SlideShare une entreprise Scribd logo
1  sur  17
Télécharger pour lire hors ligne
• Introduction
• A condenser is a type of heat exchanger in which
vapors are transferred into liquid state by removing
the latent heat with the help of a coolant such as
water.
• Condensers may be classified into two main types:
1. Those in which the coolant and condensing vapor
are brought into direct contact.
2. Those in which the coolant and condensate stream
are separated by a solid surface, usually a tube
wall
Different types of the Condenser
1. Double pipe and multiple pipe
2. Plate Condensers
3. Air-Cooled Condensers
4. Compact Condensers
5. Shell & tube type
DESIGN CALCULATIONS FOR CONDENSER
• Inlet temperature of the process stream ‘T1’ = 45 o
C
• Outlet temperature of the process stream ‘T2’ = 45 o
C
• Inlet temperature of the water ‘t1’ = 25 0
C
• Outlet temperature of the water ‘t2’ = 40 o
C
• Mass flow rate of the process stream ‘m’ = 8060 Kg/hr
• Enthalpy of Vapors of Process Stream = 1940 KJ/Kg
Removed ‘λ1’
T2 = 45 o
C
t1= 25 o
C t2 = 40o
C
T1 = 45 o
C
Condenser
Heat Load:
Q = m (λ1)
Q = 4343 KW
Mass flow rate of cooling water
Δt
C
Q
m
p
=
= 68.9 Kg/sec
Log Mean Temperature Difference
LMTD = (∆t2-∆t1)/ log (∆t2/∆t1)
LMTD = 14.4o
C
Cp = 4.2 KJ / Kg.K
Assumed Calculations
Assumed Value of Overall Coefficient ‘UD’ = 1000 W/m 2
C
True Mean Temperature Difference
Dimensionless Temperature Ratios
R
R = (T1-T2) / (t2-t1)
= (45-45) / (40-25)
= 0
S
S = (t2-t1) / (T1-t1)
= (40-25)/ (45-25)
= 0.75
From Literature the value of Ft is 1
∆tm = Ft x LMTD
= 1 x 14.4
= 14.4 o
C
Heat Transfer Area
= 301 m 2
Surface Area of single tube = 3.14 x 19 x 4.88 / 1000
= 0.292 m 2
No. of tubes = 301/.292
= 1030
Pitch ‘Pt’ = 1.25 × 19.05= 23.8 mm
Δt
U
Q
A
D
=
Tube Bundle Diameter
Db = d0 (Nt/K1)1/n1
= 19 (1030/0.158)1/2.263
= 920 mm
No. of tubes in centre row
Nr = Db / Pt
= 920 / 23.8
= 39
Shell Side Calculations
Estimate tube wall temperature Tw
Assume condensing coefficient of 4250 W/m2
C (from literature)
Mean Temperature
Shell side =( 45+45) / 2 = 45 o
C
Tube side = (25+40) / 2 = 32.5 o
C
(45-Tw) x 4250 = (45-25) x 1000
Tw = 40.3 o
C
Physical Properties
Viscosity of the liquid ‘µL’ = 0.8 mNs/m2
Density of liquid ‘ρL’ = 993 Kg/m3
Thermal conductivity ‘kL’ = 0.571 W/m C
Average M. Wt. of Vapors = 42.8
Density of vapor = 29 x 273 x 1/(22.4 x 1 x (273+42))
= 1.12 Kg / m3
Condensate loading on a horizontal tube ’Ѓh’ = m / L x Nt
= 8060 / 3600 x (4.88 x 1030)
= 4.45 x 10-3
Kg/m s
# of tubes in the vertical row ’Nr’ = 2/3 x 39 = 26 mm
Heat transfer coefficient in condensation
‘h0’ = 0.95 x kL ( ρL x (ρL – ρv ) g / (µL x Ѓh)1/3
x Nr-1/6
= 4396.0 W/m2о
C
• As our assumed value is correct so no need to correct the
wall temperature
Tube Side Calculations
Tube cross sectional area = 3.14 / 4 x (19 x 10-3
)2 x
1030 / 4
= 0.073 m2
Density of water at 30 0
C = 993 kg/m3
Tube velocity = m / (ρH2O x At )
= 68.9 / (993 x 0.073)
= 0.95m/s
Film heat transfer coefficient inside a tube
‘hi’ = 4200(1.35+0.02 x t) Vt0.8
/ di
. 0 2
= 4809.67 W/m2 0
C
From Literature take fouling factor as 6000 W/m2 0
C
Thermal Conductivity of the tube wall material
‘Kw’ = 50 W/m0
C
Overall Coefficient
1/U0 = 1/ho + 1/hod + (d0 ln(d0/di))/2kw +d0/di x 1/hid +d0/di x 1/hi
= 0.001
U0 = 1100.29 W/m2 0
C
So assumed value is correct
Shell Side Pressure Drop
For pull through floating head with 45% cut baffles
From literature clearance = 88 mm
Shell internal diameter ‘Ds’ = Db+88
= 1008 mm
Cross flow area ‘As’ = m2
A= 0.205 m2
Mass Velocity
Gt = m / As
= 8060 / (3600 x 0.205)
= 10.92 Kg/s m2
Equivalent diameter ‘de’ = 1.27 (Pt2
-0.785d0
2
) / d0 = 19 mm
Viscosity of vapors ‘µ’ = 0.009 mNs/m2
Reynold’s No.
Re = de Gt / µ
= 19 x 10-3
x 10.92 /0.009 x 10-3
Re = 23053
From literature
jf = 0.029
By neglecting the viscosity correction factor
Where
Ds = dia of shell
L = Length of tubes
lB = baffle spacing
So
= 765 N/m2
= 0.765 Kpa
= 0.109 Psi
Tube side pressure drop
Viscosity of water ‘µ’ = 0.9 x 10-3
Ns/m2
Re = Vt ρ di /µ
= 0.95 x 993 x 16.56 x 10-3
/ 0.6 x 10-3
= 26036
From literature
jf = 0.0039
Where
Np = No. of tube passes
So
∆Pt = 4119.8 N/m2
= 4.119Kpa
= 0.59 psi
Acceptable
hio = hi ×I.D/O.D
hio = 4165.2 W/m2 0
C
Clean Overall Coefficient:
= 2138.7 W/m2 0
C
Design Overall Coefficient Calculated
dirt factor Rd = 0.0005
D
D
U
U
U
U
R
C
C
d
−
=
o
io
o
io
C
h
h
h
h
U
+
=
SPECIFICATION SHEET CONDENSER
Identification: Item condenser
No. Required = 8
Function: Condense vapors by removing the latent heat of vaporization
Operation: Continuous
Type: 1-4 Horizontal Condenser
Shell side condensation
Heat Duty = 4343 KW
Tube Side:
Fluid handled: Cold Water
Flow rate = 68.9 Kg/sec
Pressure = 14.7 psia
Temperature = 25 o
C to 40 o
C
Tubes: 0.75 in. Dia.
1030 tubes each 16 ft long
4 passes
23.8 mm triangular pitch
Pressure Drop = 0.59 psi
Shell Side:
Fluid handled = Steam
Flow rate = 8060 Kg/hr
Pressure = 10 KPa
Temperature = 45 o
C to 45 o
C
Shell: 39 in. dia. 1 passes
Baffles spacing = 3.5 in.
Pressure drop =0.109 psi
Utilities: Cold water
Ud assumed = 1000 W/m 2
C Ud calculated =1100.97 W/m 2
C
Rd = 0.0005
References
• Chemical Engineering Design
Volume 6 by Coulson &v Richardson’s
• Process Heat Transfer
by D.Q. Kern
• Plant Design & Economics for Chemical Engineers
5th
Edition by Max S. Peters, Klaus D. Timmerhaus,
Ronald E. West
• Perry’s Chemical Engineers’ Handbook
by Robert H. Perry, Don. W. Green

Contenu connexe

Tendances

Diethyl Ether (DEE): Equipments Design
Diethyl Ether (DEE): Equipments DesignDiethyl Ether (DEE): Equipments Design
Diethyl Ether (DEE): Equipments DesignPratik Patel
 
The psychrometric chart theory and application
The psychrometric chart theory and applicationThe psychrometric chart theory and application
The psychrometric chart theory and applicationUsama Khan
 
Diesel Production: Equipments Design
Diesel Production: Equipments DesignDiesel Production: Equipments Design
Diesel Production: Equipments DesignPratik Patel
 
Nucleate Boiling simulation
Nucleate Boiling simulationNucleate Boiling simulation
Nucleate Boiling simulationCPDLR
 
Energy transfer and heat load analysis
Energy transfer and heat load analysisEnergy transfer and heat load analysis
Energy transfer and heat load analysisSatwinder Singh
 
Manufacture of nitrobenzene
Manufacture of nitrobenzeneManufacture of nitrobenzene
Manufacture of nitrobenzeneparthdhurvey
 
A non-Iterative way for preliminary designing Plate & Frame Exchanger
A non-Iterative way for preliminary designing Plate & Frame ExchangerA non-Iterative way for preliminary designing Plate & Frame Exchanger
A non-Iterative way for preliminary designing Plate & Frame ExchangerUsama Khan
 
Latihan soal jawab fentrans
Latihan soal jawab fentransLatihan soal jawab fentrans
Latihan soal jawab fentransWidia Kurnia Adi
 
Refrigeration system 2
Refrigeration system 2Refrigeration system 2
Refrigeration system 2Yuri Melliza
 
Cooling Tower & Dryer Fundamentals
Cooling Tower & Dryer FundamentalsCooling Tower & Dryer Fundamentals
Cooling Tower & Dryer FundamentalsYuri Melliza
 
Problem set 2 4b5
Problem set 2 4b5Problem set 2 4b5
Problem set 2 4b54ChEAB08
 
Condensation on vertical surface
Condensation on vertical surfaceCondensation on vertical surface
Condensation on vertical surfaceMostafa Ghadamyari
 
construction of Psychromtery
construction of Psychromteryconstruction of Psychromtery
construction of PsychromteryKulwinder Verma
 

Tendances (19)

Diethyl Ether (DEE): Equipments Design
Diethyl Ether (DEE): Equipments DesignDiethyl Ether (DEE): Equipments Design
Diethyl Ether (DEE): Equipments Design
 
The psychrometric chart theory and application
The psychrometric chart theory and applicationThe psychrometric chart theory and application
The psychrometric chart theory and application
 
Diesel Production: Equipments Design
Diesel Production: Equipments DesignDiesel Production: Equipments Design
Diesel Production: Equipments Design
 
Nucleate Boiling simulation
Nucleate Boiling simulationNucleate Boiling simulation
Nucleate Boiling simulation
 
Energy transfer and heat load analysis
Energy transfer and heat load analysisEnergy transfer and heat load analysis
Energy transfer and heat load analysis
 
CRS General (Rev 3)
CRS General (Rev 3)CRS General (Rev 3)
CRS General (Rev 3)
 
Thermalexpansion
ThermalexpansionThermalexpansion
Thermalexpansion
 
LinkedIn
LinkedInLinkedIn
LinkedIn
 
Manufacture of nitrobenzene
Manufacture of nitrobenzeneManufacture of nitrobenzene
Manufacture of nitrobenzene
 
Chapter 14
Chapter 14Chapter 14
Chapter 14
 
final press-rev-Linkedin
final press-rev-Linkedinfinal press-rev-Linkedin
final press-rev-Linkedin
 
A non-Iterative way for preliminary designing Plate & Frame Exchanger
A non-Iterative way for preliminary designing Plate & Frame ExchangerA non-Iterative way for preliminary designing Plate & Frame Exchanger
A non-Iterative way for preliminary designing Plate & Frame Exchanger
 
Latihan soal jawab fentrans
Latihan soal jawab fentransLatihan soal jawab fentrans
Latihan soal jawab fentrans
 
Refrigeration system 2
Refrigeration system 2Refrigeration system 2
Refrigeration system 2
 
Cooling Tower & Dryer Fundamentals
Cooling Tower & Dryer FundamentalsCooling Tower & Dryer Fundamentals
Cooling Tower & Dryer Fundamentals
 
Problem set 2 4b5
Problem set 2 4b5Problem set 2 4b5
Problem set 2 4b5
 
Condensation on vertical surface
Condensation on vertical surfaceCondensation on vertical surface
Condensation on vertical surface
 
construction of Psychromtery
construction of Psychromteryconstruction of Psychromtery
construction of Psychromtery
 
Dryers
DryersDryers
Dryers
 

Similaire à Designofcondenser 130801223803-phpapp02

Design of Shell & tube Heat Exchanger.pptx
Design of Shell & tube Heat Exchanger.pptxDesign of Shell & tube Heat Exchanger.pptx
Design of Shell & tube Heat Exchanger.pptxAathiraS10
 
Shell and tube heat Exchanger Design.pptx
Shell and tube heat Exchanger Design.pptxShell and tube heat Exchanger Design.pptx
Shell and tube heat Exchanger Design.pptxsandeepsharma432939
 
DESIGN OF AIR PRE HEATER AND ECONOMIZER
DESIGN OF AIR PRE HEATER AND ECONOMIZERDESIGN OF AIR PRE HEATER AND ECONOMIZER
DESIGN OF AIR PRE HEATER AND ECONOMIZERGopi Chand
 
Design of heat exchanger
Design of heat exchangerDesign of heat exchanger
Design of heat exchangerRana Abdul Rauf
 
مبدل های حرارتی
مبدل های حرارتیمبدل های حرارتی
مبدل های حرارتیObeid Aghaei
 
Probs5,11,17
Probs5,11,17Probs5,11,17
Probs5,11,17Lark Inc.
 
Process equipment numericals problems
Process equipment numericals problemsProcess equipment numericals problems
Process equipment numericals problemsAnand Upadhyay
 
DESIGN OF AIR PRE HEATER AND ECONOMIZER
DESIGN OF AIR PRE HEATER AND ECONOMIZERDESIGN OF AIR PRE HEATER AND ECONOMIZER
DESIGN OF AIR PRE HEATER AND ECONOMIZERGopi Chand
 
Convective Heat Transfer - Part 3.pdf
Convective Heat Transfer - Part 3.pdfConvective Heat Transfer - Part 3.pdf
Convective Heat Transfer - Part 3.pdfXuanNguyen277499
 
Group 7 4ChE A
Group 7 4ChE AGroup 7 4ChE A
Group 7 4ChE A4ChEAB08
 
Latihan soal jawab fentrans
Latihan soal jawab fentransLatihan soal jawab fentrans
Latihan soal jawab fentransWidia Kurnia Adi
 
Kettle reboilers
Kettle reboilersKettle reboilers
Kettle reboilersAtif Khan
 
Cryogenic air separation plant design
Cryogenic air separation plant designCryogenic air separation plant design
Cryogenic air separation plant designRahul Ghalme
 

Similaire à Designofcondenser 130801223803-phpapp02 (20)

Design of Shell & tube Heat Exchanger.pptx
Design of Shell & tube Heat Exchanger.pptxDesign of Shell & tube Heat Exchanger.pptx
Design of Shell & tube Heat Exchanger.pptx
 
Shell and tube heat Exchanger Design.pptx
Shell and tube heat Exchanger Design.pptxShell and tube heat Exchanger Design.pptx
Shell and tube heat Exchanger Design.pptx
 
DESIGN OF AIR PRE HEATER AND ECONOMIZER
DESIGN OF AIR PRE HEATER AND ECONOMIZERDESIGN OF AIR PRE HEATER AND ECONOMIZER
DESIGN OF AIR PRE HEATER AND ECONOMIZER
 
Design of heat exchanger
Design of heat exchangerDesign of heat exchanger
Design of heat exchanger
 
project ppt
project pptproject ppt
project ppt
 
مبدل های حرارتی
مبدل های حرارتیمبدل های حرارتی
مبدل های حرارتی
 
تصمم.pptx
تصمم.pptxتصمم.pptx
تصمم.pptx
 
Condenser design
Condenser designCondenser design
Condenser design
 
DESIGN AND FABRICATION OF1 EDITED
DESIGN AND FABRICATION OF1 EDITEDDESIGN AND FABRICATION OF1 EDITED
DESIGN AND FABRICATION OF1 EDITED
 
Probs5,11,17
Probs5,11,17Probs5,11,17
Probs5,11,17
 
Process equipment numericals problems
Process equipment numericals problemsProcess equipment numericals problems
Process equipment numericals problems
 
DESIGN OF AIR PRE HEATER AND ECONOMIZER
DESIGN OF AIR PRE HEATER AND ECONOMIZERDESIGN OF AIR PRE HEATER AND ECONOMIZER
DESIGN OF AIR PRE HEATER AND ECONOMIZER
 
Convective Heat Transfer - Part 3.pdf
Convective Heat Transfer - Part 3.pdfConvective Heat Transfer - Part 3.pdf
Convective Heat Transfer - Part 3.pdf
 
Thermal conductivity admiral
Thermal conductivity admiralThermal conductivity admiral
Thermal conductivity admiral
 
Group 7 4ChE A
Group 7 4ChE AGroup 7 4ChE A
Group 7 4ChE A
 
PLATE FREEZER
PLATE FREEZERPLATE FREEZER
PLATE FREEZER
 
Latihan soal jawab fentrans
Latihan soal jawab fentransLatihan soal jawab fentrans
Latihan soal jawab fentrans
 
Kettle reboilers
Kettle reboilersKettle reboilers
Kettle reboilers
 
Cryogenic air separation plant design
Cryogenic air separation plant designCryogenic air separation plant design
Cryogenic air separation plant design
 
HMT UNIT-II.pptx
HMT UNIT-II.pptxHMT UNIT-II.pptx
HMT UNIT-II.pptx
 

Dernier

Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueBhangaleSonal
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdfAldoGarca30
 
Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Ramkumar k
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdfKamal Acharya
 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Servicemeghakumariji156
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityMorshed Ahmed Rahath
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTbhaskargani46
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdfKamal Acharya
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...drmkjayanthikannan
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdfKamal Acharya
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesMayuraD1
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARKOUSTAV SARKAR
 
Learn the concepts of Thermodynamics on Magic Marks
Learn the concepts of Thermodynamics on Magic MarksLearn the concepts of Thermodynamics on Magic Marks
Learn the concepts of Thermodynamics on Magic MarksMagic Marks
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsvanyagupta248
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationBhangaleSonal
 
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...jabtakhaidam7
 
Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxpritamlangde
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptxJIT KUMAR GUPTA
 

Dernier (20)

Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
 
Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
 
Learn the concepts of Thermodynamics on Magic Marks
Learn the concepts of Thermodynamics on Magic MarksLearn the concepts of Thermodynamics on Magic Marks
Learn the concepts of Thermodynamics on Magic Marks
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
 
Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptx
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 

Designofcondenser 130801223803-phpapp02

  • 1. • Introduction • A condenser is a type of heat exchanger in which vapors are transferred into liquid state by removing the latent heat with the help of a coolant such as water. • Condensers may be classified into two main types: 1. Those in which the coolant and condensing vapor are brought into direct contact. 2. Those in which the coolant and condensate stream are separated by a solid surface, usually a tube wall
  • 2. Different types of the Condenser 1. Double pipe and multiple pipe 2. Plate Condensers 3. Air-Cooled Condensers 4. Compact Condensers 5. Shell & tube type
  • 3.
  • 4. DESIGN CALCULATIONS FOR CONDENSER • Inlet temperature of the process stream ‘T1’ = 45 o C • Outlet temperature of the process stream ‘T2’ = 45 o C • Inlet temperature of the water ‘t1’ = 25 0 C • Outlet temperature of the water ‘t2’ = 40 o C • Mass flow rate of the process stream ‘m’ = 8060 Kg/hr • Enthalpy of Vapors of Process Stream = 1940 KJ/Kg Removed ‘λ1’ T2 = 45 o C t1= 25 o C t2 = 40o C T1 = 45 o C Condenser
  • 5. Heat Load: Q = m (λ1) Q = 4343 KW Mass flow rate of cooling water Δt C Q m p = = 68.9 Kg/sec Log Mean Temperature Difference LMTD = (∆t2-∆t1)/ log (∆t2/∆t1) LMTD = 14.4o C Cp = 4.2 KJ / Kg.K
  • 6. Assumed Calculations Assumed Value of Overall Coefficient ‘UD’ = 1000 W/m 2 C True Mean Temperature Difference Dimensionless Temperature Ratios R R = (T1-T2) / (t2-t1) = (45-45) / (40-25) = 0 S S = (t2-t1) / (T1-t1) = (40-25)/ (45-25) = 0.75
  • 7. From Literature the value of Ft is 1 ∆tm = Ft x LMTD = 1 x 14.4 = 14.4 o C Heat Transfer Area = 301 m 2 Surface Area of single tube = 3.14 x 19 x 4.88 / 1000 = 0.292 m 2 No. of tubes = 301/.292 = 1030 Pitch ‘Pt’ = 1.25 × 19.05= 23.8 mm Δt U Q A D =
  • 8. Tube Bundle Diameter Db = d0 (Nt/K1)1/n1 = 19 (1030/0.158)1/2.263 = 920 mm No. of tubes in centre row Nr = Db / Pt = 920 / 23.8 = 39 Shell Side Calculations Estimate tube wall temperature Tw Assume condensing coefficient of 4250 W/m2 C (from literature) Mean Temperature Shell side =( 45+45) / 2 = 45 o C Tube side = (25+40) / 2 = 32.5 o C (45-Tw) x 4250 = (45-25) x 1000 Tw = 40.3 o C
  • 9. Physical Properties Viscosity of the liquid ‘µL’ = 0.8 mNs/m2 Density of liquid ‘ρL’ = 993 Kg/m3 Thermal conductivity ‘kL’ = 0.571 W/m C Average M. Wt. of Vapors = 42.8 Density of vapor = 29 x 273 x 1/(22.4 x 1 x (273+42)) = 1.12 Kg / m3 Condensate loading on a horizontal tube ’Ѓh’ = m / L x Nt = 8060 / 3600 x (4.88 x 1030) = 4.45 x 10-3 Kg/m s # of tubes in the vertical row ’Nr’ = 2/3 x 39 = 26 mm Heat transfer coefficient in condensation ‘h0’ = 0.95 x kL ( ρL x (ρL – ρv ) g / (µL x Ѓh)1/3 x Nr-1/6 = 4396.0 W/m2о C • As our assumed value is correct so no need to correct the wall temperature
  • 10. Tube Side Calculations Tube cross sectional area = 3.14 / 4 x (19 x 10-3 )2 x 1030 / 4 = 0.073 m2 Density of water at 30 0 C = 993 kg/m3 Tube velocity = m / (ρH2O x At ) = 68.9 / (993 x 0.073) = 0.95m/s Film heat transfer coefficient inside a tube ‘hi’ = 4200(1.35+0.02 x t) Vt0.8 / di . 0 2 = 4809.67 W/m2 0 C From Literature take fouling factor as 6000 W/m2 0 C Thermal Conductivity of the tube wall material ‘Kw’ = 50 W/m0 C
  • 11. Overall Coefficient 1/U0 = 1/ho + 1/hod + (d0 ln(d0/di))/2kw +d0/di x 1/hid +d0/di x 1/hi = 0.001 U0 = 1100.29 W/m2 0 C So assumed value is correct
  • 12. Shell Side Pressure Drop For pull through floating head with 45% cut baffles From literature clearance = 88 mm Shell internal diameter ‘Ds’ = Db+88 = 1008 mm Cross flow area ‘As’ = m2 A= 0.205 m2 Mass Velocity Gt = m / As = 8060 / (3600 x 0.205) = 10.92 Kg/s m2 Equivalent diameter ‘de’ = 1.27 (Pt2 -0.785d0 2 ) / d0 = 19 mm Viscosity of vapors ‘µ’ = 0.009 mNs/m2 Reynold’s No. Re = de Gt / µ = 19 x 10-3 x 10.92 /0.009 x 10-3 Re = 23053
  • 13. From literature jf = 0.029 By neglecting the viscosity correction factor Where Ds = dia of shell L = Length of tubes lB = baffle spacing So = 765 N/m2 = 0.765 Kpa = 0.109 Psi
  • 14. Tube side pressure drop Viscosity of water ‘µ’ = 0.9 x 10-3 Ns/m2 Re = Vt ρ di /µ = 0.95 x 993 x 16.56 x 10-3 / 0.6 x 10-3 = 26036 From literature jf = 0.0039 Where Np = No. of tube passes So ∆Pt = 4119.8 N/m2 = 4.119Kpa = 0.59 psi Acceptable
  • 15. hio = hi ×I.D/O.D hio = 4165.2 W/m2 0 C Clean Overall Coefficient: = 2138.7 W/m2 0 C Design Overall Coefficient Calculated dirt factor Rd = 0.0005 D D U U U U R C C d − = o io o io C h h h h U + =
  • 16. SPECIFICATION SHEET CONDENSER Identification: Item condenser No. Required = 8 Function: Condense vapors by removing the latent heat of vaporization Operation: Continuous Type: 1-4 Horizontal Condenser Shell side condensation Heat Duty = 4343 KW Tube Side: Fluid handled: Cold Water Flow rate = 68.9 Kg/sec Pressure = 14.7 psia Temperature = 25 o C to 40 o C Tubes: 0.75 in. Dia. 1030 tubes each 16 ft long 4 passes 23.8 mm triangular pitch Pressure Drop = 0.59 psi Shell Side: Fluid handled = Steam Flow rate = 8060 Kg/hr Pressure = 10 KPa Temperature = 45 o C to 45 o C Shell: 39 in. dia. 1 passes Baffles spacing = 3.5 in. Pressure drop =0.109 psi Utilities: Cold water Ud assumed = 1000 W/m 2 C Ud calculated =1100.97 W/m 2 C Rd = 0.0005
  • 17. References • Chemical Engineering Design Volume 6 by Coulson &v Richardson’s • Process Heat Transfer by D.Q. Kern • Plant Design & Economics for Chemical Engineers 5th Edition by Max S. Peters, Klaus D. Timmerhaus, Ronald E. West • Perry’s Chemical Engineers’ Handbook by Robert H. Perry, Don. W. Green