0 77,5 79,2 80,9 83,0 85,2 87,2 89,4 89,0 88,7 93,4 98,2 10,0 74,8 76,0 77,3 79,4 81,6 84,1 86,7 85,0 83,2 88,2 93,5 11,0 71,7 72,9 74,1 76,3 78,6 81,3 84,1 82,7 81,1 86,0 91,2 12,0 68,7 69,9 71,2 73,4 75,7 78,6 81,7 80,5 79,2 84,0 89,1 13,0 65,8 67,0 68,3 70,6 73,0 76,1 79,5 78,5 77,6 82,3 87,3 14,0 63,0 64,2 65,5 67,9 70,4 73,8 77,4 76,8 76,1 80,8 85,8 15,0 60,3 61,6 62,9 65,4 68,0 71,7 75,6 75,3 75,0 79,7 84,8 16,0 58,8 60,3 62,0 64,5 67,2 70,9 74,9 76,1 77,3 87,6 98,9 17,0 57,4 59,2 61,3 63,9 66,8 70,5 74,6 77,4 80,5 96,9 115,0 18,0 56,1 58,4 60,9 63,7 66,8 70,7 75,0 79,7 84,9 108,4 134,7 19,0 55,2 57,9 60,9 64,0 67,5 71,8 76,6 83,5 91,5 124,0 161,4 20,0 54,7 57,9 61,6 65,2 69,4 74,4 80,2 90,5 102,7 148,6 204,3 21,0 54,8 58,9 63,5 68,2 73,6 80,2 88,3 104,6 125,2 x x 22,0 56,1 61,5 68,1 74,6 83,0 x x x x x x 23,0 60,1 x x x x x x x x x x 24,0 x x x x x x x x x x x TENSION [kN] Verticaldistance,Z[m] Horizontal footprint, X [m] Tension
  • 9. 70 75 80 85 90 95 100 105 110 115 120 5 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0 0 0 0 17 0 0 0 0 0 0 0 0 0 0 1 18 0 0 0 0 0 0 1 1 1 1 1 19 0 0 0 0 1 1 1 1 1 1 1 20 0 0 0 1 1 1 1 1 1 1 1 21 0 0 1 1 1 1 1 1 1 0 0 22 0 1 1 1 1 0 0 0 0 0 0 23 0 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 CURVATURE [1/m] Horizontal footprint, X [m] Verticaldistance,Z[m] + 70 75 80 85 90 95 100 105 110 115 120 5 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 7 1 0 0 0 0 0 0 0 0 0 0 8 1 1 1 0 0 0 0 0 0 0 0 9 1 1 1 1 1 0 0 0 0 0 0 10 1 1 1 1 1 1 0 1 1 0 0 11 1 1 1 1 1 1 1 1 1 0 0 12 1 1 1 1 1 1 1 1 1 1 0 13 1 1 1 1 1 1 1 1 1 1 0 14 1 1 1 1 1 1 1 1 1 1 0 15 1 1 1 1 1 1 1 1 1 1 1 16 1 1 1 1 1 1 1 1 1 0 0 17 1 1 1 1 1 1 1 1 1 0 0 18 1 1 1 1 1 1 1 1 1 0 0 19 1 1 1 1 1 1 1 1 0 0 0 20 1 1 1 1 1 1 1 0 0 0 0 21 1 1 1 1 1 1 0 0 0 0 0 22 1 1 1 1 1 0 0 0 0 0 0 23 1 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 Verticaldistance,Z[m] Horizontal footprint, X [m]TENSION [kN] 6. Dynamic analysis (c): Curvature & Tension limited Low High Decreasing 70 75 80 85 90 95 100 105 110 115 120 5 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0 0 0 0 17 0 0 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 1 1 1 0 0 19 0 0 0 0 1 1 1 1 0 0 0 20 0 0 0 1 1 1 1 0 0 0 0 21 0 0 1 1 1 1 0 0 0 0 0 22 0 1 1 1 1 0 0 0 0 0 0 23 0 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 Horizontal footprint, X [m]Acceptance Range Verticaldistance,Z[m] Design is mainly driven by Curvature 70 75 80 85 90 95 100 105 110 115 120 5 6 7 8 9 10 11 12 13 14 15 16 17 18 75,0 79,7 84,9 19 67,5 71,8 76,6 83,5 20 65,2 69,4 74,4 80,2 21 63,5 68,2 73,6 80,2 22 61,5 68,1 74,6 83,0 23 24 Verticaldistance,Z[m] Horizontal footprint, X [m]EFFECTIVE TENSION [kN]70 75 80 85 90 95 100 105 110 115 120 5 6 7 8 9 10 11 12 13 14 15 16 17 18 0,475 0,468 0,461 19 0,470 0,450 0,432 0,426 20 0,461 0,422 0,405 0,390 21 0,469 0,419 0,376 0,362 22 0,484 0,432 0,377 0,331 23 24 Curvature [1/m] Horizontal footprint, X [m] Verticaldistance,Z[m] TensionTensionCurvatureCurvature DecreasingDecreasing April 25th, 26th & 27th 2018 9 CostCost
  • 10. 8. Summary of design procedure Selection of reasonable ranges for horizontal footprint and vertical distance for the study case Run a static analysis for all the resulted combinations Run a dynamic analysis for some combinations among those selected Find out the DAFs for Curvature and Tension Calculate the interpolated results and complete the whole matrix of dynamic results Select the optimum configuration, after taking into account all the output parameters (length, number of floaters, cost) Run a series of dynamic simulations considering the adequate campaign of DLCs Verify that the selected combination is actually the optimum one; in case it is not, go back to the matrix of interpolated results and select another configuration Iterative procedure Iterative procedure April 25th, 26th & 27th 2018 10