SlideShare une entreprise Scribd logo
1  sur  5
Calculus Cheat Sheet

                                                                    Integrals
                                             Definitions
Definite Integral: Suppose f ( x ) is continuous     Anti-Derivative : An anti-derivative of f ( x )
on [ a, b] . Divide [ a, b ] into n subintervals of                            is a function, F ( x ) , such that F ¢ ( x ) = f ( x ) .
width D x and choose x from each interval.                                     Indefinite Integral : ò f ( x ) dx = F ( x ) + c
                                        *
                                        i
                                        ¥
                                                                               where F ( x ) is an anti-derivative of f ( x ) .
              ò a f ( x ) dx = n å f ( x ) D x .
                  b                          *
Then                           lim           i
                                   ®¥
                                   i    =1


                                        Fundamental Theorem of Calculus
Part I : If f ( x ) is continuous on [ a, b ] then           Variants of Part I :
                                                              d u( x)
                                                                          f ( t ) dt = u ¢ ( x ) f éu ( x ) ù
                                                             dx ò a
            x
g ( x ) = ò f ( t ) dt is also continuous on [ a, b ]                                              ë           û
           a
                d x                                           d b
                                                                         f ( t ) dt = -v¢ ( x ) f év ( x ) ù
                                                             dx ò v( x )
and g ¢ ( x ) =     òa f ( t ) dt = f ( x ) .                                                        ë          û
                dx
Part II : f ( x ) is continuous on [ a, b ] , F ( x ) is      d u( x)
                                                                          f ( t ) dt = u ¢ ( x ) f [ u ( x ) ] - v¢ ( x ) f [ v ( x ) ]
                                                             dx ò v( x )
an anti-derivative of f ( x ) (i.e. F ( x ) = ò f ( x ) dx )
              b
then ò f ( x ) dx = F ( b ) - F ( a ) .
              a


                                                                    Properties
ò f ( x ) ± g ( x ) dx = ò f ( x ) dx ± ò g ( x ) dx                             ò cf ( x ) dx = c ò f ( x ) dx , c is a constant
  b                         b                b                                     b                  b
òa  f ( x ) ± g ( x ) dx = ò f ( x ) dx ± ò g ( x ) dx                           òa  cf ( x ) dx = c ò f ( x ) dx , c is a constant
                            a                a                                                        a
  a                                                                                b                  b
òa     f ( x ) dx = 0                                                            òa     f ( x ) dx = ò f ( t ) dt
                                                                                                      a
  b                            a
ò a f ( x ) dx = -òb f ( x ) dx
                                                                                    b                     b
                                                                                  ò f ( x ) dx £ ò
                                                                                   a                   a
                                                                                                              f ( x ) dx
                                                      b                 a
If f ( x ) ³ g ( x ) on a £ x £ b then               ò f ( x ) dx ³ ò g ( x ) dx
                                                      a                b
                                                 b
If f ( x ) ³ 0 on a £ x £ b then             ò f ( x ) dx ³ 0
                                                 a
                                                                           b
If m £ f ( x ) £ M on a £ x £ b then m ( b - a ) £ ò f ( x ) dx £ M ( b - a )
                                                                        a



                                                             Common Integrals
ò k dx = k x + c                                          ò cos u du = sin u + c                       ò tan u du = ln sec u + c
ò x dx = n+1 x + c, n ¹ -1                                ò sin u du = - cos u + c                     ò sec u du = ln sec u + tan u + c
    n        1    n           +1



ò x dx = ò x dx = ln x + c                                ò sec u du = tan u + c                       ò a + u du = a tan ( a ) + c
      -1                  1                                     2                                                 1           u
                                                                                                                              1       -1
                                                                                                              2       2


ò a x + b dx = a ln ax + b + c
          1               1
                                                          ò sec u tan u du = sec u + c                 ò a - u du = sin ( a ) + c
                                                                                                            1
                                                                                                                  2       2
                                                                                                                             u       -1



ò ln u du = u ln ( u ) - u + c                            ò csc u cot udu = - csc u + c
ò e du = e + c                                            ò csc u du = - cot u + c
      u               u                                         2




Visit http://tutorial.math.lamar.edu for a complete set of Calculus notes.                                                        © 2005 Paul Dawkins
Calculus Cheat Sheet

                                Standard Integration Techniques
Note that at many schools all but the Substitution Rule tend to be taught in a Calculus II class.

                                                                                                                             ( )
                                                                                       ò a f ( g ( x ) ) g ¢ ( x ) dx = ò g (a ) f ( u ) du
                                                                                           b                                            g b
u Substitution : The substitution u = g ( x ) will convert                                                                                                using

du = g ¢ ( x ) dx . For indefinite integrals drop the limits of integration.

                     cos ( x3 ) dx                                                         cos ( x3 ) dx = ò
            2                                                                 2                                          8
Ex.    ò 1 5x
                 2
                                                                          ò 1 5x
                                                                                       2                               5
                                                                                                                     1 3
                                                                                                                         cos          ( u ) du
u = x 3 Þ du = 3x 2 dx Þ x 2 dx = 1 du                                                                                               ( sin (8) - sin (1) )
                                                                                                                     8
                                  3                                                                = 5 sin ( u ) 1 =
                                                                                                     3
                                                                                                                                 5
                                                                                                                                 3
x = 1 Þ u = 1 = 1 :: x = 2 Þ u = 2 = 8
                          3                             3



                                                                      b                        b        b
Integration by Parts : ò u dv = uv - ò v du and                     ò a u dv = uv              a
                                                                                                   - ò v du . Choose u and dv from
                                                                                                        a

integral and compute du by differentiating u and compute v using v = ò dv .

       ò xe
                -x                                                                             5
Ex.                  dx                                                       Ex.          ò3 ln x dx
  u=x            dv = e- x Þ              du = dx v = -e - x                  u = ln x                  dv = dx Þ du = 1 dx v = x
                                                                                                                       x
ò xe        dx = - xe + ò e dx = - xe - e
       -x                 -x         -x           -x     -x
                                                              +c
                                                                                       ln x dx = x ln x 3 - ò dx = ( x ln ( x ) - x )
                                                                                   5                             5               5                           5
                                                                                  ò3                                             3                           3

                                                                                                       = 5ln ( 5) - 3ln ( 3) - 2

Products and (some) Quotients of Trig Functions
For ò sin n x cos m x dx we have the following : For ò tan n x sec m x dx we have the following :
1. n odd. Strip 1 sine out and convert rest to                  1.                  n odd. Strip 1 tangent and 1 secant out and
    cosines using sin x = 1 - cos x , then use
                       2            2                                               convert the rest to secants using
    the substitution u = cos x .                                                     tan 2 x = sec 2 x - 1 , then use the substitution
2. m odd. Strip 1 cosine out and convert rest                                        u = sec x .
    to sines using cos 2 x = 1 - sin 2 x , then use             2.                  m even. Strip 2 secants out and convert rest
    the substitution u = sin x .                                                    to tangents using sec2 x = 1 + tan 2 x , then
3. n and m both odd. Use either 1. or 2.                                            use the substitution u = tan x .
4. n and m both even. Use double angle                          3.                  n odd and m even. Use either 1. or 2.
    and/or half angle formulas to reduce the                    4.                  n even and m odd. Each integral will be
    integral into a form that can be integrated.                                    dealt with differently.
Trig Formulas : sin ( 2 x ) = 2sin ( x ) cos ( x ) , cos 2 ( x ) =                 2 (1 + cos ( 2 x ) ) , sin ( x ) = 2 (1 - cos ( 2 x ) )
                                                                                   1                         2        1




Ex. ò tan 3 x sec5 x dx                                                       Ex.              sin5 x
                                                                                       ò cos x dx  3


ò tan       x sec5 xdx = ò tan 2 x sec 4 x tan x sec xdx
        3                                                                                  5                 4                                2   2
                                                                                                                      (sin x ) sin x
                                                                                  ò cos x dx = ò cos x dx = ò cos x dx
                                                                                    sin x        sin x sin x
                                                                                           3                     3                                3

                     = ò ( sec2 x - 1) sec 4 x tan x sec xdx                                      (1- cos x ) sin x  2       2
                                                                                             =ò
                                                                                                        cos x
                                                                                                                    dx   3 ( u = cos x )
                     = ò ( u 2 - 1) u 4 du         ( u = sec x )                                                     2 2
                                                                                             = - ò (1-u ) du = - ò 1-2u +u du
                                                                                                                                                  2   4
                                                                                                       u         3         u                      3
                     = 1 sec7 x - 1 sec5 x + c
                       7          5
                                                                                                       = 1 sec2 x + 2 ln cos x - 1 cos 2 x + c
                                                                                                         2                       2




Visit http://tutorial.math.lamar.edu for a complete set of Calculus notes.                                                                 © 2005 Paul Dawkins
Calculus Cheat Sheet

Trig Substitutions : If the integral contains the following root use the given substitution and
formula to convert into an integral involving trig functions.
       a 2 - b 2 x 2 Þ x = a sin q
                           b
                                                                                              a
                                                                          b 2 x 2 - a 2 Þ x = b sec q                                      a 2 + b 2 x 2 Þ x = a tan q
                                                                                                                                                               b
               cos 2 q = 1 - sin 2 q                                           tan 2 q = sec 2 q - 1                                          sec2 q = 1 + tan 2 q

         òx                                                                                    ó                          ( 2 cos q ) dq = ò sin2 q dq
                  16
Ex.                             dx                                                                             16                              12
              2
                  4 -9 x 2                                                                     õ    4 sin 2 q ( 2cosq )
                                                                                                    9
                                                                                                                            3

x = 2 sin q Þ dx = 2 cos q dq
    3              3                                                                                                             = ò 12 csc 2 dq = -12 cot q + c
    4 - 9x 2 = 4 - 4sin q = 4 cos q = 2 cos q
                       2         2
                                                                                               Use Right Triangle Trig to go back to x’s. From
Recall x 2 = x . Because we have an indefinite                                                 substitution we have sin q = 32x so,
integral we’ll assume positive and drop absolute
value bars. If we had a definite integral we’d
need to compute q ’s and remove absolute value
bars based on that and,
                    ì x if x ³ 0                                                                                                                          4 -9 x 2
                 x =í                                                                          From this we see that cot q =                                3x
                                                                                                                                                                      . So,
                    î- x if x < 0
                                                                                                                                                        4 -9 x 2
                                                                                                                      òx                   dx = - 4                 +c
                                                                                                                                16
In this case we have                            4 - 9x = 2 cos q .
                                                             2                                                             2
                                                                                                                                4 -9 x 2                  x


                                                                      P( x )
Partial Fractions : If integrating                                ò Q( x) dx where the degree of P ( x ) is smaller than the degree of
Q ( x ) . Factor denominator as completely as possible and find the partial fraction decomposition of
the rational expression. Integrate the partial fraction decomposition (P.F.D.). For each factor in the
denominator we get term(s) in the decomposition according to the following table.

              Factor in Q ( x )                     Term in P.F.D Factor in Q ( x )                                                  Term in P.F.D
                                                               A                                                      A1       A2                Ak
                          ax + b                                                  ( ax + b )
                                                                                                k
                                                                                                                          +             +L +
                                                             ax + b                                                 ax + b ( ax + b ) 2
                                                                                                                                             ( ax + b )
                                                                                                                                                        k



                                                        Ax + B                                                        A1 x + B1          Ak x + Bk
                                                                                                                                +L +
                                                                               ( ax       + bx + c )
                                                                                      2                k
                  ax 2 + bx + c                                                                                     ax + bx + c      ( ax 2 + bx + c )
                                                                                                                      2                                k
                                                      ax + bx + c
                                                        2




              7 x2 +13 x
                                                                                                                                + Bx +C =     A( x2 + 4) + ( Bx + C ) ( x -1)
Ex.      ò   ( x -1)( x   2
                              +4)
                                  dx                                                            7 x2 +13 x
                                                                                                           2
                                                                                               ( x -1)( x + 4 )
                                                                                                                     =    A
                                                                                                                         x -1     x2 + 4             ( x -1)( x 2 + 4 )

     7 x2 +13 x                                                                                Set numerators equal and collect like terms.
ò   ( x -1)( x2 + 4 )
                        dx = ò x4 1 + 3xx2+16 dx
                                -         +4
                                                                                                   7 x 2 + 13x = ( A + B ) x 2 + ( C - B ) x + 4 A - C
                   = ò x41 +
                        -
                                        3x
                                       x2 + 4
                                                +    16
                                                    x2 + 4
                                                             dx                                Set coefficients equal to get a system and solve
                   = 4 ln x - 1 + 2 ln ( x 2 + 4 ) + 8 tan -1 ( x )
                                  3                                                            to get constants.
                                                                2
                                                                                                    A+ B = 7          C - B = 13         4A - C = 0
Here is partial fraction form and recombined.
                                                                                                        A=4             B=3                 C = 16

An alternate method that sometimes works to find constants. Start with setting numerators equal in
previous example : 7 x 2 + 13x = A ( x 2 + 4 ) + ( Bx + C ) ( x - 1) . Chose nice values of x and plug in.
For example if x = 1 we get 20 = 5A which gives A = 4 . This won’t always work easily.

Visit http://tutorial.math.lamar.edu for a complete set of Calculus notes.                                                                                  © 2005 Paul Dawkins
Calculus Cheat Sheet

                                                          Applications of Integrals
                   b
Net Area :       ò a f ( x ) dx represents the net area between f ( x ) and the
x-axis with area above x-axis positive and area below x-axis negative.



Area Between Curves : The general formulas for the two main cases for each are,
                            b                                                                               d
y = f ( x) Þ A = ò              éupper function ù
                                ë               û   - élower
                                                      ë        function ù dx
                                                                        û      & x = f ( y) Þ A = ò             é right function ù
                                                                                                                ë                û   - éleft
                                                                                                                                       ë       function ù dy
                                                                                                                                                        û
                            a                                                                               c
If the curves intersect then the area of each portion must be found individually. Here are some
sketches of a couple possible situations and formulas for a couple of possible cases.




                                                      d
                                           A = ò f ( y ) - g ( y ) dy
         b                                                                                    c                                b
 A = ò f ( x ) - g ( x ) dx                          c                                 A = ò f ( x ) - g ( x ) dx + ò g ( x ) - f ( x ) dx
        a                                                                                     a                               c



Volumes of Revolution : The two main formulas are V = ò A ( x ) dx and V = ò A ( y ) dy . Here is
some general information about each method of computing and some examples.
                       Rings                                      Cylinders
                       (
         A = p ( outer radius ) - ( inner radius)
                               2                  2
                                                           ) A = 2p ( radius ) ( width / height )
Limits: x/y of right/bot ring to x/y of left/top ring   Limits : x/y of inner cyl. to x/y of outer cyl.
Horz. Axis use f ( x ) ,   Vert. Axis use f ( y ) ,   Horz. Axis use f ( y ) ,  Vert. Axis use f ( x ) ,
g ( x ) , A ( x ) and dx.              g ( y ) , A ( y ) and dy.                g ( y ) , A ( y ) and dy.            g ( x ) , A ( x ) and dx.

Ex. Axis : y = a > 0                  Ex. Axis : y = a £ 0                      Ex. Axis : y = a > 0                Ex. Axis : y = a £ 0




outer radius : a - f ( x )            outer radius: a + g ( x )                 radius : a - y                      radius : a + y
inner radius : a - g ( x )            inner radius: a + f ( x )                 width : f ( y ) - g ( y )           width : f ( y ) - g ( y )

These are only a few cases for horizontal axis of rotation. If axis of rotation is the x-axis use the
 y = a £ 0 case with a = 0 . For vertical axis of rotation ( x = a > 0 and x = a £ 0 ) interchange x and
y to get appropriate formulas.

Visit http://tutorial.math.lamar.edu for a complete set of Calculus notes.                                                    © 2005 Paul Dawkins
Calculus Cheat Sheet

Work : If a force of F ( x ) moves an object                                                       Average Function Value : The average value
                                                                                                                                                                     b
                                                                          b                        of f ( x ) on a £ x £ b is f avg =                             1
                                                                                                                                                                        ò f ( x ) dx
in a £ x £ b , the work done is W = ò F ( x ) dx                                                                                                                 b-a a
                                                                      a


Arc Length Surface Area : Note that this is often a Calc II topic. The three basic formulas are,
         b                                      b                                                                                   b
L = ò ds                      SA = ò 2p y ds (rotate about x-axis)                                                 SA = ò 2p x ds (rotate about y-axis)
         a                                  a                                                                                       a
where ds is dependent upon the form of the function being worked with as follows.

                ( )                                                                               ( dx )               ( )
                         2                                                                                                      2
                             dx if y = f ( x ) , a £ x £ b                                                                          dt if x = f ( t ) , y = g ( t ) , a £ t £ b
                    dy                                                                                     2               dy
ds = 1 +            dx
                                                                                      ds =          dt
                                                                                                               +           dt

             1+ ( )                                                                   ds = r 2 + ( dq ) dq if r = f (q ) , a £ q £ b
                         2                                                                         dr                      2
ds =                dx
                    dy
                             dy if x = f ( y ) , a £ y £ b
With surface area you may have to substitute in for the x or y depending on your choice of ds to
match the differential in the ds. With parametric and polar you will always need to substitute.

                                           Improper Integral
An improper integral is an integral with one or more infinite limits and/or discontinuous integrands.
Integral is called convergent if the limit exists and has a finite value and divergent if the limit
doesn’t exist or has infinite value. This is typically a Calc II topic.

Infinite Limit
         ¥                                  t                                                                      b                                     b
1.   ò           f ( x ) dx = lim ò f ( x ) dx                                                     2.      ò¥              f ( x ) dx = lim         ò f ( x ) dx
         a                     t ®¥         a                                                                  -                            t ®-¥        t
         ¥                          c                             ¥
3.   ò ¥ f ( x ) dx = ò ¥ f ( x ) dx + ò
         -                       -                                c
                                                                      f ( x ) dx provided BOTH integrals are convergent.
Discontinuous Integrand
                                b                                     b                                                                       b                           t
1. Discont. at a: ò f ( x ) dx = lim ò f ( x ) dx
                                    +
                                                                                                   2. Discont. at b : ò f ( x ) dx = lim ò f ( x ) dx
                                                                                                                                        -
                                a                            t ®a     t                                                                      a                   t ®b    a
                                                                  b                   c                        b
3. Discontinuity at a < c < b :                                  ò f ( x ) dx = ò f ( x ) dx + ò f ( x ) dx provided both are convergent.
                                                                  a                   a                        c



Comparison Test for Improper Integrals : If f ( x ) ³ g ( x ) ³ 0 on [ a, ¥ ) then,
             ¥                                           ¥                                                             ¥                                     ¥
1. If ò f ( x ) dx conv. then ò g ( x ) dx conv.                                                   2. If ò g ( x ) dx divg. then ò f ( x ) dx divg.
             a                                           a                                                             a                                     a
                                                     ¥
Useful fact : If a > 0 then                         òa            dx converges if p > 1 and diverges for p £ 1 .
                                                             1
                                                         xp

                                                                 Approximating Definite Integrals
                                        b
For given integral              ò a f ( x ) dx and a n (must be even for Simpson’s Rule) define Dx = b-a
                                                                                                      n                                                                   and

divide [ a, b] into n subintervals [ x0 , x1 ] , [ x1 , x2 ] , … , [ xn -1 , xn ] with x0 = a and xn = b then,

                               ò f ( x ) dx » Dx é f ( x ) + f ( x ) + L + f ( x )ù , xi                                                is midpoint [ xi -1 , xi ]
                                    b
                                                                              *           *                            *            *
Midpoint Rule :                                  ë                            1   û       2                            n
                                a

                                        b      Dx
Trapezoid Rule :                ò f ( x ) dx » 2 é f ( x ) + 2 f ( x ) + +2 f ( x ) + L + 2 f ( x ) + f ( x )ù
                                     a            ë                               0           1              û         2                          n -1           n

                                        b      Dx
Simpson’s Rule :                ò f ( x ) dx » 3 é f ( x ) + 4 f ( x ) + 2 f ( x ) + L + 2 f ( x ) + 4 f ( x ) + f ( x )ù
                                     a            ë                               0           1                    2    û                     n-2                n -1           n


Visit http://tutorial.math.lamar.edu for a complete set of Calculus notes.                                                                                   © 2005 Paul Dawkins

Contenu connexe

Tendances

6.4 inverse matrices t
6.4 inverse matrices t6.4 inverse matrices t
6.4 inverse matrices tmath260
 
Funktion suurin ja pienin arvo laskemalla
Funktion suurin ja pienin arvo laskemallaFunktion suurin ja pienin arvo laskemalla
Funktion suurin ja pienin arvo laskemallateemunmatikka
 
29 conservative fields potential functions
29 conservative fields potential functions29 conservative fields potential functions
29 conservative fields potential functionsmath267
 
Ch6 series solutions algebra
Ch6 series solutions algebraCh6 series solutions algebra
Ch6 series solutions algebraAsyraf Ghani
 
Crib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC examsCrib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC examsA Jorge Garcia
 
2.6 Graphs of Basic Functions
2.6 Graphs of Basic Functions2.6 Graphs of Basic Functions
2.6 Graphs of Basic Functionssmiller5
 
נוסחאון 3 יחידות לימוד מתמטיקה
נוסחאון 3 יחידות לימוד מתמטיקהנוסחאון 3 יחידות לימוד מתמטיקה
נוסחאון 3 יחידות לימוד מתמטיקהbagrutonline
 
6161103 10.5 moments of inertia for composite areas
6161103 10.5 moments of inertia for composite areas6161103 10.5 moments of inertia for composite areas
6161103 10.5 moments of inertia for composite areasetcenterrbru
 
Gamma beta functions-1
Gamma   beta functions-1Gamma   beta functions-1
Gamma beta functions-1Selvaraj John
 
RationalExpressionsReview.pdf
RationalExpressionsReview.pdfRationalExpressionsReview.pdf
RationalExpressionsReview.pdfbwlomas
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Matthew Leingang
 
Calculus Early Transcendentals 10th Edition Anton Solutions Manual
Calculus Early Transcendentals 10th Edition Anton Solutions ManualCalculus Early Transcendentals 10th Edition Anton Solutions Manual
Calculus Early Transcendentals 10th Edition Anton Solutions Manualnodyligomi
 
12.5. vector valued functions
12.5. vector valued functions12.5. vector valued functions
12.5. vector valued functionsmath267
 
Kĩ thuật giải các loại hệ phương trình
Kĩ thuật giải các loại hệ phương trìnhKĩ thuật giải các loại hệ phương trình
Kĩ thuật giải các loại hệ phương trìnhVan-Duyet Le
 
4.3 The Definite Integral
4.3 The Definite Integral4.3 The Definite Integral
4.3 The Definite IntegralSharon Henry
 
Ch2習作簿word檔
Ch2習作簿word檔Ch2習作簿word檔
Ch2習作簿word檔lyt199529
 

Tendances (20)

6.4 inverse matrices t
6.4 inverse matrices t6.4 inverse matrices t
6.4 inverse matrices t
 
Ch2
Ch2Ch2
Ch2
 
Funktion suurin ja pienin arvo laskemalla
Funktion suurin ja pienin arvo laskemallaFunktion suurin ja pienin arvo laskemalla
Funktion suurin ja pienin arvo laskemalla
 
29 conservative fields potential functions
29 conservative fields potential functions29 conservative fields potential functions
29 conservative fields potential functions
 
Ch6 series solutions algebra
Ch6 series solutions algebraCh6 series solutions algebra
Ch6 series solutions algebra
 
Crib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC examsCrib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC exams
 
2.6 Graphs of Basic Functions
2.6 Graphs of Basic Functions2.6 Graphs of Basic Functions
2.6 Graphs of Basic Functions
 
נוסחאון 3 יחידות לימוד מתמטיקה
נוסחאון 3 יחידות לימוד מתמטיקהנוסחאון 3 יחידות לימוד מתמטיקה
נוסחאון 3 יחידות לימוד מתמטיקה
 
6161103 10.5 moments of inertia for composite areas
6161103 10.5 moments of inertia for composite areas6161103 10.5 moments of inertia for composite areas
6161103 10.5 moments of inertia for composite areas
 
Gamma beta functions-1
Gamma   beta functions-1Gamma   beta functions-1
Gamma beta functions-1
 
İNTEGRAL UYGULAMALARI
İNTEGRAL UYGULAMALARIİNTEGRAL UYGULAMALARI
İNTEGRAL UYGULAMALARI
 
RationalExpressionsReview.pdf
RationalExpressionsReview.pdfRationalExpressionsReview.pdf
RationalExpressionsReview.pdf
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)
 
Đề tài: Lớp bất đẳng thức, bài toán cực trị với đa thức đối xứng, 9đ
Đề tài: Lớp bất đẳng thức, bài toán cực trị với đa thức đối xứng, 9đĐề tài: Lớp bất đẳng thức, bài toán cực trị với đa thức đối xứng, 9đ
Đề tài: Lớp bất đẳng thức, bài toán cực trị với đa thức đối xứng, 9đ
 
Calculus Early Transcendentals 10th Edition Anton Solutions Manual
Calculus Early Transcendentals 10th Edition Anton Solutions ManualCalculus Early Transcendentals 10th Edition Anton Solutions Manual
Calculus Early Transcendentals 10th Edition Anton Solutions Manual
 
12.5. vector valued functions
12.5. vector valued functions12.5. vector valued functions
12.5. vector valued functions
 
Kĩ thuật giải các loại hệ phương trình
Kĩ thuật giải các loại hệ phương trìnhKĩ thuật giải các loại hệ phương trình
Kĩ thuật giải các loại hệ phương trình
 
4.3 The Definite Integral
4.3 The Definite Integral4.3 The Definite Integral
4.3 The Definite Integral
 
Ch1
Ch1Ch1
Ch1
 
Ch2習作簿word檔
Ch2習作簿word檔Ch2習作簿word檔
Ch2習作簿word檔
 

Similaire à Calculus cheat sheet_integrals

Common derivatives integrals_reduced
Common derivatives integrals_reducedCommon derivatives integrals_reduced
Common derivatives integrals_reducedKyro Fitkry
 
Cea0001 ppt project
Cea0001 ppt projectCea0001 ppt project
Cea0001 ppt projectcea0001
 
Lesson 31: Evaluating Definite Integrals
Lesson 31: Evaluating Definite IntegralsLesson 31: Evaluating Definite Integrals
Lesson 31: Evaluating Definite IntegralsMatthew Leingang
 
Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)Matthew Leingang
 
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusMatthew Leingang
 
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusMatthew Leingang
 
584 fundamental theorem of calculus
584 fundamental theorem of calculus584 fundamental theorem of calculus
584 fundamental theorem of calculusgoldenratio618
 
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)Matthew Leingang
 
Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problemsDelta Pi Systems
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Mel Anthony Pepito
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsLesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsMatthew Leingang
 
Lesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsLesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsMatthew Leingang
 
Lesson 25: Evaluating Definite Integrals (Section 10 version)
Lesson 25: Evaluating Definite Integrals (Section 10 version)Lesson 25: Evaluating Definite Integrals (Section 10 version)
Lesson 25: Evaluating Definite Integrals (Section 10 version)Matthew Leingang
 

Similaire à Calculus cheat sheet_integrals (20)

Common derivatives integrals_reduced
Common derivatives integrals_reducedCommon derivatives integrals_reduced
Common derivatives integrals_reduced
 
Cea0001 ppt project
Cea0001 ppt projectCea0001 ppt project
Cea0001 ppt project
 
Lesson 31: Evaluating Definite Integrals
Lesson 31: Evaluating Definite IntegralsLesson 31: Evaluating Definite Integrals
Lesson 31: Evaluating Definite Integrals
 
Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)
 
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of Calculus
 
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of Calculus
 
584 fundamental theorem of calculus
584 fundamental theorem of calculus584 fundamental theorem of calculus
584 fundamental theorem of calculus
 
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
 
Regras diferenciacao
Regras diferenciacaoRegras diferenciacao
Regras diferenciacao
 
01 regras diferenciacao
01   regras diferenciacao01   regras diferenciacao
01 regras diferenciacao
 
Business math
Business mathBusiness math
Business math
 
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
 
Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problems
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsLesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite Integrals
 
Lesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsLesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite Integrals
 
Lesson 25: Evaluating Definite Integrals (Section 10 version)
Lesson 25: Evaluating Definite Integrals (Section 10 version)Lesson 25: Evaluating Definite Integrals (Section 10 version)
Lesson 25: Evaluating Definite Integrals (Section 10 version)
 
gfg
gfggfg
gfg
 

Calculus cheat sheet_integrals

  • 1. Calculus Cheat Sheet Integrals Definitions Definite Integral: Suppose f ( x ) is continuous Anti-Derivative : An anti-derivative of f ( x ) on [ a, b] . Divide [ a, b ] into n subintervals of is a function, F ( x ) , such that F ¢ ( x ) = f ( x ) . width D x and choose x from each interval. Indefinite Integral : ò f ( x ) dx = F ( x ) + c * i ¥ where F ( x ) is an anti-derivative of f ( x ) . ò a f ( x ) dx = n å f ( x ) D x . b * Then lim i ®¥ i =1 Fundamental Theorem of Calculus Part I : If f ( x ) is continuous on [ a, b ] then Variants of Part I : d u( x) f ( t ) dt = u ¢ ( x ) f éu ( x ) ù dx ò a x g ( x ) = ò f ( t ) dt is also continuous on [ a, b ] ë û a d x d b f ( t ) dt = -v¢ ( x ) f év ( x ) ù dx ò v( x ) and g ¢ ( x ) = òa f ( t ) dt = f ( x ) . ë û dx Part II : f ( x ) is continuous on [ a, b ] , F ( x ) is d u( x) f ( t ) dt = u ¢ ( x ) f [ u ( x ) ] - v¢ ( x ) f [ v ( x ) ] dx ò v( x ) an anti-derivative of f ( x ) (i.e. F ( x ) = ò f ( x ) dx ) b then ò f ( x ) dx = F ( b ) - F ( a ) . a Properties ò f ( x ) ± g ( x ) dx = ò f ( x ) dx ± ò g ( x ) dx ò cf ( x ) dx = c ò f ( x ) dx , c is a constant b b b b b òa f ( x ) ± g ( x ) dx = ò f ( x ) dx ± ò g ( x ) dx òa cf ( x ) dx = c ò f ( x ) dx , c is a constant a a a a b b òa f ( x ) dx = 0 òa f ( x ) dx = ò f ( t ) dt a b a ò a f ( x ) dx = -òb f ( x ) dx b b ò f ( x ) dx £ ò a a f ( x ) dx b a If f ( x ) ³ g ( x ) on a £ x £ b then ò f ( x ) dx ³ ò g ( x ) dx a b b If f ( x ) ³ 0 on a £ x £ b then ò f ( x ) dx ³ 0 a b If m £ f ( x ) £ M on a £ x £ b then m ( b - a ) £ ò f ( x ) dx £ M ( b - a ) a Common Integrals ò k dx = k x + c ò cos u du = sin u + c ò tan u du = ln sec u + c ò x dx = n+1 x + c, n ¹ -1 ò sin u du = - cos u + c ò sec u du = ln sec u + tan u + c n 1 n +1 ò x dx = ò x dx = ln x + c ò sec u du = tan u + c ò a + u du = a tan ( a ) + c -1 1 2 1 u 1 -1 2 2 ò a x + b dx = a ln ax + b + c 1 1 ò sec u tan u du = sec u + c ò a - u du = sin ( a ) + c 1 2 2 u -1 ò ln u du = u ln ( u ) - u + c ò csc u cot udu = - csc u + c ò e du = e + c ò csc u du = - cot u + c u u 2 Visit http://tutorial.math.lamar.edu for a complete set of Calculus notes. © 2005 Paul Dawkins
  • 2. Calculus Cheat Sheet Standard Integration Techniques Note that at many schools all but the Substitution Rule tend to be taught in a Calculus II class. ( ) ò a f ( g ( x ) ) g ¢ ( x ) dx = ò g (a ) f ( u ) du b g b u Substitution : The substitution u = g ( x ) will convert using du = g ¢ ( x ) dx . For indefinite integrals drop the limits of integration. cos ( x3 ) dx cos ( x3 ) dx = ò 2 2 8 Ex. ò 1 5x 2 ò 1 5x 2 5 1 3 cos ( u ) du u = x 3 Þ du = 3x 2 dx Þ x 2 dx = 1 du ( sin (8) - sin (1) ) 8 3 = 5 sin ( u ) 1 = 3 5 3 x = 1 Þ u = 1 = 1 :: x = 2 Þ u = 2 = 8 3 3 b b b Integration by Parts : ò u dv = uv - ò v du and ò a u dv = uv a - ò v du . Choose u and dv from a integral and compute du by differentiating u and compute v using v = ò dv . ò xe -x 5 Ex. dx Ex. ò3 ln x dx u=x dv = e- x Þ du = dx v = -e - x u = ln x dv = dx Þ du = 1 dx v = x x ò xe dx = - xe + ò e dx = - xe - e -x -x -x -x -x +c ln x dx = x ln x 3 - ò dx = ( x ln ( x ) - x ) 5 5 5 5 ò3 3 3 = 5ln ( 5) - 3ln ( 3) - 2 Products and (some) Quotients of Trig Functions For ò sin n x cos m x dx we have the following : For ò tan n x sec m x dx we have the following : 1. n odd. Strip 1 sine out and convert rest to 1. n odd. Strip 1 tangent and 1 secant out and cosines using sin x = 1 - cos x , then use 2 2 convert the rest to secants using the substitution u = cos x . tan 2 x = sec 2 x - 1 , then use the substitution 2. m odd. Strip 1 cosine out and convert rest u = sec x . to sines using cos 2 x = 1 - sin 2 x , then use 2. m even. Strip 2 secants out and convert rest the substitution u = sin x . to tangents using sec2 x = 1 + tan 2 x , then 3. n and m both odd. Use either 1. or 2. use the substitution u = tan x . 4. n and m both even. Use double angle 3. n odd and m even. Use either 1. or 2. and/or half angle formulas to reduce the 4. n even and m odd. Each integral will be integral into a form that can be integrated. dealt with differently. Trig Formulas : sin ( 2 x ) = 2sin ( x ) cos ( x ) , cos 2 ( x ) = 2 (1 + cos ( 2 x ) ) , sin ( x ) = 2 (1 - cos ( 2 x ) ) 1 2 1 Ex. ò tan 3 x sec5 x dx Ex. sin5 x ò cos x dx 3 ò tan x sec5 xdx = ò tan 2 x sec 4 x tan x sec xdx 3 5 4 2 2 (sin x ) sin x ò cos x dx = ò cos x dx = ò cos x dx sin x sin x sin x 3 3 3 = ò ( sec2 x - 1) sec 4 x tan x sec xdx (1- cos x ) sin x 2 2 =ò cos x dx 3 ( u = cos x ) = ò ( u 2 - 1) u 4 du ( u = sec x ) 2 2 = - ò (1-u ) du = - ò 1-2u +u du 2 4 u 3 u 3 = 1 sec7 x - 1 sec5 x + c 7 5 = 1 sec2 x + 2 ln cos x - 1 cos 2 x + c 2 2 Visit http://tutorial.math.lamar.edu for a complete set of Calculus notes. © 2005 Paul Dawkins
  • 3. Calculus Cheat Sheet Trig Substitutions : If the integral contains the following root use the given substitution and formula to convert into an integral involving trig functions. a 2 - b 2 x 2 Þ x = a sin q b a b 2 x 2 - a 2 Þ x = b sec q a 2 + b 2 x 2 Þ x = a tan q b cos 2 q = 1 - sin 2 q tan 2 q = sec 2 q - 1 sec2 q = 1 + tan 2 q òx ó ( 2 cos q ) dq = ò sin2 q dq 16 Ex. dx 16 12 2 4 -9 x 2 õ 4 sin 2 q ( 2cosq ) 9 3 x = 2 sin q Þ dx = 2 cos q dq 3 3 = ò 12 csc 2 dq = -12 cot q + c 4 - 9x 2 = 4 - 4sin q = 4 cos q = 2 cos q 2 2 Use Right Triangle Trig to go back to x’s. From Recall x 2 = x . Because we have an indefinite substitution we have sin q = 32x so, integral we’ll assume positive and drop absolute value bars. If we had a definite integral we’d need to compute q ’s and remove absolute value bars based on that and, ì x if x ³ 0 4 -9 x 2 x =í From this we see that cot q = 3x . So, î- x if x < 0 4 -9 x 2 òx dx = - 4 +c 16 In this case we have 4 - 9x = 2 cos q . 2 2 4 -9 x 2 x P( x ) Partial Fractions : If integrating ò Q( x) dx where the degree of P ( x ) is smaller than the degree of Q ( x ) . Factor denominator as completely as possible and find the partial fraction decomposition of the rational expression. Integrate the partial fraction decomposition (P.F.D.). For each factor in the denominator we get term(s) in the decomposition according to the following table. Factor in Q ( x ) Term in P.F.D Factor in Q ( x ) Term in P.F.D A A1 A2 Ak ax + b ( ax + b ) k + +L + ax + b ax + b ( ax + b ) 2 ( ax + b ) k Ax + B A1 x + B1 Ak x + Bk +L + ( ax + bx + c ) 2 k ax 2 + bx + c ax + bx + c ( ax 2 + bx + c ) 2 k ax + bx + c 2 7 x2 +13 x + Bx +C = A( x2 + 4) + ( Bx + C ) ( x -1) Ex. ò ( x -1)( x 2 +4) dx 7 x2 +13 x 2 ( x -1)( x + 4 ) = A x -1 x2 + 4 ( x -1)( x 2 + 4 ) 7 x2 +13 x Set numerators equal and collect like terms. ò ( x -1)( x2 + 4 ) dx = ò x4 1 + 3xx2+16 dx - +4 7 x 2 + 13x = ( A + B ) x 2 + ( C - B ) x + 4 A - C = ò x41 + - 3x x2 + 4 + 16 x2 + 4 dx Set coefficients equal to get a system and solve = 4 ln x - 1 + 2 ln ( x 2 + 4 ) + 8 tan -1 ( x ) 3 to get constants. 2 A+ B = 7 C - B = 13 4A - C = 0 Here is partial fraction form and recombined. A=4 B=3 C = 16 An alternate method that sometimes works to find constants. Start with setting numerators equal in previous example : 7 x 2 + 13x = A ( x 2 + 4 ) + ( Bx + C ) ( x - 1) . Chose nice values of x and plug in. For example if x = 1 we get 20 = 5A which gives A = 4 . This won’t always work easily. Visit http://tutorial.math.lamar.edu for a complete set of Calculus notes. © 2005 Paul Dawkins
  • 4. Calculus Cheat Sheet Applications of Integrals b Net Area : ò a f ( x ) dx represents the net area between f ( x ) and the x-axis with area above x-axis positive and area below x-axis negative. Area Between Curves : The general formulas for the two main cases for each are, b d y = f ( x) Þ A = ò éupper function ù ë û - élower ë function ù dx û & x = f ( y) Þ A = ò é right function ù ë û - éleft ë function ù dy û a c If the curves intersect then the area of each portion must be found individually. Here are some sketches of a couple possible situations and formulas for a couple of possible cases. d A = ò f ( y ) - g ( y ) dy b c b A = ò f ( x ) - g ( x ) dx c A = ò f ( x ) - g ( x ) dx + ò g ( x ) - f ( x ) dx a a c Volumes of Revolution : The two main formulas are V = ò A ( x ) dx and V = ò A ( y ) dy . Here is some general information about each method of computing and some examples. Rings Cylinders ( A = p ( outer radius ) - ( inner radius) 2 2 ) A = 2p ( radius ) ( width / height ) Limits: x/y of right/bot ring to x/y of left/top ring Limits : x/y of inner cyl. to x/y of outer cyl. Horz. Axis use f ( x ) , Vert. Axis use f ( y ) , Horz. Axis use f ( y ) , Vert. Axis use f ( x ) , g ( x ) , A ( x ) and dx. g ( y ) , A ( y ) and dy. g ( y ) , A ( y ) and dy. g ( x ) , A ( x ) and dx. Ex. Axis : y = a > 0 Ex. Axis : y = a £ 0 Ex. Axis : y = a > 0 Ex. Axis : y = a £ 0 outer radius : a - f ( x ) outer radius: a + g ( x ) radius : a - y radius : a + y inner radius : a - g ( x ) inner radius: a + f ( x ) width : f ( y ) - g ( y ) width : f ( y ) - g ( y ) These are only a few cases for horizontal axis of rotation. If axis of rotation is the x-axis use the y = a £ 0 case with a = 0 . For vertical axis of rotation ( x = a > 0 and x = a £ 0 ) interchange x and y to get appropriate formulas. Visit http://tutorial.math.lamar.edu for a complete set of Calculus notes. © 2005 Paul Dawkins
  • 5. Calculus Cheat Sheet Work : If a force of F ( x ) moves an object Average Function Value : The average value b b of f ( x ) on a £ x £ b is f avg = 1 ò f ( x ) dx in a £ x £ b , the work done is W = ò F ( x ) dx b-a a a Arc Length Surface Area : Note that this is often a Calc II topic. The three basic formulas are, b b b L = ò ds SA = ò 2p y ds (rotate about x-axis) SA = ò 2p x ds (rotate about y-axis) a a a where ds is dependent upon the form of the function being worked with as follows. ( ) ( dx ) ( ) 2 2 dx if y = f ( x ) , a £ x £ b dt if x = f ( t ) , y = g ( t ) , a £ t £ b dy 2 dy ds = 1 + dx ds = dt + dt 1+ ( ) ds = r 2 + ( dq ) dq if r = f (q ) , a £ q £ b 2 dr 2 ds = dx dy dy if x = f ( y ) , a £ y £ b With surface area you may have to substitute in for the x or y depending on your choice of ds to match the differential in the ds. With parametric and polar you will always need to substitute. Improper Integral An improper integral is an integral with one or more infinite limits and/or discontinuous integrands. Integral is called convergent if the limit exists and has a finite value and divergent if the limit doesn’t exist or has infinite value. This is typically a Calc II topic. Infinite Limit ¥ t b b 1. ò f ( x ) dx = lim ò f ( x ) dx 2. ò¥ f ( x ) dx = lim ò f ( x ) dx a t ®¥ a - t ®-¥ t ¥ c ¥ 3. ò ¥ f ( x ) dx = ò ¥ f ( x ) dx + ò - - c f ( x ) dx provided BOTH integrals are convergent. Discontinuous Integrand b b b t 1. Discont. at a: ò f ( x ) dx = lim ò f ( x ) dx + 2. Discont. at b : ò f ( x ) dx = lim ò f ( x ) dx - a t ®a t a t ®b a b c b 3. Discontinuity at a < c < b : ò f ( x ) dx = ò f ( x ) dx + ò f ( x ) dx provided both are convergent. a a c Comparison Test for Improper Integrals : If f ( x ) ³ g ( x ) ³ 0 on [ a, ¥ ) then, ¥ ¥ ¥ ¥ 1. If ò f ( x ) dx conv. then ò g ( x ) dx conv. 2. If ò g ( x ) dx divg. then ò f ( x ) dx divg. a a a a ¥ Useful fact : If a > 0 then òa dx converges if p > 1 and diverges for p £ 1 . 1 xp Approximating Definite Integrals b For given integral ò a f ( x ) dx and a n (must be even for Simpson’s Rule) define Dx = b-a n and divide [ a, b] into n subintervals [ x0 , x1 ] , [ x1 , x2 ] , … , [ xn -1 , xn ] with x0 = a and xn = b then, ò f ( x ) dx » Dx é f ( x ) + f ( x ) + L + f ( x )ù , xi is midpoint [ xi -1 , xi ] b * * * * Midpoint Rule : ë 1 û 2 n a b Dx Trapezoid Rule : ò f ( x ) dx » 2 é f ( x ) + 2 f ( x ) + +2 f ( x ) + L + 2 f ( x ) + f ( x )ù a ë 0 1 û 2 n -1 n b Dx Simpson’s Rule : ò f ( x ) dx » 3 é f ( x ) + 4 f ( x ) + 2 f ( x ) + L + 2 f ( x ) + 4 f ( x ) + f ( x )ù a ë 0 1 2 û n-2 n -1 n Visit http://tutorial.math.lamar.edu for a complete set of Calculus notes. © 2005 Paul Dawkins