SlideShare une entreprise Scribd logo
1  sur  46
Télécharger pour lire hors ligne
Faster Geometric Algorithms via Dynamic Determinant Computation
Faster Geometric Algorithms via
Dynamic Determinant Computation
Vissarion Fisikopoulos
joint work with L. Pe˜naranda (now IMPA, Rio de Janeiro)
Department of Informatics, University of Athens, Greece
ESA, Ljubljana, 14.Sep.2012
V.Fisikopoulos | ESA’12 1 / 19
Faster Geometric Algorithms via Dynamic Determinant Computation
Geometric algorithms and predicates
Setting
geometric algorithms → sequence of geometric predicates
many geometric predicates → determinants
Hi-dim: as dimension grows predicates become more expensive
V.Fisikopoulos | ESA’12 2 / 19
Faster Geometric Algorithms via Dynamic Determinant Computation
Geometric algorithms and predicates
Setting
geometric algorithms → sequence of geometric predicates
many geometric predicates → determinants
Hi-dim: as dimension grows predicates become more expensive
Examples
Orientation: Does c
lie on, left or right
of ab?
ax ay 1
bx by 1
cx cy 1
0
a
b
c
V.Fisikopoulos | ESA’12 2 / 19
Faster Geometric Algorithms via Dynamic Determinant Computation
Geometric algorithms and predicates
Setting
geometric algorithms → sequence of geometric predicates
many geometric predicates → determinants
Hi-dim: as dimension grows predicates become more expensive
Examples
inCircle: Does d lie
on, inside or outside
of abc?
ax ay a2
x + a2
y 1
bx by b2
x + b2
y 1
cx cy c2
x + c2
y 1
dx dy d2
x + d2
y 1
0
a
b
c
d
V.Fisikopoulos | ESA’12 2 / 19
Faster Geometric Algorithms via Dynamic Determinant Computation | Motivation and existing work
Outline
1 Motivation and existing work
2 Dynamic determinant computation
3 Geometric algorithms: convex hull
4 Implementation - experiments
V.Fisikopoulos | ESA’12 3 / 19
Faster Geometric Algorithms via Dynamic Determinant Computation | Motivation and existing work
Outline
1 Motivation and existing work
2 Dynamic determinant computation
3 Geometric algorithms: convex hull
4 Implementation - experiments
V.Fisikopoulos | ESA’12 4 / 19
Faster Geometric Algorithms via Dynamic Determinant Computation | Motivation and existing work
Motivation
Algorithms for resultant polytopes [Emiris,F,Konaxis,Pe˜naranda SoCG’12]
[YuJensen’12] (discriminant polytopes [Emiris, F, Dickenstein])
Respol: compute resultant, discriminant polytopes up to dim. 6
4-d resultant polytope
V.Fisikopoulos | ESA’12 5 / 19
Faster Geometric Algorithms via Dynamic Determinant Computation | Motivation and existing work
Motivation
Algorithms for resultant polytopes [Emiris,F,Konaxis,Pe˜naranda SoCG’12]
[YuJensen’12] (discriminant polytopes [Emiris, F, Dickenstein])
Respol: compute resultant, discriminant polytopes up to dim. 6
Counting lattice points in polyhedra [Barvinock’99] [DeLoera et.al’04],
Integer convex optimization [Gr¨otschel,Lov´asz,Schrijver’88]
4-d resultant polytope
V.Fisikopoulos | ESA’12 5 / 19
Faster Geometric Algorithms via Dynamic Determinant Computation | Motivation and existing work
Motivation
Algorithms for resultant polytopes [Emiris,F,Konaxis,Pe˜naranda SoCG’12]
[YuJensen’12] (discriminant polytopes [Emiris, F, Dickenstein])
Respol: compute resultant, discriminant polytopes up to dim. 6
Counting lattice points in polyhedra [Barvinock’99] [DeLoera et.al’04],
Integer convex optimization [Gr¨otschel,Lov´asz,Schrijver’88]
4-d resultant polytope
Focusing on . . .
Hi-dim CompGeom (3 < d < 10)
Computation over the integers
V.Fisikopoulos | ESA’12 5 / 19
Faster Geometric Algorithms via Dynamic Determinant Computation | Motivation and existing work
Existing work
Determinant: exact computation
Given matrix A ⊆ Rd×d
Theory: State-of-the-art O(dω), ω ∼ 2.37 [CoppersmithWinograd90]
Practice: Gaussian elimination, O(d3)
V.Fisikopoulos | ESA’12 6 / 19
Faster Geometric Algorithms via Dynamic Determinant Computation | Motivation and existing work
Existing work
Determinant: exact computation
Given matrix A ⊆ Rd×d
Theory: State-of-the-art O(dω), ω ∼ 2.37 [CoppersmithWinograd90]
Practice: Gaussian elimination, O(d3)
Division-free determinant algorithms
Laplace (cofactor) expansion, O(d!)
[Rote01], O(d4)
[Bird11], O(dω+1)
V.Fisikopoulos | ESA’12 6 / 19
Faster Geometric Algorithms via Dynamic Determinant Computation | Motivation and existing work
Existing work
Determinant: exact computation
Given matrix A ⊆ Rd×d
Theory: State-of-the-art O(dω), ω ∼ 2.37 [CoppersmithWinograd90]
Practice: Gaussian elimination, O(d3)
Division-free determinant algorithms
Laplace (cofactor) expansion, O(d!)
[Rote01], O(d4)
[Bird11], O(dω+1)
Dynamic determinant computation
Dynamic transitive closure in graphs [Sankowski FOCS’04]
V.Fisikopoulos | ESA’12 6 / 19
Faster Geometric Algorithms via Dynamic Determinant Computation | Dynamic determinant computation
Outline
1 Motivation and existing work
2 Dynamic determinant computation
3 Geometric algorithms: convex hull
4 Implementation - experiments
V.Fisikopoulos | ESA’12 7 / 19
Faster Geometric Algorithms via Dynamic Determinant Computation | Dynamic determinant computation
Dynamic Determinant Computations
One-column update problem
Given matrix A ⊆ Rd×d, answer queries for det(A) when i-th column of
A, (A)i, is replaced by u ⊆ Rd.
V.Fisikopoulos | ESA’12 8 / 19
Faster Geometric Algorithms via Dynamic Determinant Computation | Dynamic determinant computation
Dynamic Determinant Computations
One-column update problem
Given matrix A ⊆ Rd×d, answer queries for det(A) when i-th column of
A, (A)i, is replaced by u ⊆ Rd.
Solution: Sherman-Morrison formula (1950)
A −1
= A−1
−
(A−1(u − (A)i)) (eT
i A−1)
1 + eT
i A−1(u − (A)i)
det(A ) = (1 + eT
i A−1
(u − (A)i)det(A)
Only vector×vector, vector×matrix → Complexity: O(d2)
Algorithm: dyn inv
V.Fisikopoulos | ESA’12 8 / 19
Faster Geometric Algorithms via Dynamic Determinant Computation | Dynamic determinant computation
Dynamic Determinant Computations
One-column update problem
Given matrix A ⊆ Rd×d, answer queries for det(A) when i-th column of
A, (A)i, is replaced by u ⊆ Rd.
Variant Sherman-Morrison formulas
Q: What happens if we work over the integers?
V.Fisikopoulos | ESA’12 8 / 19
Faster Geometric Algorithms via Dynamic Determinant Computation | Dynamic determinant computation
Dynamic Determinant Computations
One-column update problem
Given matrix A ⊆ Rd×d, answer queries for det(A) when i-th column of
A, (A)i, is replaced by u ⊆ Rd.
Variant Sherman-Morrison formulas
Q: What happens if we work over the integers?
A: Use the adjoint of A (Aadj) → exact divisions
V.Fisikopoulos | ESA’12 8 / 19
Faster Geometric Algorithms via Dynamic Determinant Computation | Dynamic determinant computation
Dynamic Determinant Computations
One-column update problem
Given matrix A ⊆ Rd×d, answer queries for det(A) when i-th column of
A, (A)i, is replaced by u ⊆ Rd.
Variant Sherman-Morrison formulas
Q: What happens if we work over the integers?
A: Use the adjoint of A (Aadj) → exact divisions
Complexity: O(d2) Algorithm: dyn adj
V.Fisikopoulos | ESA’12 8 / 19
Faster Geometric Algorithms via Dynamic Determinant Computation | Geometric algorithms: convex hull
Outline
1 Motivation and existing work
2 Dynamic determinant computation
3 Geometric algorithms: convex hull
4 Implementation - experiments
V.Fisikopoulos | ESA’12 9 / 19
Faster Geometric Algorithms via Dynamic Determinant Computation | Geometric algorithms: convex hull
The convex hull problem
Definition
The convex hull of A ⊆ Rd is the smallest convex set containing A.
Example
V.Fisikopoulos | ESA’12 10 / 19
Faster Geometric Algorithms via Dynamic Determinant Computation | Geometric algorithms: convex hull
The convex hull problem
Definition
The convex hull of A ⊆ Rd is the smallest convex set containing A.
Incremental convex hull - Beneath-and-Beyond
connect each outer point to the
visible segments
visibility test = orientation test
V.Fisikopoulos | ESA’12 10 / 19
Faster Geometric Algorithms via Dynamic Determinant Computation | Geometric algorithms: convex hull
The convex hull problem
Definition
The convex hull of A ⊆ Rd is the smallest convex set containing A.
Incremental convex hull - Beneath-and-Beyond
connect each outer point to the
visible segments
visibility test = orientation test
V.Fisikopoulos | ESA’12 10 / 19
Faster Geometric Algorithms via Dynamic Determinant Computation | Geometric algorithms: convex hull
The convex hull problem
Definition
The convex hull of A ⊆ Rd is the smallest convex set containing A.
Incremental convex hull - Beneath-and-Beyond
connect each outer point to the
visible segments
visibility test = orientation test
V.Fisikopoulos | ESA’12 10 / 19
Faster Geometric Algorithms via Dynamic Determinant Computation | Geometric algorithms: convex hull
The convex hull problem
Definition
The convex hull of A ⊆ Rd is the smallest convex set containing A.
Incremental convex hull - Beneath-and-Beyond
connect each outer point to the
visible segments
visibility test = orientation test
V.Fisikopoulos | ESA’12 10 / 19
Faster Geometric Algorithms via Dynamic Determinant Computation | Geometric algorithms: convex hull
The convex hull problem
Definition
The convex hull of A ⊆ Rd is the smallest convex set containing A.
Incremental convex hull - Beneath-and-Beyond
connect each outer point to the
visible segments
visibility test = orientation test
V.Fisikopoulos | ESA’12 10 / 19
Faster Geometric Algorithms via Dynamic Determinant Computation | Geometric algorithms: convex hull
The convex hull problem
Definition
The convex hull of A ⊆ Rd is the smallest convex set containing A.
Incremental convex hull - Beneath-and-Beyond
connect each outer point to the
visible segments
visibility test = orientation test
V.Fisikopoulos | ESA’12 10 / 19
Faster Geometric Algorithms via Dynamic Determinant Computation | Geometric algorithms: convex hull
The convex hull problem
Definition
The convex hull of A ⊆ Rd is the smallest convex set containing A.
Incremental convex hull - Beneath-and-Beyond
connect each outer point to the
visible segments
visibility test = orientation test
V.Fisikopoulos | ESA’12 10 / 19
Faster Geometric Algorithms via Dynamic Determinant Computation | Geometric algorithms: convex hull
The convex hull problem
Definition
The convex hull of A ⊆ Rd is the smallest convex set containing A.
Incremental convex hull - Beneath-and-Beyond
connect each outer point to the
visible segments
visibility test = orientation test
V.Fisikopoulos | ESA’12 10 / 19
Faster Geometric Algorithms via Dynamic Determinant Computation | Geometric algorithms: convex hull
The convex hull problem
Definition
The convex hull of A ⊆ Rd is the smallest convex set containing A.
Incremental convex hull - Beneath-and-Beyond
connect each outer point to the
visible segments
visibility test = orientation test
V.Fisikopoulos | ESA’12 10 / 19
Faster Geometric Algorithms via Dynamic Determinant Computation | Geometric algorithms: convex hull
The convex hull problem
Definition
The convex hull of A ⊆ Rd is the smallest convex set containing A.
Incremental convex hull - Beneath-and-Beyond
connect each outer point to the
visible segments
visibility test = orientation test
V.Fisikopoulos | ESA’12 10 / 19
Faster Geometric Algorithms via Dynamic Determinant Computation | Geometric algorithms: convex hull
The convex hull problem
Definition
The convex hull of A ⊆ Rd is the smallest convex set containing A.
Incremental convex hull - Beneath-and-Beyond
connect each outer point to the
visible segments
visibility test = orientation test
Similar problems: Delaunay, regular triangulations, point-location
V.Fisikopoulos | ESA’12 10 / 19
Faster Geometric Algorithms via Dynamic Determinant Computation | Geometric algorithms: convex hull
The convex hull problem: REVISITED
convex hull → sequence of similar orientation predicates
take advantage of computations done in previous steps
V.Fisikopoulos | ESA’12 11 / 19
Faster Geometric Algorithms via Dynamic Determinant Computation | Geometric algorithms: convex hull
The convex hull problem: REVISITED
convex hull → sequence of similar orientation predicates
take advantage of computations done in previous steps
Incremental convex hull construction → 1-column updates
p2 p5
p2 p4 p5
1 1 1
A =
p1
p3
p4
Orientation(p2, p4, p5) = det(A)
V.Fisikopoulos | ESA’12 11 / 19
Faster Geometric Algorithms via Dynamic Determinant Computation | Geometric algorithms: convex hull
The convex hull problem: REVISITED
convex hull → sequence of similar orientation predicates
take advantage of computations done in previous steps
Incremental convex hull construction → 1-column updates
p2 p5
p6 p4 p5
1 1 1
A =
p1
p3
p4
p6
Orientation(p6, p4, p5) = det(A ) in O(d2)
V.Fisikopoulos | ESA’12 11 / 19
Faster Geometric Algorithms via Dynamic Determinant Computation | Geometric algorithms: convex hull
The convex hull problem: REVISITED
convex hull → sequence of similar orientation predicates
take advantage of computations done in previous steps
Incremental convex hull construction → 1-column updates
p2 p5
p6 p4 p5
1 1 1
A =
p1
p3
p4
p6
Orientation(p6, p4, p5) = det(A ) in O(d2)
Store det(A), A−1 + update det(A ), A −1 (Sherman-Morrison)
V.Fisikopoulos | ESA’12 11 / 19
Faster Geometric Algorithms via Dynamic Determinant Computation | Geometric algorithms: convex hull
Dynamic determinants in geometric algorithms
Given A ⊆ Rd, n = |A| and t = the number of cells
Theorem
Orientation predicates in increm. convex hull: O(d2) (space: O(d2t))
Proof: update det(A ), A −1
Corollary
Orientation predicates involved in point-location: O(d) (space: O(d2t))
Proof: query point never enters data-set → update only det(A )
Corollary
Incremental convex hull and volume comput.: O(dω+1nt) → O(d3nt)
V.Fisikopoulos | ESA’12 12 / 19
Faster Geometric Algorithms via Dynamic Determinant Computation | Implementation - experiments
Outline
1 Motivation and existing work
2 Dynamic determinant computation
3 Geometric algorithms: convex hull
4 Implementation - experiments
V.Fisikopoulos | ESA’12 13 / 19
Faster Geometric Algorithms via Dynamic Determinant Computation | Implementation - experiments
Determinant implementation
Dynamic determinant computation
C++, GNU Multiple Precision arithmetic library (GMP)
Implement dyn inv & dyn adj
Exact determinant computation software
LU decomposition (CGAL)
optimized LU decomposition (Eigen)
asymptotically optimal algorithms (LinBox)
Maple’s default determinant algorithm (Maple 14)
Bird’s algorithm (our implementation)
Laplace (cofactor) expansion (our implementation)
V.Fisikopoulos | ESA’12 14 / 19
Faster Geometric Algorithms via Dynamic Determinant Computation | Implementation - experiments
Determinant experiments
1-column updates in A ⊆ Qd×d (uniform distr. rational coefficients)
d Bird CGAL Eigen Laplace Maple dyn inv dyn adj
3 .013 .021 .014 .008 .058 .046 .023
4 .046 .050 .033 .020 .105 .108 .042
5 .122 .110 .072 .056 .288 .213 .067
6 .268 .225 .137 .141 .597 .376 .102
7 .522 .412 .243 .993 .824 .613 .148
8 .930 .710 .390 – 1.176 .920 .210
9 1.520 1.140 .630 – 1.732 1.330 .310
10 2.380 1.740 .940 – 2.380 1.830 .430
spec: Intel Core i5-2400 3.1GHz, 6MB L2 cache, 8GB RAM, 64-bit Debian GNU/Linux
V.Fisikopoulos | ESA’12 15 / 19
Faster Geometric Algorithms via Dynamic Determinant Computation | Implementation - experiments
Determinant experiments
1-column updates in A ⊆ Qd×d (uniform distr. integer coefficients)
d Bird CGAL Eigen Laplace Linbox Maple dyn inv dyn adj
3 .002 .021 .013 .002 .872 .045 .030 .008
4 .012 .041 .028 .005 1.010 .094 .058 .015
5 .032 .080 .048 .016 1.103 .214 .119 .023
6 .072 .155 .092 .040 1.232 .602 .197 .033
7 .138 .253 .149 .277 1.435 .716 .322 .046
8 .244 .439 .247 – 1.626 .791 .486 .068
9 .408 .689 .376 – 1.862 .906 .700 .085
10 .646 1.031 .568 – 2.160 1.014 .982 .107
11 .956 1.485 .800 – 10.127 1.113 1.291 .133
12 1.379 2.091 1.139 – 13.101 1.280 1.731 .160
13 1.957 2.779 1.485 – – 1.399 2.078 .184
spec: Intel Core i5-2400 3.1GHz, 6MB L2 cache, 8GB RAM, 64-bit Debian GNU/Linux
V.Fisikopoulos | ESA’12 15 / 19
Faster Geometric Algorithms via Dynamic Determinant Computation | Implementation - experiments
Convex hull implementation
Hashed dynamic determinants
dyn inv & dyn adj + hash table (dets & matrices)
plug into geometric software → geometric predicates
Convex hull software
randomized incremental (triang/CGAL)
beneath-and-beyond (bb) (polymake)
double description method (cdd)
gift-wrapping with reverse search (lrs)
triang/CGAL + hashed dynamic determinants = hdch z or hdch q
V.Fisikopoulos | ESA’12 16 / 19
Faster Geometric Algorithms via Dynamic Determinant Computation | Implementation - experiments
Convex hull experiments
6-dim points, integer coeffs uniformly distributed inside a 6-ball
0
10
20
30
40
50
60
70
100 150 200 250 300 350 400 450 500
Time(sec)
Number of input points
hdch_q
hdch_z
triang
lrs
bb
cdd
hdch q (hdch z)
rational (integer)
arithmetic
drawback: memory
consumption
500 6D points
triang 0.1GB
hdch z 2.8GB
hdch q 3.8GB
spec: Intel Core i5-2400 3.1GHz, 6MB L2 cache, 8GB RAM, 64-bit Debian GNU/Linux
V.Fisikopoulos | ESA’12 17 / 19
Faster Geometric Algorithms via Dynamic Determinant Computation | Implementation - experiments
Point location experiments
triangulation of A ⊆ Zd
points uniformly distibuted on a d-ball surface
1K and 1000K query points uniformly distibuted on a d-cube
d |A| preprocess ds mem # cells query time (sec)
time (sec) (MB) triang 1K 1000K
hdch z 8 120 45.20 6913 319438 0.41 392.55
triang 8 120 156.55 134 319438 14.42 14012.60
hdch z 9 70 45.69 6826 265874 0.28 276.90
triang 9 70 176.62 143 265874 13.80 13520.43
hdch z 10 50 43.45 6355 207190 0.27 217.45
triang 10 50 188.68 127 207190 14.40 14453.46
hdch z 11 39 38.82 5964 148846 0.18 189.56
triang 11 39 181.35 122 148846 14.41 14828.67
up to 78 times faster using up to 50 times more memory
spec: Intel Core i5-2400 3.1GHz, 6MB L2 cache, 8GB RAM, 64-bit Debian GNU/Linux
V.Fisikopoulos | ESA’12 18 / 19
Faster Geometric Algorithms via Dynamic Determinant Computation | Implementation - experiments
Conclusions and Future work
Orientation predicates. CH: O(d2), point location: O(d)
Efficient (division free) dynamic determinant implementation
More efficient CH implementation, 78× speed-up in point location
The code: http://hdch.sourceforge.net
V.Fisikopoulos | ESA’12 19 / 19
Faster Geometric Algorithms via Dynamic Determinant Computation | Implementation - experiments
Conclusions and Future work
Orientation predicates. CH: O(d2), point location: O(d)
Efficient (division free) dynamic determinant implementation
More efficient CH implementation, 78× speed-up in point location
The code: http://hdch.sourceforge.net
Future work
Delaunay triangulations (inSphere predicate)
overcome large memory consumption (hash table: clean periodically)
filtered computations
CGAL submission
V.Fisikopoulos | ESA’12 19 / 19
Faster Geometric Algorithms via Dynamic Determinant Computation | Implementation - experiments
Conclusions and Future work
Orientation predicates. CH: O(d2), point location: O(d)
Efficient (division free) dynamic determinant implementation
More efficient CH implementation, 78× speed-up in point location
The code: http://hdch.sourceforge.net
Future work
Delaunay triangulations (inSphere predicate)
overcome large memory consumption (hash table: clean periodically)
filtered computations
CGAL submission
THANK YOU !!!
V.Fisikopoulos | ESA’12 19 / 19

Contenu connexe

Tendances

Presentation of volesti in eRum 2020
Presentation of volesti in eRum 2020 Presentation of volesti in eRum 2020
Presentation of volesti in eRum 2020 Apostolos Chalkis
 
Numerical inflation: simulation of observational parameters
Numerical inflation: simulation of observational parametersNumerical inflation: simulation of observational parameters
Numerical inflation: simulation of observational parametersMilan Milošević
 
Sampling Spectrahedra: Volume Approximation and Optimization
Sampling Spectrahedra: Volume Approximation and OptimizationSampling Spectrahedra: Volume Approximation and Optimization
Sampling Spectrahedra: Volume Approximation and OptimizationApostolos Chalkis
 
A Unifying Review of Gaussian Linear Models (Roweis 1999)
A Unifying Review of Gaussian Linear Models (Roweis 1999)A Unifying Review of Gaussian Linear Models (Roweis 1999)
A Unifying Review of Gaussian Linear Models (Roweis 1999)Feynman Liang
 
Efficient Edge-Skeleton Computation for Polytopes Defined by Oracles
Efficient Edge-Skeleton Computation for Polytopes Defined by OraclesEfficient Edge-Skeleton Computation for Polytopes Defined by Oracles
Efficient Edge-Skeleton Computation for Polytopes Defined by OraclesVissarion Fisikopoulos
 
Oracle-based algorithms for high-dimensional polytopes.
Oracle-based algorithms for high-dimensional polytopes.Oracle-based algorithms for high-dimensional polytopes.
Oracle-based algorithms for high-dimensional polytopes.Vissarion Fisikopoulos
 
RDFS with Attribute Equations via SPARQL Rewriting
RDFS with Attribute Equations via SPARQL RewritingRDFS with Attribute Equations via SPARQL Rewriting
RDFS with Attribute Equations via SPARQL RewritingStefan Bischof
 
Model Checking Base on Interoplation
Model Checking Base onInteroplationModel Checking Base onInteroplation
Model Checking Base on Interoplationleticia2307
 
Yuki Oyama - Markov assignment for a pedestrian activity-based network design...
Yuki Oyama - Markov assignment for a pedestrian activity-based network design...Yuki Oyama - Markov assignment for a pedestrian activity-based network design...
Yuki Oyama - Markov assignment for a pedestrian activity-based network design...Yuki Oyama
 

Tendances (13)

Presentation of volesti in eRum 2020
Presentation of volesti in eRum 2020 Presentation of volesti in eRum 2020
Presentation of volesti in eRum 2020
 
Mapping analysis
Mapping analysisMapping analysis
Mapping analysis
 
Numerical inflation: simulation of observational parameters
Numerical inflation: simulation of observational parametersNumerical inflation: simulation of observational parameters
Numerical inflation: simulation of observational parameters
 
Sampling Spectrahedra: Volume Approximation and Optimization
Sampling Spectrahedra: Volume Approximation and OptimizationSampling Spectrahedra: Volume Approximation and Optimization
Sampling Spectrahedra: Volume Approximation and Optimization
 
A Unifying Review of Gaussian Linear Models (Roweis 1999)
A Unifying Review of Gaussian Linear Models (Roweis 1999)A Unifying Review of Gaussian Linear Models (Roweis 1999)
A Unifying Review of Gaussian Linear Models (Roweis 1999)
 
Efficient Edge-Skeleton Computation for Polytopes Defined by Oracles
Efficient Edge-Skeleton Computation for Polytopes Defined by OraclesEfficient Edge-Skeleton Computation for Polytopes Defined by Oracles
Efficient Edge-Skeleton Computation for Polytopes Defined by Oracles
 
Oracle-based algorithms for high-dimensional polytopes.
Oracle-based algorithms for high-dimensional polytopes.Oracle-based algorithms for high-dimensional polytopes.
Oracle-based algorithms for high-dimensional polytopes.
 
Improving Spatial Codification in Semantic Segmentation
Improving Spatial Codification in Semantic SegmentationImproving Spatial Codification in Semantic Segmentation
Improving Spatial Codification in Semantic Segmentation
 
RDFS with Attribute Equations via SPARQL Rewriting
RDFS with Attribute Equations via SPARQL RewritingRDFS with Attribute Equations via SPARQL Rewriting
RDFS with Attribute Equations via SPARQL Rewriting
 
Real-world Applications of Symbolic Regression
Real-world Applications of Symbolic RegressionReal-world Applications of Symbolic Regression
Real-world Applications of Symbolic Regression
 
Model Checking Base on Interoplation
Model Checking Base onInteroplationModel Checking Base onInteroplation
Model Checking Base on Interoplation
 
The Origin of Grad-CAM
The Origin of Grad-CAMThe Origin of Grad-CAM
The Origin of Grad-CAM
 
Yuki Oyama - Markov assignment for a pedestrian activity-based network design...
Yuki Oyama - Markov assignment for a pedestrian activity-based network design...Yuki Oyama - Markov assignment for a pedestrian activity-based network design...
Yuki Oyama - Markov assignment for a pedestrian activity-based network design...
 

Similaire à "Faster Geometric Algorithms via Dynamic Determinant Computation."

Data Assimilation in Numerical Weather Prediction Models
Data Assimilation in Numerical Weather Prediction ModelsData Assimilation in Numerical Weather Prediction Models
Data Assimilation in Numerical Weather Prediction ModelsAfrica Perianez
 
Large Scale Recommendation: a view from the Trenches
Large Scale Recommendation: a view from the TrenchesLarge Scale Recommendation: a view from the Trenches
Large Scale Recommendation: a view from the TrenchesAnne-Marie Tousch
 
Particle Filters and Applications in Computer Vision
Particle Filters and Applications in Computer VisionParticle Filters and Applications in Computer Vision
Particle Filters and Applications in Computer Visionzukun
 
Parabolic Restricted Three Body Problem
Parabolic Restricted Three Body ProblemParabolic Restricted Three Body Problem
Parabolic Restricted Three Body ProblemEsther Barrabés Vera
 
Particle filtering in Computer Vision (2003)
Particle filtering in Computer Vision (2003)Particle filtering in Computer Vision (2003)
Particle filtering in Computer Vision (2003)zukun
 
The slides of my Ph.D. defense
The slides of my Ph.D. defenseThe slides of my Ph.D. defense
The slides of my Ph.D. defenseApostolos Chalkis
 
LupoPasini_SIAMCSE15
LupoPasini_SIAMCSE15LupoPasini_SIAMCSE15
LupoPasini_SIAMCSE15Karen Pao
 
Show off the efficiency of dai-liao method in merging technology for monotono...
Show off the efficiency of dai-liao method in merging technology for monotono...Show off the efficiency of dai-liao method in merging technology for monotono...
Show off the efficiency of dai-liao method in merging technology for monotono...nooriasukmaningtyas
 
Fast Multi-frame Stereo Scene Flow with Motion Segmentation (CVPR 2017)
Fast Multi-frame Stereo Scene Flow with Motion Segmentation (CVPR 2017)Fast Multi-frame Stereo Scene Flow with Motion Segmentation (CVPR 2017)
Fast Multi-frame Stereo Scene Flow with Motion Segmentation (CVPR 2017)Tatsunori Taniai
 
Elementary Landscape Decomposition of the Hamiltonian Path Optimization Problem
Elementary Landscape Decomposition of the Hamiltonian Path Optimization ProblemElementary Landscape Decomposition of the Hamiltonian Path Optimization Problem
Elementary Landscape Decomposition of the Hamiltonian Path Optimization Problemjfrchicanog
 
Basics of Integration and Derivatives
Basics of Integration and DerivativesBasics of Integration and Derivatives
Basics of Integration and DerivativesFaisal Waqar
 
Применение машинного обучения для навигации и управления роботами
Применение машинного обучения для навигации и управления роботамиПрименение машинного обучения для навигации и управления роботами
Применение машинного обучения для навигации и управления роботамиSkolkovo Robotics Center
 
Hierarchical Deterministic Quadrature Methods for Option Pricing under the Ro...
Hierarchical Deterministic Quadrature Methods for Option Pricing under the Ro...Hierarchical Deterministic Quadrature Methods for Option Pricing under the Ro...
Hierarchical Deterministic Quadrature Methods for Option Pricing under the Ro...Chiheb Ben Hammouda
 
14th Athens Colloquium on Algorithms and Complexity (ACAC19)
14th Athens Colloquium on Algorithms and Complexity (ACAC19)14th Athens Colloquium on Algorithms and Complexity (ACAC19)
14th Athens Colloquium on Algorithms and Complexity (ACAC19)Apostolos Chalkis
 

Similaire à "Faster Geometric Algorithms via Dynamic Determinant Computation." (20)

Data Assimilation in Numerical Weather Prediction Models
Data Assimilation in Numerical Weather Prediction ModelsData Assimilation in Numerical Weather Prediction Models
Data Assimilation in Numerical Weather Prediction Models
 
CLIM Program: Remote Sensing Workshop, Statistical Emulation with Dimension R...
CLIM Program: Remote Sensing Workshop, Statistical Emulation with Dimension R...CLIM Program: Remote Sensing Workshop, Statistical Emulation with Dimension R...
CLIM Program: Remote Sensing Workshop, Statistical Emulation with Dimension R...
 
CLIM: Transition Workshop - Statistical Emulation with Dimension Reduction fo...
CLIM: Transition Workshop - Statistical Emulation with Dimension Reduction fo...CLIM: Transition Workshop - Statistical Emulation with Dimension Reduction fo...
CLIM: Transition Workshop - Statistical Emulation with Dimension Reduction fo...
 
Large Scale Recommendation: a view from the Trenches
Large Scale Recommendation: a view from the TrenchesLarge Scale Recommendation: a view from the Trenches
Large Scale Recommendation: a view from the Trenches
 
Particle Filters and Applications in Computer Vision
Particle Filters and Applications in Computer VisionParticle Filters and Applications in Computer Vision
Particle Filters and Applications in Computer Vision
 
Parabolic Restricted Three Body Problem
Parabolic Restricted Three Body ProblemParabolic Restricted Three Body Problem
Parabolic Restricted Three Body Problem
 
Talk iccf 19_ben_hammouda
Talk iccf 19_ben_hammoudaTalk iccf 19_ben_hammouda
Talk iccf 19_ben_hammouda
 
Particle filtering in Computer Vision (2003)
Particle filtering in Computer Vision (2003)Particle filtering in Computer Vision (2003)
Particle filtering in Computer Vision (2003)
 
The slides of my Ph.D. defense
The slides of my Ph.D. defenseThe slides of my Ph.D. defense
The slides of my Ph.D. defense
 
LupoPasini_SIAMCSE15
LupoPasini_SIAMCSE15LupoPasini_SIAMCSE15
LupoPasini_SIAMCSE15
 
Show off the efficiency of dai-liao method in merging technology for monotono...
Show off the efficiency of dai-liao method in merging technology for monotono...Show off the efficiency of dai-liao method in merging technology for monotono...
Show off the efficiency of dai-liao method in merging technology for monotono...
 
Fast Multi-frame Stereo Scene Flow with Motion Segmentation (CVPR 2017)
Fast Multi-frame Stereo Scene Flow with Motion Segmentation (CVPR 2017)Fast Multi-frame Stereo Scene Flow with Motion Segmentation (CVPR 2017)
Fast Multi-frame Stereo Scene Flow with Motion Segmentation (CVPR 2017)
 
Elementary Landscape Decomposition of the Hamiltonian Path Optimization Problem
Elementary Landscape Decomposition of the Hamiltonian Path Optimization ProblemElementary Landscape Decomposition of the Hamiltonian Path Optimization Problem
Elementary Landscape Decomposition of the Hamiltonian Path Optimization Problem
 
Basics of Integration and Derivatives
Basics of Integration and DerivativesBasics of Integration and Derivatives
Basics of Integration and Derivatives
 
In792(2)
In792(2)In792(2)
In792(2)
 
Применение машинного обучения для навигации и управления роботами
Применение машинного обучения для навигации и управления роботамиПрименение машинного обучения для навигации и управления роботами
Применение машинного обучения для навигации и управления роботами
 
usingqcomp.pptx
usingqcomp.pptxusingqcomp.pptx
usingqcomp.pptx
 
Hierarchical Deterministic Quadrature Methods for Option Pricing under the Ro...
Hierarchical Deterministic Quadrature Methods for Option Pricing under the Ro...Hierarchical Deterministic Quadrature Methods for Option Pricing under the Ro...
Hierarchical Deterministic Quadrature Methods for Option Pricing under the Ro...
 
14th Athens Colloquium on Algorithms and Complexity (ACAC19)
14th Athens Colloquium on Algorithms and Complexity (ACAC19)14th Athens Colloquium on Algorithms and Complexity (ACAC19)
14th Athens Colloquium on Algorithms and Complexity (ACAC19)
 
Volume computation and applications
Volume computation and applications Volume computation and applications
Volume computation and applications
 

Plus de Vissarion Fisikopoulos

"Mesh of Periodic Minimal Surfaces in CGAL."
"Mesh of Periodic Minimal Surfaces in CGAL.""Mesh of Periodic Minimal Surfaces in CGAL."
"Mesh of Periodic Minimal Surfaces in CGAL."Vissarion Fisikopoulos
 
"Regular triangularions and resultant polytopes."
"Regular triangularions and resultant polytopes." "Regular triangularions and resultant polytopes."
"Regular triangularions and resultant polytopes." Vissarion Fisikopoulos
 
"Exact and approximate algorithms for resultant polytopes."
"Exact and approximate algorithms for resultant polytopes." "Exact and approximate algorithms for resultant polytopes."
"Exact and approximate algorithms for resultant polytopes." Vissarion Fisikopoulos
 
"An output-sensitive algorithm for computing projections of resultant polytop...
"An output-sensitive algorithm for computing projections of resultant polytop..."An output-sensitive algorithm for computing projections of resultant polytop...
"An output-sensitive algorithm for computing projections of resultant polytop...Vissarion Fisikopoulos
 
Efficient Volume and Edge-Skeleton Computation for Polytopes Given by Oracles
Efficient Volume and Edge-Skeleton Computation for Polytopes Given by OraclesEfficient Volume and Edge-Skeleton Computation for Polytopes Given by Oracles
Efficient Volume and Edge-Skeleton Computation for Polytopes Given by OraclesVissarion Fisikopoulos
 
"Combinatorics of 4-dimensional resultant polytopes"
"Combinatorics of 4-dimensional resultant polytopes""Combinatorics of 4-dimensional resultant polytopes"
"Combinatorics of 4-dimensional resultant polytopes"Vissarion Fisikopoulos
 
High-dimensional polytopes defined by oracles: algorithms, computations and a...
High-dimensional polytopes defined by oracles: algorithms, computations and a...High-dimensional polytopes defined by oracles: algorithms, computations and a...
High-dimensional polytopes defined by oracles: algorithms, computations and a...Vissarion Fisikopoulos
 
Working with spatial trajectories in Boost Geometry
Working with spatial trajectories in Boost GeometryWorking with spatial trajectories in Boost Geometry
Working with spatial trajectories in Boost GeometryVissarion Fisikopoulos
 
High-dimensional sampling and volume computation
High-dimensional sampling and volume computationHigh-dimensional sampling and volume computation
High-dimensional sampling and volume computationVissarion Fisikopoulos
 
Conctructing Polytopes via a Vertex Oracle
Conctructing Polytopes via a Vertex OracleConctructing Polytopes via a Vertex Oracle
Conctructing Polytopes via a Vertex OracleVissarion Fisikopoulos
 
High-dimensional polytopes defined by oracles: algorithms, computations and a...
High-dimensional polytopes defined by oracles: algorithms, computations and a...High-dimensional polytopes defined by oracles: algorithms, computations and a...
High-dimensional polytopes defined by oracles: algorithms, computations and a...Vissarion Fisikopoulos
 
Polyhedral computations in computational algebraic geometry and optimization
Polyhedral computations in computational algebraic geometry and optimizationPolyhedral computations in computational algebraic geometry and optimization
Polyhedral computations in computational algebraic geometry and optimizationVissarion Fisikopoulos
 
The Newton polytope of the sparse resultant
The Newton polytope of the sparse resultantThe Newton polytope of the sparse resultant
The Newton polytope of the sparse resultantVissarion Fisikopoulos
 
Volume and edge skeleton computation in high dimensions
Volume and edge skeleton computation in high dimensionsVolume and edge skeleton computation in high dimensions
Volume and edge skeleton computation in high dimensionsVissarion Fisikopoulos
 
Efficient Random-Walk Methods forApproximating Polytope Volume
Efficient Random-Walk Methods forApproximating Polytope VolumeEfficient Random-Walk Methods forApproximating Polytope Volume
Efficient Random-Walk Methods forApproximating Polytope VolumeVissarion Fisikopoulos
 
A new practical algorithm for volume estimation using annealing of convex bodies
A new practical algorithm for volume estimation using annealing of convex bodiesA new practical algorithm for volume estimation using annealing of convex bodies
A new practical algorithm for volume estimation using annealing of convex bodiesVissarion Fisikopoulos
 
Geodesic algorithms: an experimental study
Geodesic algorithms: an experimental studyGeodesic algorithms: an experimental study
Geodesic algorithms: an experimental studyVissarion Fisikopoulos
 
The Earth is not flat; but it's not round either (Geography on Boost.Geometry)
The Earth is not flat; but it's not round either (Geography on Boost.Geometry)The Earth is not flat; but it's not round either (Geography on Boost.Geometry)
The Earth is not flat; but it's not round either (Geography on Boost.Geometry)Vissarion Fisikopoulos
 
An algorithm for computing resultant polytopes
An algorithm for computing resultant polytopesAn algorithm for computing resultant polytopes
An algorithm for computing resultant polytopesVissarion Fisikopoulos
 

Plus de Vissarion Fisikopoulos (20)

"Mesh of Periodic Minimal Surfaces in CGAL."
"Mesh of Periodic Minimal Surfaces in CGAL.""Mesh of Periodic Minimal Surfaces in CGAL."
"Mesh of Periodic Minimal Surfaces in CGAL."
 
"Regular triangularions and resultant polytopes."
"Regular triangularions and resultant polytopes." "Regular triangularions and resultant polytopes."
"Regular triangularions and resultant polytopes."
 
"Exact and approximate algorithms for resultant polytopes."
"Exact and approximate algorithms for resultant polytopes." "Exact and approximate algorithms for resultant polytopes."
"Exact and approximate algorithms for resultant polytopes."
 
"An output-sensitive algorithm for computing projections of resultant polytop...
"An output-sensitive algorithm for computing projections of resultant polytop..."An output-sensitive algorithm for computing projections of resultant polytop...
"An output-sensitive algorithm for computing projections of resultant polytop...
 
Efficient Volume and Edge-Skeleton Computation for Polytopes Given by Oracles
Efficient Volume and Edge-Skeleton Computation for Polytopes Given by OraclesEfficient Volume and Edge-Skeleton Computation for Polytopes Given by Oracles
Efficient Volume and Edge-Skeleton Computation for Polytopes Given by Oracles
 
"Combinatorics of 4-dimensional resultant polytopes"
"Combinatorics of 4-dimensional resultant polytopes""Combinatorics of 4-dimensional resultant polytopes"
"Combinatorics of 4-dimensional resultant polytopes"
 
High-dimensional polytopes defined by oracles: algorithms, computations and a...
High-dimensional polytopes defined by oracles: algorithms, computations and a...High-dimensional polytopes defined by oracles: algorithms, computations and a...
High-dimensional polytopes defined by oracles: algorithms, computations and a...
 
Working with spatial trajectories in Boost Geometry
Working with spatial trajectories in Boost GeometryWorking with spatial trajectories in Boost Geometry
Working with spatial trajectories in Boost Geometry
 
High-dimensional sampling and volume computation
High-dimensional sampling and volume computationHigh-dimensional sampling and volume computation
High-dimensional sampling and volume computation
 
Conctructing Polytopes via a Vertex Oracle
Conctructing Polytopes via a Vertex OracleConctructing Polytopes via a Vertex Oracle
Conctructing Polytopes via a Vertex Oracle
 
High-dimensional polytopes defined by oracles: algorithms, computations and a...
High-dimensional polytopes defined by oracles: algorithms, computations and a...High-dimensional polytopes defined by oracles: algorithms, computations and a...
High-dimensional polytopes defined by oracles: algorithms, computations and a...
 
Enumeration of 2-level polytopes
Enumeration of 2-level polytopesEnumeration of 2-level polytopes
Enumeration of 2-level polytopes
 
Polyhedral computations in computational algebraic geometry and optimization
Polyhedral computations in computational algebraic geometry and optimizationPolyhedral computations in computational algebraic geometry and optimization
Polyhedral computations in computational algebraic geometry and optimization
 
The Newton polytope of the sparse resultant
The Newton polytope of the sparse resultantThe Newton polytope of the sparse resultant
The Newton polytope of the sparse resultant
 
Volume and edge skeleton computation in high dimensions
Volume and edge skeleton computation in high dimensionsVolume and edge skeleton computation in high dimensions
Volume and edge skeleton computation in high dimensions
 
Efficient Random-Walk Methods forApproximating Polytope Volume
Efficient Random-Walk Methods forApproximating Polytope VolumeEfficient Random-Walk Methods forApproximating Polytope Volume
Efficient Random-Walk Methods forApproximating Polytope Volume
 
A new practical algorithm for volume estimation using annealing of convex bodies
A new practical algorithm for volume estimation using annealing of convex bodiesA new practical algorithm for volume estimation using annealing of convex bodies
A new practical algorithm for volume estimation using annealing of convex bodies
 
Geodesic algorithms: an experimental study
Geodesic algorithms: an experimental studyGeodesic algorithms: an experimental study
Geodesic algorithms: an experimental study
 
The Earth is not flat; but it's not round either (Geography on Boost.Geometry)
The Earth is not flat; but it's not round either (Geography on Boost.Geometry)The Earth is not flat; but it's not round either (Geography on Boost.Geometry)
The Earth is not flat; but it's not round either (Geography on Boost.Geometry)
 
An algorithm for computing resultant polytopes
An algorithm for computing resultant polytopesAn algorithm for computing resultant polytopes
An algorithm for computing resultant polytopes
 

Dernier

Genetics and epigenetics of ADHD and comorbid conditions
Genetics and epigenetics of ADHD and comorbid conditionsGenetics and epigenetics of ADHD and comorbid conditions
Genetics and epigenetics of ADHD and comorbid conditionsbassianu17
 
Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.Silpa
 
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptxTHE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptxANSARKHAN96
 
Atp synthase , Atp synthase complex 1 to 4.
Atp synthase , Atp synthase complex 1 to 4.Atp synthase , Atp synthase complex 1 to 4.
Atp synthase , Atp synthase complex 1 to 4.Silpa
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...Scintica Instrumentation
 
Zoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfZoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfSumit Kumar yadav
 
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptxPSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptxSuji236384
 
Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Silpa
 
LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.Silpa
 
Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.Silpa
 
Human genetics..........................pptx
Human genetics..........................pptxHuman genetics..........................pptx
Human genetics..........................pptxSilpa
 
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptxClimate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptxDiariAli
 
CYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxSilpa
 
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate ProfessorThyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate Professormuralinath2
 
Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Silpa
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY1301aanya
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learninglevieagacer
 
Dr. E. Muralinath_ Blood indices_clinical aspects
Dr. E. Muralinath_ Blood indices_clinical  aspectsDr. E. Muralinath_ Blood indices_clinical  aspects
Dr. E. Muralinath_ Blood indices_clinical aspectsmuralinath2
 

Dernier (20)

Genetics and epigenetics of ADHD and comorbid conditions
Genetics and epigenetics of ADHD and comorbid conditionsGenetics and epigenetics of ADHD and comorbid conditions
Genetics and epigenetics of ADHD and comorbid conditions
 
Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.
 
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptxTHE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
 
Atp synthase , Atp synthase complex 1 to 4.
Atp synthase , Atp synthase complex 1 to 4.Atp synthase , Atp synthase complex 1 to 4.
Atp synthase , Atp synthase complex 1 to 4.
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
 
Zoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfZoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdf
 
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptxPSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
 
Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.
 
LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.
 
Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.
 
Human genetics..........................pptx
Human genetics..........................pptxHuman genetics..........................pptx
Human genetics..........................pptx
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptxClimate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
 
CYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptx
 
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate ProfessorThyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
 
Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.
 
Site Acceptance Test .
Site Acceptance Test                    .Site Acceptance Test                    .
Site Acceptance Test .
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
 
Dr. E. Muralinath_ Blood indices_clinical aspects
Dr. E. Muralinath_ Blood indices_clinical  aspectsDr. E. Muralinath_ Blood indices_clinical  aspects
Dr. E. Muralinath_ Blood indices_clinical aspects
 

"Faster Geometric Algorithms via Dynamic Determinant Computation."

  • 1. Faster Geometric Algorithms via Dynamic Determinant Computation Faster Geometric Algorithms via Dynamic Determinant Computation Vissarion Fisikopoulos joint work with L. Pe˜naranda (now IMPA, Rio de Janeiro) Department of Informatics, University of Athens, Greece ESA, Ljubljana, 14.Sep.2012 V.Fisikopoulos | ESA’12 1 / 19
  • 2. Faster Geometric Algorithms via Dynamic Determinant Computation Geometric algorithms and predicates Setting geometric algorithms → sequence of geometric predicates many geometric predicates → determinants Hi-dim: as dimension grows predicates become more expensive V.Fisikopoulos | ESA’12 2 / 19
  • 3. Faster Geometric Algorithms via Dynamic Determinant Computation Geometric algorithms and predicates Setting geometric algorithms → sequence of geometric predicates many geometric predicates → determinants Hi-dim: as dimension grows predicates become more expensive Examples Orientation: Does c lie on, left or right of ab? ax ay 1 bx by 1 cx cy 1 0 a b c V.Fisikopoulos | ESA’12 2 / 19
  • 4. Faster Geometric Algorithms via Dynamic Determinant Computation Geometric algorithms and predicates Setting geometric algorithms → sequence of geometric predicates many geometric predicates → determinants Hi-dim: as dimension grows predicates become more expensive Examples inCircle: Does d lie on, inside or outside of abc? ax ay a2 x + a2 y 1 bx by b2 x + b2 y 1 cx cy c2 x + c2 y 1 dx dy d2 x + d2 y 1 0 a b c d V.Fisikopoulos | ESA’12 2 / 19
  • 5. Faster Geometric Algorithms via Dynamic Determinant Computation | Motivation and existing work Outline 1 Motivation and existing work 2 Dynamic determinant computation 3 Geometric algorithms: convex hull 4 Implementation - experiments V.Fisikopoulos | ESA’12 3 / 19
  • 6. Faster Geometric Algorithms via Dynamic Determinant Computation | Motivation and existing work Outline 1 Motivation and existing work 2 Dynamic determinant computation 3 Geometric algorithms: convex hull 4 Implementation - experiments V.Fisikopoulos | ESA’12 4 / 19
  • 7. Faster Geometric Algorithms via Dynamic Determinant Computation | Motivation and existing work Motivation Algorithms for resultant polytopes [Emiris,F,Konaxis,Pe˜naranda SoCG’12] [YuJensen’12] (discriminant polytopes [Emiris, F, Dickenstein]) Respol: compute resultant, discriminant polytopes up to dim. 6 4-d resultant polytope V.Fisikopoulos | ESA’12 5 / 19
  • 8. Faster Geometric Algorithms via Dynamic Determinant Computation | Motivation and existing work Motivation Algorithms for resultant polytopes [Emiris,F,Konaxis,Pe˜naranda SoCG’12] [YuJensen’12] (discriminant polytopes [Emiris, F, Dickenstein]) Respol: compute resultant, discriminant polytopes up to dim. 6 Counting lattice points in polyhedra [Barvinock’99] [DeLoera et.al’04], Integer convex optimization [Gr¨otschel,Lov´asz,Schrijver’88] 4-d resultant polytope V.Fisikopoulos | ESA’12 5 / 19
  • 9. Faster Geometric Algorithms via Dynamic Determinant Computation | Motivation and existing work Motivation Algorithms for resultant polytopes [Emiris,F,Konaxis,Pe˜naranda SoCG’12] [YuJensen’12] (discriminant polytopes [Emiris, F, Dickenstein]) Respol: compute resultant, discriminant polytopes up to dim. 6 Counting lattice points in polyhedra [Barvinock’99] [DeLoera et.al’04], Integer convex optimization [Gr¨otschel,Lov´asz,Schrijver’88] 4-d resultant polytope Focusing on . . . Hi-dim CompGeom (3 < d < 10) Computation over the integers V.Fisikopoulos | ESA’12 5 / 19
  • 10. Faster Geometric Algorithms via Dynamic Determinant Computation | Motivation and existing work Existing work Determinant: exact computation Given matrix A ⊆ Rd×d Theory: State-of-the-art O(dω), ω ∼ 2.37 [CoppersmithWinograd90] Practice: Gaussian elimination, O(d3) V.Fisikopoulos | ESA’12 6 / 19
  • 11. Faster Geometric Algorithms via Dynamic Determinant Computation | Motivation and existing work Existing work Determinant: exact computation Given matrix A ⊆ Rd×d Theory: State-of-the-art O(dω), ω ∼ 2.37 [CoppersmithWinograd90] Practice: Gaussian elimination, O(d3) Division-free determinant algorithms Laplace (cofactor) expansion, O(d!) [Rote01], O(d4) [Bird11], O(dω+1) V.Fisikopoulos | ESA’12 6 / 19
  • 12. Faster Geometric Algorithms via Dynamic Determinant Computation | Motivation and existing work Existing work Determinant: exact computation Given matrix A ⊆ Rd×d Theory: State-of-the-art O(dω), ω ∼ 2.37 [CoppersmithWinograd90] Practice: Gaussian elimination, O(d3) Division-free determinant algorithms Laplace (cofactor) expansion, O(d!) [Rote01], O(d4) [Bird11], O(dω+1) Dynamic determinant computation Dynamic transitive closure in graphs [Sankowski FOCS’04] V.Fisikopoulos | ESA’12 6 / 19
  • 13. Faster Geometric Algorithms via Dynamic Determinant Computation | Dynamic determinant computation Outline 1 Motivation and existing work 2 Dynamic determinant computation 3 Geometric algorithms: convex hull 4 Implementation - experiments V.Fisikopoulos | ESA’12 7 / 19
  • 14. Faster Geometric Algorithms via Dynamic Determinant Computation | Dynamic determinant computation Dynamic Determinant Computations One-column update problem Given matrix A ⊆ Rd×d, answer queries for det(A) when i-th column of A, (A)i, is replaced by u ⊆ Rd. V.Fisikopoulos | ESA’12 8 / 19
  • 15. Faster Geometric Algorithms via Dynamic Determinant Computation | Dynamic determinant computation Dynamic Determinant Computations One-column update problem Given matrix A ⊆ Rd×d, answer queries for det(A) when i-th column of A, (A)i, is replaced by u ⊆ Rd. Solution: Sherman-Morrison formula (1950) A −1 = A−1 − (A−1(u − (A)i)) (eT i A−1) 1 + eT i A−1(u − (A)i) det(A ) = (1 + eT i A−1 (u − (A)i)det(A) Only vector×vector, vector×matrix → Complexity: O(d2) Algorithm: dyn inv V.Fisikopoulos | ESA’12 8 / 19
  • 16. Faster Geometric Algorithms via Dynamic Determinant Computation | Dynamic determinant computation Dynamic Determinant Computations One-column update problem Given matrix A ⊆ Rd×d, answer queries for det(A) when i-th column of A, (A)i, is replaced by u ⊆ Rd. Variant Sherman-Morrison formulas Q: What happens if we work over the integers? V.Fisikopoulos | ESA’12 8 / 19
  • 17. Faster Geometric Algorithms via Dynamic Determinant Computation | Dynamic determinant computation Dynamic Determinant Computations One-column update problem Given matrix A ⊆ Rd×d, answer queries for det(A) when i-th column of A, (A)i, is replaced by u ⊆ Rd. Variant Sherman-Morrison formulas Q: What happens if we work over the integers? A: Use the adjoint of A (Aadj) → exact divisions V.Fisikopoulos | ESA’12 8 / 19
  • 18. Faster Geometric Algorithms via Dynamic Determinant Computation | Dynamic determinant computation Dynamic Determinant Computations One-column update problem Given matrix A ⊆ Rd×d, answer queries for det(A) when i-th column of A, (A)i, is replaced by u ⊆ Rd. Variant Sherman-Morrison formulas Q: What happens if we work over the integers? A: Use the adjoint of A (Aadj) → exact divisions Complexity: O(d2) Algorithm: dyn adj V.Fisikopoulos | ESA’12 8 / 19
  • 19. Faster Geometric Algorithms via Dynamic Determinant Computation | Geometric algorithms: convex hull Outline 1 Motivation and existing work 2 Dynamic determinant computation 3 Geometric algorithms: convex hull 4 Implementation - experiments V.Fisikopoulos | ESA’12 9 / 19
  • 20. Faster Geometric Algorithms via Dynamic Determinant Computation | Geometric algorithms: convex hull The convex hull problem Definition The convex hull of A ⊆ Rd is the smallest convex set containing A. Example V.Fisikopoulos | ESA’12 10 / 19
  • 21. Faster Geometric Algorithms via Dynamic Determinant Computation | Geometric algorithms: convex hull The convex hull problem Definition The convex hull of A ⊆ Rd is the smallest convex set containing A. Incremental convex hull - Beneath-and-Beyond connect each outer point to the visible segments visibility test = orientation test V.Fisikopoulos | ESA’12 10 / 19
  • 22. Faster Geometric Algorithms via Dynamic Determinant Computation | Geometric algorithms: convex hull The convex hull problem Definition The convex hull of A ⊆ Rd is the smallest convex set containing A. Incremental convex hull - Beneath-and-Beyond connect each outer point to the visible segments visibility test = orientation test V.Fisikopoulos | ESA’12 10 / 19
  • 23. Faster Geometric Algorithms via Dynamic Determinant Computation | Geometric algorithms: convex hull The convex hull problem Definition The convex hull of A ⊆ Rd is the smallest convex set containing A. Incremental convex hull - Beneath-and-Beyond connect each outer point to the visible segments visibility test = orientation test V.Fisikopoulos | ESA’12 10 / 19
  • 24. Faster Geometric Algorithms via Dynamic Determinant Computation | Geometric algorithms: convex hull The convex hull problem Definition The convex hull of A ⊆ Rd is the smallest convex set containing A. Incremental convex hull - Beneath-and-Beyond connect each outer point to the visible segments visibility test = orientation test V.Fisikopoulos | ESA’12 10 / 19
  • 25. Faster Geometric Algorithms via Dynamic Determinant Computation | Geometric algorithms: convex hull The convex hull problem Definition The convex hull of A ⊆ Rd is the smallest convex set containing A. Incremental convex hull - Beneath-and-Beyond connect each outer point to the visible segments visibility test = orientation test V.Fisikopoulos | ESA’12 10 / 19
  • 26. Faster Geometric Algorithms via Dynamic Determinant Computation | Geometric algorithms: convex hull The convex hull problem Definition The convex hull of A ⊆ Rd is the smallest convex set containing A. Incremental convex hull - Beneath-and-Beyond connect each outer point to the visible segments visibility test = orientation test V.Fisikopoulos | ESA’12 10 / 19
  • 27. Faster Geometric Algorithms via Dynamic Determinant Computation | Geometric algorithms: convex hull The convex hull problem Definition The convex hull of A ⊆ Rd is the smallest convex set containing A. Incremental convex hull - Beneath-and-Beyond connect each outer point to the visible segments visibility test = orientation test V.Fisikopoulos | ESA’12 10 / 19
  • 28. Faster Geometric Algorithms via Dynamic Determinant Computation | Geometric algorithms: convex hull The convex hull problem Definition The convex hull of A ⊆ Rd is the smallest convex set containing A. Incremental convex hull - Beneath-and-Beyond connect each outer point to the visible segments visibility test = orientation test V.Fisikopoulos | ESA’12 10 / 19
  • 29. Faster Geometric Algorithms via Dynamic Determinant Computation | Geometric algorithms: convex hull The convex hull problem Definition The convex hull of A ⊆ Rd is the smallest convex set containing A. Incremental convex hull - Beneath-and-Beyond connect each outer point to the visible segments visibility test = orientation test V.Fisikopoulos | ESA’12 10 / 19
  • 30. Faster Geometric Algorithms via Dynamic Determinant Computation | Geometric algorithms: convex hull The convex hull problem Definition The convex hull of A ⊆ Rd is the smallest convex set containing A. Incremental convex hull - Beneath-and-Beyond connect each outer point to the visible segments visibility test = orientation test V.Fisikopoulos | ESA’12 10 / 19
  • 31. Faster Geometric Algorithms via Dynamic Determinant Computation | Geometric algorithms: convex hull The convex hull problem Definition The convex hull of A ⊆ Rd is the smallest convex set containing A. Incremental convex hull - Beneath-and-Beyond connect each outer point to the visible segments visibility test = orientation test Similar problems: Delaunay, regular triangulations, point-location V.Fisikopoulos | ESA’12 10 / 19
  • 32. Faster Geometric Algorithms via Dynamic Determinant Computation | Geometric algorithms: convex hull The convex hull problem: REVISITED convex hull → sequence of similar orientation predicates take advantage of computations done in previous steps V.Fisikopoulos | ESA’12 11 / 19
  • 33. Faster Geometric Algorithms via Dynamic Determinant Computation | Geometric algorithms: convex hull The convex hull problem: REVISITED convex hull → sequence of similar orientation predicates take advantage of computations done in previous steps Incremental convex hull construction → 1-column updates p2 p5 p2 p4 p5 1 1 1 A = p1 p3 p4 Orientation(p2, p4, p5) = det(A) V.Fisikopoulos | ESA’12 11 / 19
  • 34. Faster Geometric Algorithms via Dynamic Determinant Computation | Geometric algorithms: convex hull The convex hull problem: REVISITED convex hull → sequence of similar orientation predicates take advantage of computations done in previous steps Incremental convex hull construction → 1-column updates p2 p5 p6 p4 p5 1 1 1 A = p1 p3 p4 p6 Orientation(p6, p4, p5) = det(A ) in O(d2) V.Fisikopoulos | ESA’12 11 / 19
  • 35. Faster Geometric Algorithms via Dynamic Determinant Computation | Geometric algorithms: convex hull The convex hull problem: REVISITED convex hull → sequence of similar orientation predicates take advantage of computations done in previous steps Incremental convex hull construction → 1-column updates p2 p5 p6 p4 p5 1 1 1 A = p1 p3 p4 p6 Orientation(p6, p4, p5) = det(A ) in O(d2) Store det(A), A−1 + update det(A ), A −1 (Sherman-Morrison) V.Fisikopoulos | ESA’12 11 / 19
  • 36. Faster Geometric Algorithms via Dynamic Determinant Computation | Geometric algorithms: convex hull Dynamic determinants in geometric algorithms Given A ⊆ Rd, n = |A| and t = the number of cells Theorem Orientation predicates in increm. convex hull: O(d2) (space: O(d2t)) Proof: update det(A ), A −1 Corollary Orientation predicates involved in point-location: O(d) (space: O(d2t)) Proof: query point never enters data-set → update only det(A ) Corollary Incremental convex hull and volume comput.: O(dω+1nt) → O(d3nt) V.Fisikopoulos | ESA’12 12 / 19
  • 37. Faster Geometric Algorithms via Dynamic Determinant Computation | Implementation - experiments Outline 1 Motivation and existing work 2 Dynamic determinant computation 3 Geometric algorithms: convex hull 4 Implementation - experiments V.Fisikopoulos | ESA’12 13 / 19
  • 38. Faster Geometric Algorithms via Dynamic Determinant Computation | Implementation - experiments Determinant implementation Dynamic determinant computation C++, GNU Multiple Precision arithmetic library (GMP) Implement dyn inv & dyn adj Exact determinant computation software LU decomposition (CGAL) optimized LU decomposition (Eigen) asymptotically optimal algorithms (LinBox) Maple’s default determinant algorithm (Maple 14) Bird’s algorithm (our implementation) Laplace (cofactor) expansion (our implementation) V.Fisikopoulos | ESA’12 14 / 19
  • 39. Faster Geometric Algorithms via Dynamic Determinant Computation | Implementation - experiments Determinant experiments 1-column updates in A ⊆ Qd×d (uniform distr. rational coefficients) d Bird CGAL Eigen Laplace Maple dyn inv dyn adj 3 .013 .021 .014 .008 .058 .046 .023 4 .046 .050 .033 .020 .105 .108 .042 5 .122 .110 .072 .056 .288 .213 .067 6 .268 .225 .137 .141 .597 .376 .102 7 .522 .412 .243 .993 .824 .613 .148 8 .930 .710 .390 – 1.176 .920 .210 9 1.520 1.140 .630 – 1.732 1.330 .310 10 2.380 1.740 .940 – 2.380 1.830 .430 spec: Intel Core i5-2400 3.1GHz, 6MB L2 cache, 8GB RAM, 64-bit Debian GNU/Linux V.Fisikopoulos | ESA’12 15 / 19
  • 40. Faster Geometric Algorithms via Dynamic Determinant Computation | Implementation - experiments Determinant experiments 1-column updates in A ⊆ Qd×d (uniform distr. integer coefficients) d Bird CGAL Eigen Laplace Linbox Maple dyn inv dyn adj 3 .002 .021 .013 .002 .872 .045 .030 .008 4 .012 .041 .028 .005 1.010 .094 .058 .015 5 .032 .080 .048 .016 1.103 .214 .119 .023 6 .072 .155 .092 .040 1.232 .602 .197 .033 7 .138 .253 .149 .277 1.435 .716 .322 .046 8 .244 .439 .247 – 1.626 .791 .486 .068 9 .408 .689 .376 – 1.862 .906 .700 .085 10 .646 1.031 .568 – 2.160 1.014 .982 .107 11 .956 1.485 .800 – 10.127 1.113 1.291 .133 12 1.379 2.091 1.139 – 13.101 1.280 1.731 .160 13 1.957 2.779 1.485 – – 1.399 2.078 .184 spec: Intel Core i5-2400 3.1GHz, 6MB L2 cache, 8GB RAM, 64-bit Debian GNU/Linux V.Fisikopoulos | ESA’12 15 / 19
  • 41. Faster Geometric Algorithms via Dynamic Determinant Computation | Implementation - experiments Convex hull implementation Hashed dynamic determinants dyn inv & dyn adj + hash table (dets & matrices) plug into geometric software → geometric predicates Convex hull software randomized incremental (triang/CGAL) beneath-and-beyond (bb) (polymake) double description method (cdd) gift-wrapping with reverse search (lrs) triang/CGAL + hashed dynamic determinants = hdch z or hdch q V.Fisikopoulos | ESA’12 16 / 19
  • 42. Faster Geometric Algorithms via Dynamic Determinant Computation | Implementation - experiments Convex hull experiments 6-dim points, integer coeffs uniformly distributed inside a 6-ball 0 10 20 30 40 50 60 70 100 150 200 250 300 350 400 450 500 Time(sec) Number of input points hdch_q hdch_z triang lrs bb cdd hdch q (hdch z) rational (integer) arithmetic drawback: memory consumption 500 6D points triang 0.1GB hdch z 2.8GB hdch q 3.8GB spec: Intel Core i5-2400 3.1GHz, 6MB L2 cache, 8GB RAM, 64-bit Debian GNU/Linux V.Fisikopoulos | ESA’12 17 / 19
  • 43. Faster Geometric Algorithms via Dynamic Determinant Computation | Implementation - experiments Point location experiments triangulation of A ⊆ Zd points uniformly distibuted on a d-ball surface 1K and 1000K query points uniformly distibuted on a d-cube d |A| preprocess ds mem # cells query time (sec) time (sec) (MB) triang 1K 1000K hdch z 8 120 45.20 6913 319438 0.41 392.55 triang 8 120 156.55 134 319438 14.42 14012.60 hdch z 9 70 45.69 6826 265874 0.28 276.90 triang 9 70 176.62 143 265874 13.80 13520.43 hdch z 10 50 43.45 6355 207190 0.27 217.45 triang 10 50 188.68 127 207190 14.40 14453.46 hdch z 11 39 38.82 5964 148846 0.18 189.56 triang 11 39 181.35 122 148846 14.41 14828.67 up to 78 times faster using up to 50 times more memory spec: Intel Core i5-2400 3.1GHz, 6MB L2 cache, 8GB RAM, 64-bit Debian GNU/Linux V.Fisikopoulos | ESA’12 18 / 19
  • 44. Faster Geometric Algorithms via Dynamic Determinant Computation | Implementation - experiments Conclusions and Future work Orientation predicates. CH: O(d2), point location: O(d) Efficient (division free) dynamic determinant implementation More efficient CH implementation, 78× speed-up in point location The code: http://hdch.sourceforge.net V.Fisikopoulos | ESA’12 19 / 19
  • 45. Faster Geometric Algorithms via Dynamic Determinant Computation | Implementation - experiments Conclusions and Future work Orientation predicates. CH: O(d2), point location: O(d) Efficient (division free) dynamic determinant implementation More efficient CH implementation, 78× speed-up in point location The code: http://hdch.sourceforge.net Future work Delaunay triangulations (inSphere predicate) overcome large memory consumption (hash table: clean periodically) filtered computations CGAL submission V.Fisikopoulos | ESA’12 19 / 19
  • 46. Faster Geometric Algorithms via Dynamic Determinant Computation | Implementation - experiments Conclusions and Future work Orientation predicates. CH: O(d2), point location: O(d) Efficient (division free) dynamic determinant implementation More efficient CH implementation, 78× speed-up in point location The code: http://hdch.sourceforge.net Future work Delaunay triangulations (inSphere predicate) overcome large memory consumption (hash table: clean periodically) filtered computations CGAL submission THANK YOU !!! V.Fisikopoulos | ESA’12 19 / 19