SlideShare une entreprise Scribd logo
1  sur  15
Chapter 4 – Periodic Task Scheduling
In many real-time systems periodic tasks dominate the demand.
Three classic periodic task scheduling algorithms:
– Time Line (Cyclic)
– Rate Monotonic
– Earliest Deadline First
What is the landscape here?
What causes the challenges?
Periodic Task Scheduling Notation
Ti denotes the period of task i
Ci denotes the Computation time for one instance of task i
Periodic Task Scheduling Assumptions
Additional Periodic Task Parameters
Processor Utilization Factor - U
< 1 if set is scheduable
Let be the upper bound of the processor utilization factor for a set under a
given algorithm A. When the set is said to fully utilize the processor.
1
Time Line Scheduling (Cyclic Scheduling)
Time Line Scheduling (Off-line scheduling strategy)– Divide the time line into time
slices for scheduling tasks, e.g. use the Greatest Common Divisor of the Task Periods
as the time slice:
40 Hz
20 Hz
10 Hz
Schedulability is guaranteed if:
Time line scheduling is sensitive to changes in the task parameters.
Can time line scheduling also accommodate aperiodic tasks ?
Rate Monotonic Scheduling
RM is optimal among all fixed Priority assignment schedules.
Why?
How can you how show that it must be optimal?

Which is clearly non-optimal
Rate Monotonic – Calc of ULUB for Two Tasks
Let , the number of
Then the schedule produced by RM satisfies one of two conditions:
for Uub
Since this is the critical time zone
for Uub
0Rate Monotonic – Calc of ULUB for Two Tasks
Rate Monotonic – Calc of ULUB for n Tasks
Sufficient conditions for schedulability of n tasks under Rate monotonic:
Earliest Deadline First
Proof: Assume U > 1 and the task set is schedulable. This leads to a contradiction:
Example: Comparing RM to EDF
Since U > ln 2 = 0.69, Schedulability can’t be guaranteed using Rate Monotonic
Deadline Monotonic
The Deadline Monotonic priority assignment weakens the “period equals
deadline” constraint within a static scheduling scheme. Each periodic task
is characterized by four parameters:
which have the following relationships:
Comparison of Fixed Priority & Dynamic Priority Scheduling
Categories:
Fixed Priority: Time-Line (Cyclic)
Rate Monotonic (RM)
Dynamic: Earliest Deadline First (EDF)
Comparison:
Fixed Priority: Can be done off-line,
Easier to implement.
Dynamic: Can exploit 100% of processor bandwidth
(RM can uses < 69% in the worst case),
Typically uses less context switches (?),
Handles overloads more gracefully
(Fixed Priority breaks down on overload).
Why does Earliest Deadline First work so well? How does it handle
aperiodic tasks? What is its Achilles heel?

Contenu connexe

Similaire à Chap 4.ppt

multiprocessor real_ time scheduling.ppt
multiprocessor real_ time scheduling.pptmultiprocessor real_ time scheduling.ppt
multiprocessor real_ time scheduling.pptnaghamallella
 
Scheduling algorithm in real time system
Scheduling algorithm in real time systemScheduling algorithm in real time system
Scheduling algorithm in real time systemVishalPandat2
 
Clock driven scheduling
Clock driven schedulingClock driven scheduling
Clock driven schedulingKamal Acharya
 
Scheduling Task-parallel Applications in Dynamically Asymmetric Environments
Scheduling Task-parallel Applications in Dynamically Asymmetric EnvironmentsScheduling Task-parallel Applications in Dynamically Asymmetric Environments
Scheduling Task-parallel Applications in Dynamically Asymmetric EnvironmentsLEGATO project
 
A Review of Different Types of Schedulers Used In Energy Management
A Review of Different Types of Schedulers Used In Energy ManagementA Review of Different Types of Schedulers Used In Energy Management
A Review of Different Types of Schedulers Used In Energy ManagementIRJET Journal
 
Real time-system
Real time-systemReal time-system
Real time-systemysush
 
Real time-system
Real time-systemReal time-system
Real time-systemysush
 
Comparision of different Round Robin Scheduling Algorithm using Dynamic Time ...
Comparision of different Round Robin Scheduling Algorithm using Dynamic Time ...Comparision of different Round Robin Scheduling Algorithm using Dynamic Time ...
Comparision of different Round Robin Scheduling Algorithm using Dynamic Time ...Editor IJMTER
 
Scheduling and Scheduler's Process and Premptive
Scheduling and Scheduler's Process and PremptiveScheduling and Scheduler's Process and Premptive
Scheduling and Scheduler's Process and Premptivechoudharyxdevansh
 
Commonly used Approaches to Real Time Scheduling
Commonly used Approaches to Real Time SchedulingCommonly used Approaches to Real Time Scheduling
Commonly used Approaches to Real Time SchedulingRaaz Karkee
 
Temporal workload analysis and its application to power aware scheduling
Temporal workload analysis and its application to power aware schedulingTemporal workload analysis and its application to power aware scheduling
Temporal workload analysis and its application to power aware schedulingijesajournal
 
Temporal workload analysis and its application to power aware scheduling
Temporal workload analysis and its application to power aware schedulingTemporal workload analysis and its application to power aware scheduling
Temporal workload analysis and its application to power aware schedulingijesajournal
 
Scheduling algorithms
Scheduling algorithmsScheduling algorithms
Scheduling algorithmsPaurav Shah
 

Similaire à Chap 4.ppt (20)

Real time-embedded-system-lec-02
Real time-embedded-system-lec-02Real time-embedded-system-lec-02
Real time-embedded-system-lec-02
 
multiprocessor real_ time scheduling.ppt
multiprocessor real_ time scheduling.pptmultiprocessor real_ time scheduling.ppt
multiprocessor real_ time scheduling.ppt
 
Scheduling algorithm in real time system
Scheduling algorithm in real time systemScheduling algorithm in real time system
Scheduling algorithm in real time system
 
Clock driven scheduling
Clock driven schedulingClock driven scheduling
Clock driven scheduling
 
Scheduling Task-parallel Applications in Dynamically Asymmetric Environments
Scheduling Task-parallel Applications in Dynamically Asymmetric EnvironmentsScheduling Task-parallel Applications in Dynamically Asymmetric Environments
Scheduling Task-parallel Applications in Dynamically Asymmetric Environments
 
slot_shifting
slot_shiftingslot_shifting
slot_shifting
 
A Review of Different Types of Schedulers Used In Energy Management
A Review of Different Types of Schedulers Used In Energy ManagementA Review of Different Types of Schedulers Used In Energy Management
A Review of Different Types of Schedulers Used In Energy Management
 
RTOS
RTOSRTOS
RTOS
 
Real time-system
Real time-systemReal time-system
Real time-system
 
Real time-system
Real time-systemReal time-system
Real time-system
 
Comparision of different Round Robin Scheduling Algorithm using Dynamic Time ...
Comparision of different Round Robin Scheduling Algorithm using Dynamic Time ...Comparision of different Round Robin Scheduling Algorithm using Dynamic Time ...
Comparision of different Round Robin Scheduling Algorithm using Dynamic Time ...
 
Scheduling and Scheduler's Process and Premptive
Scheduling and Scheduler's Process and PremptiveScheduling and Scheduler's Process and Premptive
Scheduling and Scheduler's Process and Premptive
 
Commonly used Approaches to Real Time Scheduling
Commonly used Approaches to Real Time SchedulingCommonly used Approaches to Real Time Scheduling
Commonly used Approaches to Real Time Scheduling
 
Task assignment and scheduling
Task assignment and schedulingTask assignment and scheduling
Task assignment and scheduling
 
Ijariie1161
Ijariie1161Ijariie1161
Ijariie1161
 
exp 3.docx
exp 3.docxexp 3.docx
exp 3.docx
 
Real time system tsp
Real time system tspReal time system tsp
Real time system tsp
 
Temporal workload analysis and its application to power aware scheduling
Temporal workload analysis and its application to power aware schedulingTemporal workload analysis and its application to power aware scheduling
Temporal workload analysis and its application to power aware scheduling
 
Temporal workload analysis and its application to power aware scheduling
Temporal workload analysis and its application to power aware schedulingTemporal workload analysis and its application to power aware scheduling
Temporal workload analysis and its application to power aware scheduling
 
Scheduling algorithms
Scheduling algorithmsScheduling algorithms
Scheduling algorithms
 

Plus de Tigabu Yaya

ML_basics_lecture1_linear_regression.pdf
ML_basics_lecture1_linear_regression.pdfML_basics_lecture1_linear_regression.pdf
ML_basics_lecture1_linear_regression.pdfTigabu Yaya
 
03. Data Exploration in Data Science.pdf
03. Data Exploration in Data Science.pdf03. Data Exploration in Data Science.pdf
03. Data Exploration in Data Science.pdfTigabu Yaya
 
MOD_Architectural_Design_Chap6_Summary.pdf
MOD_Architectural_Design_Chap6_Summary.pdfMOD_Architectural_Design_Chap6_Summary.pdf
MOD_Architectural_Design_Chap6_Summary.pdfTigabu Yaya
 
MOD_Design_Implementation_Ch7_summary.pdf
MOD_Design_Implementation_Ch7_summary.pdfMOD_Design_Implementation_Ch7_summary.pdf
MOD_Design_Implementation_Ch7_summary.pdfTigabu Yaya
 
GER_Project_Management_Ch22_summary.pdf
GER_Project_Management_Ch22_summary.pdfGER_Project_Management_Ch22_summary.pdf
GER_Project_Management_Ch22_summary.pdfTigabu Yaya
 
lecture_GPUArchCUDA02-CUDAMem.pdf
lecture_GPUArchCUDA02-CUDAMem.pdflecture_GPUArchCUDA02-CUDAMem.pdf
lecture_GPUArchCUDA02-CUDAMem.pdfTigabu Yaya
 
lecture_GPUArchCUDA04-OpenMPHOMP.pdf
lecture_GPUArchCUDA04-OpenMPHOMP.pdflecture_GPUArchCUDA04-OpenMPHOMP.pdf
lecture_GPUArchCUDA04-OpenMPHOMP.pdfTigabu Yaya
 
6_RealTimeScheduling.pdf
6_RealTimeScheduling.pdf6_RealTimeScheduling.pdf
6_RealTimeScheduling.pdfTigabu Yaya
 
200402_RoseRealTime.ppt
200402_RoseRealTime.ppt200402_RoseRealTime.ppt
200402_RoseRealTime.pptTigabu Yaya
 
matrixfactorization.ppt
matrixfactorization.pptmatrixfactorization.ppt
matrixfactorization.pptTigabu Yaya
 
The Jacobi and Gauss-Seidel Iterative Methods.pdf
The Jacobi and Gauss-Seidel Iterative Methods.pdfThe Jacobi and Gauss-Seidel Iterative Methods.pdf
The Jacobi and Gauss-Seidel Iterative Methods.pdfTigabu Yaya
 
C_and_C++_notes.pdf
C_and_C++_notes.pdfC_and_C++_notes.pdf
C_and_C++_notes.pdfTigabu Yaya
 

Plus de Tigabu Yaya (20)

ML_basics_lecture1_linear_regression.pdf
ML_basics_lecture1_linear_regression.pdfML_basics_lecture1_linear_regression.pdf
ML_basics_lecture1_linear_regression.pdf
 
03. Data Exploration in Data Science.pdf
03. Data Exploration in Data Science.pdf03. Data Exploration in Data Science.pdf
03. Data Exploration in Data Science.pdf
 
MOD_Architectural_Design_Chap6_Summary.pdf
MOD_Architectural_Design_Chap6_Summary.pdfMOD_Architectural_Design_Chap6_Summary.pdf
MOD_Architectural_Design_Chap6_Summary.pdf
 
MOD_Design_Implementation_Ch7_summary.pdf
MOD_Design_Implementation_Ch7_summary.pdfMOD_Design_Implementation_Ch7_summary.pdf
MOD_Design_Implementation_Ch7_summary.pdf
 
GER_Project_Management_Ch22_summary.pdf
GER_Project_Management_Ch22_summary.pdfGER_Project_Management_Ch22_summary.pdf
GER_Project_Management_Ch22_summary.pdf
 
lecture_GPUArchCUDA02-CUDAMem.pdf
lecture_GPUArchCUDA02-CUDAMem.pdflecture_GPUArchCUDA02-CUDAMem.pdf
lecture_GPUArchCUDA02-CUDAMem.pdf
 
lecture_GPUArchCUDA04-OpenMPHOMP.pdf
lecture_GPUArchCUDA04-OpenMPHOMP.pdflecture_GPUArchCUDA04-OpenMPHOMP.pdf
lecture_GPUArchCUDA04-OpenMPHOMP.pdf
 
6_RealTimeScheduling.pdf
6_RealTimeScheduling.pdf6_RealTimeScheduling.pdf
6_RealTimeScheduling.pdf
 
Regression.pptx
Regression.pptxRegression.pptx
Regression.pptx
 
lecture6.pdf
lecture6.pdflecture6.pdf
lecture6.pdf
 
lecture5.pdf
lecture5.pdflecture5.pdf
lecture5.pdf
 
lecture4.pdf
lecture4.pdflecture4.pdf
lecture4.pdf
 
lecture3.pdf
lecture3.pdflecture3.pdf
lecture3.pdf
 
lecture2.pdf
lecture2.pdflecture2.pdf
lecture2.pdf
 
200402_RoseRealTime.ppt
200402_RoseRealTime.ppt200402_RoseRealTime.ppt
200402_RoseRealTime.ppt
 
matrixfactorization.ppt
matrixfactorization.pptmatrixfactorization.ppt
matrixfactorization.ppt
 
nnfl.0620.pptx
nnfl.0620.pptxnnfl.0620.pptx
nnfl.0620.pptx
 
L20.ppt
L20.pptL20.ppt
L20.ppt
 
The Jacobi and Gauss-Seidel Iterative Methods.pdf
The Jacobi and Gauss-Seidel Iterative Methods.pdfThe Jacobi and Gauss-Seidel Iterative Methods.pdf
The Jacobi and Gauss-Seidel Iterative Methods.pdf
 
C_and_C++_notes.pdf
C_and_C++_notes.pdfC_and_C++_notes.pdf
C_and_C++_notes.pdf
 

Dernier

Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.Kamal Acharya
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdfKamal Acharya
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsvanyagupta248
 
Engineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesEngineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesRAJNEESHKUMAR341697
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...drmkjayanthikannan
 
Wadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptxWadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptxNadaHaitham1
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network DevicesChandrakantDivate1
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptDineshKumar4165
 
Computer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersComputer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersMairaAshraf6
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueBhangaleSonal
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesMayuraD1
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapRishantSharmaFr
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdfKamal Acharya
 
Verification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxVerification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxchumtiyababu
 
kiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadkiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadhamedmustafa094
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationBhangaleSonal
 
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLEGEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLEselvakumar948
 
Moment Distribution Method For Btech Civil
Moment Distribution Method For Btech CivilMoment Distribution Method For Btech Civil
Moment Distribution Method For Btech CivilVinayVitekari
 

Dernier (20)

Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
 
Engineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesEngineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planes
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
 
Wadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptxWadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptx
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
Computer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersComputer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to Computers
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
 
Verification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxVerification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptx
 
kiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadkiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal load
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLEGEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
 
Moment Distribution Method For Btech Civil
Moment Distribution Method For Btech CivilMoment Distribution Method For Btech Civil
Moment Distribution Method For Btech Civil
 

Chap 4.ppt

  • 1. Chapter 4 – Periodic Task Scheduling In many real-time systems periodic tasks dominate the demand. Three classic periodic task scheduling algorithms: – Time Line (Cyclic) – Rate Monotonic – Earliest Deadline First What is the landscape here? What causes the challenges?
  • 2. Periodic Task Scheduling Notation Ti denotes the period of task i Ci denotes the Computation time for one instance of task i
  • 5. Processor Utilization Factor - U < 1 if set is scheduable Let be the upper bound of the processor utilization factor for a set under a given algorithm A. When the set is said to fully utilize the processor. 1
  • 6. Time Line Scheduling (Cyclic Scheduling) Time Line Scheduling (Off-line scheduling strategy)– Divide the time line into time slices for scheduling tasks, e.g. use the Greatest Common Divisor of the Task Periods as the time slice: 40 Hz 20 Hz 10 Hz Schedulability is guaranteed if: Time line scheduling is sensitive to changes in the task parameters. Can time line scheduling also accommodate aperiodic tasks ?
  • 7. Rate Monotonic Scheduling RM is optimal among all fixed Priority assignment schedules. Why? How can you how show that it must be optimal?  Which is clearly non-optimal
  • 8. Rate Monotonic – Calc of ULUB for Two Tasks Let , the number of Then the schedule produced by RM satisfies one of two conditions: for Uub Since this is the critical time zone for Uub
  • 9. 0Rate Monotonic – Calc of ULUB for Two Tasks
  • 10. Rate Monotonic – Calc of ULUB for n Tasks Sufficient conditions for schedulability of n tasks under Rate monotonic:
  • 11.
  • 12. Earliest Deadline First Proof: Assume U > 1 and the task set is schedulable. This leads to a contradiction:
  • 13. Example: Comparing RM to EDF Since U > ln 2 = 0.69, Schedulability can’t be guaranteed using Rate Monotonic
  • 14. Deadline Monotonic The Deadline Monotonic priority assignment weakens the “period equals deadline” constraint within a static scheduling scheme. Each periodic task is characterized by four parameters: which have the following relationships:
  • 15. Comparison of Fixed Priority & Dynamic Priority Scheduling Categories: Fixed Priority: Time-Line (Cyclic) Rate Monotonic (RM) Dynamic: Earliest Deadline First (EDF) Comparison: Fixed Priority: Can be done off-line, Easier to implement. Dynamic: Can exploit 100% of processor bandwidth (RM can uses < 69% in the worst case), Typically uses less context switches (?), Handles overloads more gracefully (Fixed Priority breaks down on overload). Why does Earliest Deadline First work so well? How does it handle aperiodic tasks? What is its Achilles heel?