Ce diaporama a bien été signalé.
Le téléchargement de votre SlideShare est en cours. ×

Definición de Conjuntos.docx UNIDAD 2 YESSENIA DAZA 30353142.docx

Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
DEFINICIÓN DE CONJUNTOS.
UNIDAD 2
YESSENIA DAZA
Definición de Conjuntos.
Un conjunto es una colección de elementos. Normalmente están caracterizados por
compartir alguna ...
Operaciones con conjuntos.
Las operaciones con conjuntos también conocidas como álgebra de conjuntos, nos permiten
realiza...
Publicité
Publicité
Chargement dans…3
×

Consultez-les par la suite

1 sur 13 Publicité

Plus De Contenu Connexe

Similaire à Definición de Conjuntos.docx UNIDAD 2 YESSENIA DAZA 30353142.docx (20)

Plus récents (20)

Publicité

Definición de Conjuntos.docx UNIDAD 2 YESSENIA DAZA 30353142.docx

  1. 1. DEFINICIÓN DE CONJUNTOS. UNIDAD 2 YESSENIA DAZA
  2. 2. Definición de Conjuntos. Un conjunto es una colección de elementos. Normalmente están caracterizados por compartir alguna propiedad. Para que un conjunto esté bien definido debe ser posible discernir si un elemento arbitrario está o no en él Un conjunto es la agrupación de diferentes elementos que comparten entre sí características y propiedades semejantes. Estos elementos pueden ser sujetos u objetos, tales como números, canciones, meses, personas, etc. Por ejemplo: el conjunto de números primos o el conjunto de planetas del sistema solar. ¿Cómo se nombran los conjuntos en matemáticas? Cada conjunto se nombra con una letra MAYÚSCULA (A, B, C,...), y los elementos los cuales son cada uno de los objetos del conjunto, se nombran con letras minúsculas (a, b, c,...). ¿Cuáles son los tipos de conjuntos en matemáticas? Tipos de conjuntos Conjunto finito. Es aquel conjunto con cardinalidad definida. ... Conjunto infinito. Es aquél cuya cardinalidad no está definida, por ser demasiado grande para cuantificarlo. ...  Conjunto Vacío. ...  Conjuntos Equivalentes. ...  Conjuntos Iguales. ...  Conjuntos disjuntos. ...  Subconjuntos. ...  Subconjunto propio.
  3. 3. Operaciones con conjuntos. Las operaciones con conjuntos también conocidas como álgebra de conjuntos, nos permiten realizar operaciones sobre los conjuntos para obtener otro conjunto. De las operaciones con conjuntos veremos las siguientes unión, intersección, diferencia, diferencia simétrica y complemento. Unión o reunión de conjuntos. Es la operación que nos permite unir dos o más conjuntos para formar otro conjunto que contendrá a todos los elementos que queremos unir, pero sin que se repitan. Es decir, dado un conjunto A y un conjunto B, la unión de los conjuntos A y B será otro conjunto formado por todos los elementos de A, con todos los elementos de B sin repetir ningún elemento. El símbolo que se usa para indicar la operación de unión es el siguiente: ∪. Cuando usamos diagramas de Venn, para representar la unió de conjuntos, se sombrean los conjuntos que se unen o se forma uno nuevo. Luego se escribe por fuera la operación de unión. Ejemplo 1. Dados dos conjuntos A={1,2,3,4,5,6,7,} y B={8,9,10,11} la unión de estos conjuntos será A∪B={1,2,3,4,5,6,7,8,9,10,11}. Usando diagramas de Venn se tendría lo siguiente:
  4. 4. También se puede graficar del siguiente modo: Ejemplo 2. Dados dos conjuntos A={1,2,3,4,5} y B={4,5,6,7,8,9} la unión de estos conjuntos será A∪B={1,2,3,4,5,6,7,8,9}. Usando diagramas de Venn se tendría lo siguiente: Ejemplo 3. Dados dos conjuntos F={x/x estudiantes que juegan fútbol} y B={x/x estudiantes que juegan básquet}, la unión será F∪B={x/x estudiantes que juegan fútbol o básquet}. Usando diagramas de Venn se tendría lo siguiente:
  5. 5. Ejemplo 4. Dados los dos conjuntos A={3, 5, 6, 7} y B={5,6}, en donde B está incluido en A, la unión será AUB={3,5,6,7}. Usando diagramas de Venn se tendría Intersección de conjuntos. Es la operación que nos permite formar un conjunto, sólo con los elementos comunes involucrados en la operación. Es decir dados dos conjuntos A y B, la de intersección de los conjuntos A y B, estará formado por los elementos de A y los elementos de B que sean comunes, los elementos no comunes A y B, será excluidos. El símbolo que se usa para indicar la operación de intersección es el siguiente: ∩. Ejemplo 1.
  6. 6. Dados dos conjuntos A={1,2,3,4,5} y B={4,5,6,7,8,9} la intersección de estos conjuntos será A∩B={4,5}. Usando diagramas de Venn se tendría lo siguiente: Ejemplo 2. Dados dos conjuntos A={x/x estudiantes que juegan fútbol} y B={x/x estudiantes que juegan básquet}, la intersección será F∩B={x/x estudiantes que juegan fútbol y básquet}. Usando diagramas de Venn se tendría lo siguiente: Diferencia de conjuntos. Es la operación que nos permite formar un conjunto, en donde de dos conjuntos el conjunto resultante es el que tendrá todos los elementos que pertenecen al primero pero no al segundo. Es decir dados dos conjuntos A y B, la diferencia de los conjuntos entra A y B, estará formado por todos los elementos de A que no pertenezcan a B. El símbolo que se usa para esta operación es el mismo que se usa para la resta o sustracción, que es el siguiente: -. Ejemplo 1.
  7. 7. Dados dos conjuntos A={1,2,3,4,5} y B={4,5,6,7,8,9} la diferencia de estos conjuntos será A-B={1,2,3}. Usando diagramas de Venn se tendría lo siguiente Ejemplo 2. Dados dos conjuntos A={1,2,3,4,5} y B={4,5,6,7,8,9} la diferencia de estos conjuntos será B-A={6,7,8,9}. Usando diagramas de Venn se tendría lo siguiente: ‒ Diferencia de simetrica de conjuntos. Es la operación que nos permite formar un conjunto, en donde de dos conjuntos el conjunto resultante es el que tendrá todos los elementos que no sean comunes a ambos conjuntos. Es decir dados dos conjuntos A y B, la diferencia simétrica estará formado por todos los elementos no comunes a los conjuntos A y B. El símbolo que se usa para indicar la operación de diferencia simétrica es el siguiente: △. Ejemplo 1.
  8. 8. Dados dos conjuntos A={1,2,3,4,5} y B={4,5,6,7,8,9} la diferencia simétrica de estos conjuntos será A △ B={1,2,3,6,7,8,9}. Usando diagramas de Venn se tendría lo siguiente: Complemento de un conjunto. Es la operación que nos permite formar un conjunto con todos los elementos del conjunto de referencia o universal, que no están en el conjunto. Es decir dado un conjunto A que esta incluido en el conjunto universal U, entonces el conjunto complemento de A es el conjunto formado por todos los elementos del conjunto universal pero sin considerar a los elementos que pertenezcan al conjunto A. En esta operación el complemento de un conjunto se denota con un apostrofe sobre el conjunto que se opera, algo como esto A' en donde el el conjunto A es el conjunto del cual se hace la operación de complemento. Ejemplo 1. Dado el conjunto Universal U={1,2,3,4,5,6,7,8,9} y el conjunto A={1,2,9}, el conjunto A' estará formado por los siguientes elementos A'={3,4,5,6,7,8}. Usando diagramas de Venn se tendría lo siguiente:
  9. 9. ¿Qué son los números reales y ejemplos? Los números reales incluyen a los números naturales o números contables, números enteros positivos, números enteros, números racionales, y números irracionales. El conjunto de los números reales contiene a todos los números que tienen un lugar en la recta numérica. Números enteros …, −3, −2, −1, 0, 1, 2, 3, … En matemáticas, el conjunto de los números reales incluye tanto los números racionales como los números irracionales; y en otro enfoque, a los trascendentes y a los algebraicos Los números reales son cualquier número que corresponda a un punto en la recta real y pueden clasificarse en números naturales, enteros, racionales e irracionales. Desigualdad matemática En matemáticas, una desigualdad es una relación de orden que se da entre dos valores cuando estos son distintos. Si los valores en cuestión son elementos de un conjunto ordenado, como los enteros o los reales, entonces pueden ser comparados ¿Qué es una desigualdad y ejemplos? Las desigualdades matemáticas están formadas, en la mayoría de ocasiones, por dos miembros o componentes. Un miembro se encontrará a la izquierda del símbolo y el otro a la derecha. Un ejemplo sería expresar: 4x – 2 > 9. Lo leeríamos diciendo que “cuatro veces nuestra incógnita menos dos es superior a nueve”. ¿Cómo se resuelve la desigualdad matematica?
  10. 10. Para resolver una desigualdad de dos pasos, deshaga la suma o la resta primero, usando las operaciones inversas , y luego deshaga la multiplicación o la división. La operación inversa de la suma es la resta y viceversa. De forma similar, la operación inversa de la multiplicación es la división y viceversa. Existen dos clases de desigualdades: las absolutas y las condicionales Las desigualdades matemáticas se utilizan para expresar la relación que existe entre dos valores distintos. Muchas veces, este tipo de expresiones pueden contener valores incógnitos, lo que las convierte en una inecuación que debe resolverse mediante un procedimiento matemático. Definición de valor El valor númerico de una expresión algebraica, para un determinado valor, es el número que se obtiene al sustituir en ésta por valor numérico dado y realizar las operaciones indicadas. L(r) = 2Explicaciones y ejemplos de valor numérico - 1r r = 5 cm. L(5)= 2 · Explicaciones y ejemplos de valor numérico - 2 · 5 = 10Explicaciones y ejemplos de valor numérico - 3 cm S(l) = l2 l = 5 cm A(5) = 52 = 25 cm2 V(a) = a3 a = 5 cm V(5) = 53 = 125 cm3
  11. 11. Valor numérico de un polinomio El valor numérico de un polinomio es el resultado que obtenemos al sustituir la variable x por un número cualquiera. P(x) = 2x3 + 5x - 3 ; x = 1 P(1) = 2 · 13 + 5 · 1 - 3 = 2 + 5 - 3 = 4 Q(x) = x4 − 2x3 + x2 + x − 1 ; x = 1 Q(1) = 14 − 2 · 13 + 1 2 + 1 − 1 = 1 − 2 + 1 + 1 − 1 = 0 R(x) = x10 − 1024 : x = −2 R(−2) = (−2)10 − 1024 = 1024 − 1024 = 0 Valor absoluto El valor absoluto es un concepto que está presente en diversos contextos de la Física y las Matemáticas, por ejemplo en las nociones de magnitud, distancia, y norma. En casos más complejos es un concepto muy útil, como en las definiciones de cuaterniones, anillos ordenados, cuerpos o espacios vectoriales. En matemáticas, existe una definición de valor absoluto que se expresa:
  12. 12. |x| = {x, si x ≥ 0 {-x, si x < 0 Propiedades del valor absoluto El valor absoluto tiene distintas propiedades, las más importantes son: No negatividad. El valor absoluto siempre es positivo o igual a cero (|x| ≥ 0). Por ejemplo: |8| = 8 y |-8| = 8. Definición positiva. El valor absoluto de un número es 0 solo si este número es igual a 0 (|x| = 0 ⇔ x = 0). Por ejemplo: |0| = 0. Propiedad multiplicativa. El valor absoluto del resultado de una multiplicación es igual al resultado de la multiplicación de los valores absolutos de los números que la componen (|x * y| = |x| * |y|). Por ejemplo: |-4 * 5| = |-20| = 20 es igual a |-4| * |5| = 4 * 5 = 20. Desigualdad triangular. El valor absoluto del resultado de una suma es menor o igual al resultado de la suma de los valores absolutos de los números que la componen (|x + y| ≤ |x| + |y|). Por ejemplo: |-7 + 6| = |-1| = 1 y |-7| + |6| = 7 + 6 = 13, entonces 1 < 13 (1 es menor que 13). Simetría. Un número positivo (por ejemplo, 15) y el mismo número, pero negativo (por ejemplo -15) tienen el mismo valor absoluto: 15 (|-x| = |x|). Identidad de indiscernibles. El valor absoluto del resultado de una resta es igual a cero si esos sus números son el mismo (|x – y| = 0 ⇔ x = y). Por ejemplo: |8 – 8| = |0| = 0, porque 8 = 8. Preservación de la división. El valor absoluto del resultado de una división es igual al resultado de la división de los valores absolutos de los números que la componen solo si el
  13. 13. divisor no es igual a cero (|x / y| = |x| / |y| si y ≠ 0). Por ejemplo: |4 / 2| = |2| = 2 es igual a |4| / |2| = 4 / 2 = 2, porque 2 ≠ 0. Ejemplos de valor absoluto |-107| = 107 (el valor absoluto de -107 es 107) |2,34353| = 2,34353 (el valor absoluto de 2,34353 es 2,34353) |⅛| = ⅛ (el valor absoluto de ⅛ es ⅛) |43| = 43 (el valor absoluto de 43 es 43) |-¼| = ¼ (el valor absoluto de -¼ es ¼) Desigualdades de valor absoluto Una desigualdad de valor absoluto es una desigualdad que tiene un signo de valor absoluto con una variable dentro. Cuando se resuelven desigualdades de valor absoluto, hay dos casos a considerar. Caso 1: La expresión dentro de los símbolos de valor absoluto es positiva.

×