SlideShare une entreprise Scribd logo
1  sur  9
Vipul Bhardwaj
𝑆𝑡𝑟𝑎𝑖𝑛 𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡 by the
application of GaN interlayer.
Outline
• Management of the strain/relaxation in the thick AlGaN layer sample.
• Objective is achieved by the introduction of GaN interlayer.
• The thickness of the GaN interlayer is varied to get the desired strain in the AlGaN layer.
2
• High strain results in bowing and cracking of the layer.
• Insertion of stress relieving GaN interlayer eliminates these
problem by the strain management.
• The GaN interlayer thickness was varied and the effect of the
same on the AlGaN strain was analysed.
• The result of this interlayer is no bowing due to no strain and
also the thick (~2 µm) AlGaN with Al content of 50% was grown
on the AlN substrate.
Thick AlGaN Layer
Thin GaN Interlayer
AlN Substrate
Sapphire Substrate
Variation of AlGaN layer relaxation with the change in
the GaN interlayer thickness
160 170 180 190 200 210
-120
-80
-40
0
40
80
120
160
200
240
280 5
4
3
1
GaN
5 nm
8.75 nm
10 nm
20 nm
QW
AlGaN
Wafercurvature(m
-1
)
Time (s)
AlN growth
QB
2
8
12
16
20
R(%)
RSM showing strained (left) (5nm interlayer)
and relaxed (right) (12nm interlayer)
In-situ (during growth) curvature
monitor signal for samples grown
with different GaN thicknesses
If the GaN interlayer thicker than 5 nm is introduced in between the AlGaN layer and the AlN substrate, the
burger vectors of the induced dislocations becomes anti-parallel to those which are already in the layer. Thus,
there is the generation of the dislocations in the layer but the direction of the burger vectors of them are in
opposite direction which cancels out the strain in the layer and thus the layer becomes relaxed.
Relaxation variation with GaN interlayer thickness
Variation of AlGaN layer edge dislocation density with
the change in the GaN interlayer thickness
Edge dislocation density variation with
GaN interlayer thickness
 AlGaN layer’s relaxation increased with increase in the edge
dislocation density.
 Addition of the new dislocation densities with burger vectors’
in anti-parallel direction.
 a lattice parameter reached from the fully strained AlN value to
the almost fully relaxed Al0.5Ga0.5N value.
 To compensate for this thing, the edge dislocations increased
with the increase in the GaN interlayer thickness.
Variation of the a lattice parameter with the change in
GaN interlayer thickness
a Lattice parameter variation with GaN interlayer thickness
 With the increase in the GaN interlayer thickness, the a lattice
parameter of the AlGaN layer increased following the relaxation
trend.
 As the relaxation increased, the a lattice parameter also
increased from the strained AlN value to the theoretical
Al0.5Ga0.5N value.
 The a lattice parameter value of AlN is 3.111 Å and that of the
Al0.5Ga0.5N is 3.15013 Å.
Variation of the AlGaN layer composition with the
change in GaN interlayer thickness
Al content variation with GaN interlayer thickness
 With the change in the GaN interlayer thickness, it was
observed that the composition of the AlGaN layer remained
fairly the same to the value of 50%.
 The a lattice parameter reached approximately to the fully
relaxed value at Al0.5Ga0.5N from the almost fully strained value
at Al0.5Ga0.5N.
Conclusion
 With increase in the thickness of the GaN interlayer, the relaxation of the
AlGaN layer can be increased even to 100% relaxation as well before it
reaches the over relaxation state when layer cracks eventually.
 The composition of the AlGaN layer remained approximately the same.
 The relaxation in the layer occurs for the account of generation of numerous
misfit edge type dislocations.
 Thickness of GaN interlayer of 10 nm was found to be a good compromise
between reducing the strain in consequent AlGaN layer and not causing its
cracking at the same time.
Strain Maganement PPT

Contenu connexe

En vedette

En vedette (15)

G116 伊藤武彦・小平朋江 (2009). タイダルモデルと浦河べてるの家の思想的・実践的近似性 第29回日本看護科学学会学術集会講演集, 513.
G116  伊藤武彦・小平朋江 (2009). タイダルモデルと浦河べてるの家の思想的・実践的近似性 第29回日本看護科学学会学術集会講演集, 513.G116  伊藤武彦・小平朋江 (2009). タイダルモデルと浦河べてるの家の思想的・実践的近似性 第29回日本看護科学学会学術集会講演集, 513.
G116 伊藤武彦・小平朋江 (2009). タイダルモデルと浦河べてるの家の思想的・実践的近似性 第29回日本看護科学学会学術集会講演集, 513.
 
Prezentacja iv nowa_17.04.2016
Prezentacja iv nowa_17.04.2016Prezentacja iv nowa_17.04.2016
Prezentacja iv nowa_17.04.2016
 
Apt opinion
Apt opinionApt opinion
Apt opinion
 
Metodo 1
Metodo 1Metodo 1
Metodo 1
 
Question 2
Question 2 Question 2
Question 2
 
Herramientas Informaticas
Herramientas InformaticasHerramientas Informaticas
Herramientas Informaticas
 
Mochi
MochiMochi
Mochi
 
G122 いとうたけひこ・大高庸平・小平朋江・井川亜彩美 (2010). 精神医療ユーザーの服薬の語り:NPOアンケート報告書における自由記述のテキスト...
G122  いとうたけひこ・大高庸平・小平朋江・井川亜彩美 (2010). 精神医療ユーザーの服薬の語り:NPOアンケート報告書における自由記述のテキスト...G122  いとうたけひこ・大高庸平・小平朋江・井川亜彩美 (2010). 精神医療ユーザーの服薬の語り:NPOアンケート報告書における自由記述のテキスト...
G122 いとうたけひこ・大高庸平・小平朋江・井川亜彩美 (2010). 精神医療ユーザーの服薬の語り:NPOアンケート報告書における自由記述のテキスト...
 
Deficiência visual
Deficiência visualDeficiência visual
Deficiência visual
 
Original copies
Original copiesOriginal copies
Original copies
 
Cep santísima trinidad
Cep santísima trinidadCep santísima trinidad
Cep santísima trinidad
 
Presentación tarea virtual 2
Presentación tarea virtual 2Presentación tarea virtual 2
Presentación tarea virtual 2
 
Lamina Views
Lamina ViewsLamina Views
Lamina Views
 
G205 いとうたけひこ (2014). 津波と原発の子どもたちの時間的展望への影響: 東日本大震災後の作文のテキストマイニング 第37回生命情報科学会(...
G205 いとうたけひこ (2014). 津波と原発の子どもたちの時間的展望への影響: 東日本大震災後の作文のテキストマイニング 第37回生命情報科学会(...G205 いとうたけひこ (2014). 津波と原発の子どもたちの時間的展望への影響: 東日本大震災後の作文のテキストマイニング 第37回生命情報科学会(...
G205 いとうたけひこ (2014). 津波と原発の子どもたちの時間的展望への影響: 東日本大震災後の作文のテキストマイニング 第37回生命情報科学会(...
 
Преддипломная практика по специальности Педагогика дополнительного образования
Преддипломная практика по специальности Педагогика дополнительного образованияПреддипломная практика по специальности Педагогика дополнительного образования
Преддипломная практика по специальности Педагогика дополнительного образования
 

Strain Maganement PPT

  • 2. Outline • Management of the strain/relaxation in the thick AlGaN layer sample. • Objective is achieved by the introduction of GaN interlayer. • The thickness of the GaN interlayer is varied to get the desired strain in the AlGaN layer. 2
  • 3. • High strain results in bowing and cracking of the layer. • Insertion of stress relieving GaN interlayer eliminates these problem by the strain management. • The GaN interlayer thickness was varied and the effect of the same on the AlGaN strain was analysed. • The result of this interlayer is no bowing due to no strain and also the thick (~2 µm) AlGaN with Al content of 50% was grown on the AlN substrate. Thick AlGaN Layer Thin GaN Interlayer AlN Substrate Sapphire Substrate
  • 4. Variation of AlGaN layer relaxation with the change in the GaN interlayer thickness 160 170 180 190 200 210 -120 -80 -40 0 40 80 120 160 200 240 280 5 4 3 1 GaN 5 nm 8.75 nm 10 nm 20 nm QW AlGaN Wafercurvature(m -1 ) Time (s) AlN growth QB 2 8 12 16 20 R(%) RSM showing strained (left) (5nm interlayer) and relaxed (right) (12nm interlayer) In-situ (during growth) curvature monitor signal for samples grown with different GaN thicknesses If the GaN interlayer thicker than 5 nm is introduced in between the AlGaN layer and the AlN substrate, the burger vectors of the induced dislocations becomes anti-parallel to those which are already in the layer. Thus, there is the generation of the dislocations in the layer but the direction of the burger vectors of them are in opposite direction which cancels out the strain in the layer and thus the layer becomes relaxed. Relaxation variation with GaN interlayer thickness
  • 5. Variation of AlGaN layer edge dislocation density with the change in the GaN interlayer thickness Edge dislocation density variation with GaN interlayer thickness  AlGaN layer’s relaxation increased with increase in the edge dislocation density.  Addition of the new dislocation densities with burger vectors’ in anti-parallel direction.  a lattice parameter reached from the fully strained AlN value to the almost fully relaxed Al0.5Ga0.5N value.  To compensate for this thing, the edge dislocations increased with the increase in the GaN interlayer thickness.
  • 6. Variation of the a lattice parameter with the change in GaN interlayer thickness a Lattice parameter variation with GaN interlayer thickness  With the increase in the GaN interlayer thickness, the a lattice parameter of the AlGaN layer increased following the relaxation trend.  As the relaxation increased, the a lattice parameter also increased from the strained AlN value to the theoretical Al0.5Ga0.5N value.  The a lattice parameter value of AlN is 3.111 Å and that of the Al0.5Ga0.5N is 3.15013 Å.
  • 7. Variation of the AlGaN layer composition with the change in GaN interlayer thickness Al content variation with GaN interlayer thickness  With the change in the GaN interlayer thickness, it was observed that the composition of the AlGaN layer remained fairly the same to the value of 50%.  The a lattice parameter reached approximately to the fully relaxed value at Al0.5Ga0.5N from the almost fully strained value at Al0.5Ga0.5N.
  • 8. Conclusion  With increase in the thickness of the GaN interlayer, the relaxation of the AlGaN layer can be increased even to 100% relaxation as well before it reaches the over relaxation state when layer cracks eventually.  The composition of the AlGaN layer remained approximately the same.  The relaxation in the layer occurs for the account of generation of numerous misfit edge type dislocations.  Thickness of GaN interlayer of 10 nm was found to be a good compromise between reducing the strain in consequent AlGaN layer and not causing its cracking at the same time.