Republica Bolivariana de Venezuela
Ministerio del Poder Popular para la Educación Universitaria Ciencias y
Tecnologías Universidad Politécnica Territorial ”Andrés Eloy Blanco”
Barquisimeto Estado Lara
Números Reales
Integrantes:
Javier Torrealba
C.I : 30.657.556
Sección: 0102
Definición de Conjuntos
Un conjunto es una colección de elementos con características similares considerada en sí misma como
un objeto. Los elementos de un conjunto, pueden ser las
siguientes: personas, números, colores, letras, figuras, etc. Se dice que un elemento (o miembro)
pertenece al conjunto si está definido como incluido de algún modo dentro de él.
Ejemplo: El conjunto de los colores del arcoíris es : AI = {rojo, naranja, amarillo, verde, añil, violeta}
Un conjunto suele definirse mediante una propiedad que todos sus elementos poseen. Por ejemplo,
para los números naturales, si se considera la propiedad de ser un número primos, el conjunto de los
números primos es:
P = {2, 3, 5, 7, 11, 13, …}
Un conjunto queda definido únicamente por sus miembros y por nada más. En particular, un conjunto
puede escribirse como una lista de elementos, pero cambiar el orden de dicha lista o añadir elementos
repetidos no define un conjunto nuevo. Por ejemplo:
S = {Lunes, martes, miércoles, jueves, viernes} = {martes, viernes, jueves, lunes, miércoles}
AI = {Rojo, naranja, amarillo, verde, azul, añil, violeta} = {amarillo, naranja, rojo, verde, violeta, añil, azul}
Los conjuntos pueden ser finitos o infinitos. El conjunto de los números naturales es infinito, pero el
conjunto de los planetas del sistema solar es finito (tiene ocho elementos). Además, los conjuntos
pueden combinarse mediante operaciones, de manera similar a las operaciones con números.
Operaciones con conjuntos
Las operaciones con conjuntos también conocidas como álgebra de conjuntos, nos permiten realizar
operaciones sobre los conjuntos para obtener otro conjunto. De las operaciones con conjuntos veremos
las siguientes unión, intersección, diferencia, diferencia simétrica y complemento.
Unión o reunión de conjuntos.
Es la operación que nos permite unir dos o más conjuntos para formar otro conjunto que contendrá a
todos los elementos que queremos unir pero sin que se repitan. Es decir dado un conjunto A y un
conjunto B, la unión de los conjuntos A y B será otro conjunto formado por todos los elementos de A,
con todos los elementos de B sin repetir ningún elemento. El símbolo que se usa para indicar la
operación de unión es el siguiente: ∪. Cuando usamos diagramas de Venn, para representar la unió de
conjuntos, se sombrean los conjuntos que se unen o se forma uno nuevo. Luego se escribe por fuera la
operación de unión.
Ejemplo: Dados dos conjuntos A={1,2,3,4,5,6,7,} y B={8,9,10,11} la unión de estos conjuntos será
A∪B={1,2,3,4,5,6,7,8,9,10,11}. Usando diagramas de Venn se tendría lo siguiente:
También se puede graficar del siguiente modo:
Diferencia de conjuntos
Es la operación que nos permite formar un conjunto, en donde de dos conjuntos el conjunto
resultante es el que tendrá todos los elementos que no sean comunes a ambos conjuntos. Es decir
dados dos conjuntos A y B, la diferencia simétrica estará formado por todos los elementos no
comunes a los conjuntos A y B. El símbolo que se usa para indicar la operación de diferencia
simétrica es el siguiente: △.
Ejemplo: Dados dos conjuntos A={1,2,3,4,5} y B={4,5,6,7,8,9} la diferencia simétrica de estos
conjuntos será A △ B={1,2,3,6,7,8,9}. Usando diagramas de Venn se tendría lo siguiente:
Es la operación que nos permite formar un conjunto con todos los elementos del conjunto de
referencia o universal, que no están en el conjunto. Es decir dado un conjunto A que esta incluido en
el conjunto universal U, entonces el conjunto complemento de A es el conjunto formado por todos
los elementos del conjunto universal pero sin considerar a los elementos que pertenezcan al conjunto
A. En esta operación el complemento de un conjunto se denota con un apostrofe sobre el conjunto
que se opera, algo como esto A' en donde el conjunto A es el conjunto del cual se hace la operación
de complemento.
Ejemplo: Dado el conjunto Universal U={1,2,3,4,5,6,7,8,9} y el conjunto A={1,2,9}, el conjunto A'
estará formado por los siguientes elementos A'={3,4,5,6,7,8}. Usando diagramas de Venn se tendría
lo siguiente:
Números reales
Los números reales son el conjunto que incluye los números naturales, enteros, racionales e
irracionales. Se representa con la letra ℜ.
La palabra real se usa para distinguir estos números del número imaginario i, que es igual a la raíz
cuadrada de -1, o √-1. Esta expresión se usa para simplificar la interpretación matemática de
efectos como los fenómenos eléctricos.
Además de las características particulares de cada conjunto que compone el supe conjunto de los
números reales, mencionamos las siguientes características.
Orden
Todos los números reales tienen un orden: 1>2>3>4>5…
… - 5<-4<-3<-2<-1 <0 ….
En el caso de las fracciones y decimales:
0,550 < 0,560 < 0,565…
Integral
La característica de integridad de los números reales es que no hay espacios vacíos en este conjunto
de números.
Infinitud
Los números irracionales y racionales son infinitamente numerosos, es decir, no tienen final, ya sea
del lado positivo como del negativo.
Expansión decimal
Un número real es una cantidad que puede ser expresada como una expansión decimal infinita. Se
usan en mediciones de cantidades continuas, como la longitud y el tiempo.
Clasificación de los números reales
Desigualdades
es aquella proposición que relaciona dos expresiones algebraicas cuyos valores son distintos. Se
trata de una proposición de relación entre dos elementos diferentes, ya sea por desigualdad mayor,
menor, mayor o igual, o bien menor o igual. Cada una de las distintas tipologías de desigualdad
debe ser expresada con diferente signo (> o <, etcétera) y tendrá una reacción a operaciones
matemáticas diferente según su naturaleza.
Por lo tanto, si queremos explicar cuál es la finalidad de este concepto con el menor número de
palabras posibles diremos que; el objetivo de la desigualdad matemática es mostrar que dos
sujetos matemáticos expresan valores diferentes.
Ejemplos : Las desigualdades matemáticas están formadas, en la mayoría de ocasiones, por dos
miembros o componentes. Un miembro se encontrará a la izquierda del símbolo y el otro a la
derecha.
Un ejemplo sería expresar: 4x – 2 > 9. Lo leeríamos diciendo que “cuatro veces nuestra incógnita
menos dos es superior a nueve”. Siendo el elemento 4x-2 el elemento A y 9 el elemento B. La
resolución nos mostraría que (en números naturales) la desigualdad se cumple si x es igual o
superior a 3 (x≥3).
VALOR ABSOLUTO
se utiliza para nombrar al valor que tiene un número más allá de su signo. Esto quiere decir que el
valor absoluto, que también se conoce como módulo, es la magnitud numérica de la cifra sin
importar si su signo es positivo o negativo.
Cuando tomamos el valor absoluto de un número, éste es siempre positivo o cero. Si el valor
original ya es positivo o cero, el valor absoluto es el mismo. Si el valor original es negativo,
simplemente nos deshacemos del signo. Por ejemplo, el valor absoluto de 5 es 5. El valor absoluto
de -5 es también 5.
Ejemplo:
Por ejemplo, -1(-3) = 3. Los signos negativos dentro y fuera de los paréntesis se cancelan cuando
son multiplicados.
Valor Valor
Absoluto
5 5
-5 5
Problema -1(-3) =
-1 • -3 = 3
Pero -1|-3| = -3. No puedes multiplicar a través de las barras de valor absoluto, por lo que primero
tienes que encontrar el valor absoluto del número contenido entre ellas. Como el valor absoluto de -3
es 3, la operación se convierte en -1(+3).
Desigualdades de valor absoluto (<):
La desigualdad | x | < 4 significa que la distancia entre x y 0 es menor que 4.
Problema -1|-3| =
-1 • 3 = -3
Así, x > -4 Y x < 4. El conjunto solución es
Cuando se resuelven desigualdades de valor absoluto, hay dos casos a considerar.
Caso 1: La expresión dentro de los símbolos de valor absoluto es positiva.
Caso 2: La expresión dentro de los símbolos de valor absoluto es negativa.
La solución es la intersección de las soluciones de estos dos casos.
En otras palabras, para cualesquiera números reales a y b , si | a | < b , entonces a < b Y a > - b .
Ejemplo:
Resuelva y grafique.
| x – 7| < 3
• Para resolver este tipo de desigualdad, necesitamos descomponerla en una desigualdad
compuesta.
x – 7 < 3 Y x – 7 > –3
–3 < x – 7 < 3
Sume 7 en cada expresión. La gráfica se vería así:
-3 + 7 < x - 7 + 7 < 3 + 7
4 < x <10
Desigualdades de valor absoluto (>):
La desigualdad | x | > 4 significa que la distancia entre x y 0 es mayor que 4.
Así, x < -4 O x > 4. El conjunto solución es
Cuando se resuelven desigualdades de valor absoluto, hay dos casos a considerar.
Caso 1: La expresión dentro de los símbolos de valor absoluto es positiva.
Caso 2: La expresión dentro de los símbolos de valor absoluto es negativa.
En otras palabras, para cualesquiera números reales a y b , si | a | > b , entonces a > b O a < - b .
Ejemplo :
Resuelva y grafique.
Separe en dos desigualdades.
Reste 2 de cada lado en cada desigualdad.
La gráfica se vería así: