SlideShare une entreprise Scribd logo
1  sur  125
Télécharger pour lire hors ligne
Forced climate signals with
explainable AI
and large ensembles
@ZLabe
Zachary M. Labe
Postdoc at Princeton University and NOAA GFDL
10 February 2023
AOS Student/Postdoc Seminar
https://zacklabe.com/
Machine Learning
is not new!
But…
Machine Learning
is not new!
https://doi.org/10.1175/1520-0450(1964)003%3C0513:AADPSF%3E2.0.CO;2
Artificial Intelligence
Machine Learning
Deep Learning
Computer Science
Computer Science
Artificial Intelligence
Machine Learning
Deep Learning
Supervised
Learning
Unsupervised
Learning
Labeled data
Classification
Regression
Unlabeled data
Clustering
Dimension reduction
• Do it better
• e.g., parameterizations in climate models are not
perfect, use ML to make them more accurate
• Do it faster
• e.g., code in climate models is very slow (but we
know the right answer) - use ML methods to speed
things up
• Do something new
• e.g., go looking for non-linear relationships you
didn’t know were there
Very relevant for
research: may be
slower and worse,
but can still learn
something
WHY SHOULD WE CONSIDER
MACHINE LEARNING?
GROWING DATA
ADAPTED FROM EYRING ET AL. 2016
CMIP6
CMIP7??
GROWING TOOLS
Python tools for machine learning
Machine learning for weather
IDENTIFYING SEVERE THUNDERSTORMS
Molina et al. 2021
Toms et al. 2021
CLASSIFYING PHASE OF MADDEN-JULLIAN OSCILLATION
SATELLITE DETECTION
Lee et al. 2021
DETECTING TORNADOES
McGovern et al. 2019
Machine learning for climate
FINDING FORECASTS OF OPPORTUNITY
Mayer and Barnes, 2021
PREDICTING CLIMATE MODES OF VARIABILITY
Gordon et al. 2021
TIMING OF CLIMATE CHANGE
Barnes et al. 2019
Machine learning for oceanography
CLASSIFYING ARCTIC OCEAN ACIDIFICATION
Krasting et al. 2022
TRACK AND REVEAL DEEP WATER MASSES
Sonnewald and Lguensat, 2021
ESTIMATING OCEAN SURFACE CURRENTS
Sinha and Abernathey, 2021
INPUT
[DATA]
PREDICTION
Machine
Learning
INPUT
[DATA]
PREDICTION
~Statistical
Algorithm~
INPUT
[DATA]
PREDICTION
Machine
Learning
X1
X2
INPUTS
Artificial Neural Networks [ANN]
Linear regression!
Artificial Neural Networks [ANN]
X1
X2
W1
W2
∑ = X1W1+ X2W2 + b
INPUTS
NODE
Artificial Neural Networks [ANN]
X1
X2
W1
W2
∑
INPUTS
NODE
Linear regression with non-linear
mapping by an “activation function”
Training of the network is merely
determining the weights “w” and
bias/offset “b"
= factivation(X1W1+ X2W2 + b)
Artificial Neural Networks [ANN]
X1
X2
W1
W2
∑
INPUTS
NODE
= factivation(X1W1+ X2W2 + b)
ReLU Sigmoid Linear
X1
X2
∑
inputs
HIDDEN LAYERS
X3
∑
∑
∑
OUTPUT
= predictions
Artificial Neural Networks [ANN]
: : ::
INPUTS
Complexity and nonlinearities of the ANN allow it to learn many
different pathways of predictable behavior
Once trained, you have an array of weights and biases which can be
used for prediction on new data
INPUT
[DATA]
PREDICTION
Artificial Neural Networks [ANN]
X
Y
Our data
X
Y
Our data
Just an exercise in curve fitting…
TEMPERATURE
TEMPERATURE
We know some metadata…
+ What year is it?
+ Where did it come from?
We know some metadata…
+ What year is it?
+ Where did it come from?
[Labe and Barnes, 2022; ESS]
TEMPERATURE
TEMPERATURE
Neural network learns nonlinear
combinations of forced climate
patterns to identify the year
We know some metadata…
+ What year is it?
+ Where did it come from?
[Labe and Barnes, 2022; ESS]
----ANN----
2 Hidden Layers
10 Nodes each
Ridge Regularization
Early Stopping
[e.g., Barnes et al. 2019, 2020]
[e.g., Labe and Barnes, 2021]
TIMING OF EMERGENCE
(COMBINED VARIABLES)
RESPONSES TO
EXTERNAL CLIMATE
FORCINGS
PATTERNS OF
CLIMATE INDICATORS
[e.g., Rader et al. 2022]
Surface Temperature Map Precipitation Map
+
TEMPERATURE
We know some metadata…
+ What year is it?
+ Where did it come from?
[Labe and Barnes, 2022; ESS]
----ANN----
2 Hidden Layers
10 Nodes each
Ridge Regularization
Early Stopping
[e.g., Barnes et al. 2019, 2020]
[e.g., Labe and Barnes, 2021]
TIMING OF EMERGENCE
(COMBINED VARIABLES)
RESPONSES TO
EXTERNAL CLIMATE
FORCINGS
PATTERNS OF
CLIMATE INDICATORS
Surface Temperature Map Precipitation Map
+
TEMPERATURE
[e.g., Rader et al. 2022]
We know some metadata…
+ What year is it?
+ Where did it come from?
[Labe and Barnes, 2022; ESS]
THE REAL WORLD
(Observations)
What is the annual mean temperature of Earth?
What is the annual mean temperature of Earth?
THE REAL WORLD
(Observations)
Anomaly is relative to 1951-1980
What is the annual mean temperature of Earth?
THE REAL WORLD
(Observations)
Let’s run a
climate model
What is the annual mean temperature of Earth?
THE REAL WORLD
(Observations)
Let’s run a
climate model
again
What is the annual mean temperature of Earth?
THE REAL WORLD
(Observations)
Let’s run a
climate model
again & again
What is the annual mean temperature of Earth?
THE REAL WORLD
(Observations)
CLIMATE MODEL
ENSEMBLES
What is the annual mean temperature of Earth?
THE REAL WORLD
(Observations)
CLIMATE MODEL
ENSEMBLES
Range of ensembles
= internal variability (noise)
Mean of ensembles
= forced response (climate change)
What is the annual mean temperature of Earth?
Range of ensembles
= internal variability (noise)
Mean of ensembles
= forced response (climate change)
But let’s remove
climate change…
What is the annual mean temperature of Earth?
Range of ensembles
= internal variability (noise)
Mean of ensembles
= forced response (climate change)
After removing the
forced response…
anomalies/noise!
What is the annual mean temperature of Earth?
• Increasing greenhouse gases (CO2, CH4, N2O)
• Changes in industrial aerosols (SO4, BC, OC)
• Changes in biomass burning (aerosols)
• Changes in land-use & land-cover (albedo)
What is the annual mean temperature of Earth?
• Increasing greenhouse gases (CO2, CH4, N2O)
• Changes in industrial aerosols (SO4, BC, OC)
• Changes in biomass burning (aerosols)
• Changes in land-use & land-cover (albedo)
Plus everything else…
(Natural/internal variability)
What is the annual mean temperature of Earth?
Greenhouse gases fixed to 1920 levels
All forcings (CESM-LE)
Industrial aerosols fixed to 1920 levels
[Deser et al. 2020, JCLI]
Fully-coupled CESM1.1
20 Ensemble Members
Run from 1920-2080
Observations
So what?
Greenhouse gases = warming
Aerosols = ?? (though mostly cooling)
What are the relative responses
between greenhouse gas
and aerosol forcing?
Surface Temperature Map
ARTIFICIAL NEURAL NETWORK (ANN)
INPUT LAYER
Surface Temperature Map
ARTIFICIAL NEURAL NETWORK (ANN)
INPUT LAYER
HIDDEN LAYERS
OUTPUT LAYER
Surface Temperature Map
“2000-2009”
DECADE CLASS
“2070-2079”
“1920-1929”
ARTIFICIAL NEURAL NETWORK (ANN)
INPUT LAYER
HIDDEN LAYERS
OUTPUT LAYER
Surface Temperature Map
“2000-2009”
DECADE CLASS
“2070-2079”
“1920-1929”
BACK-PROPAGATE THROUGH NETWORK = EXPLAINABLE AI
ARTIFICIAL NEURAL NETWORK (ANN)
INPUT LAYER
HIDDEN LAYERS
OUTPUT LAYER
Layer-wise Relevance Propagation
Surface Temperature Map
“2000-2009”
DECADE CLASS
“2070-2079”
“1920-1929”
BACK-PROPAGATE THROUGH NETWORK = EXPLAINABLE AI
ARTIFICIAL NEURAL NETWORK (ANN)
[Barnes et al. 2020, JAMES]
[Labe and Barnes 2021, JAMES]
Visualizing something we already know…
Neural
Network
[0] La Niña [1] El Niño
[Toms et al. 2020, JAMES]
Input a map of sea surface temperatures
Visualizing something we already know…
Input maps of sea surface
temperatures to identify
El Niño or La Niña
Use ‘LRP’ to see how the
neural network is making
its decision
[Toms et al. 2020, JAMES]
Layer-wise Relevance Propagation
Composite Observations
LRP [Relevance]
SST Anomaly [°C]
0.00 0.75
0.0 1.5
-1.5
INPUT LAYER
HIDDEN LAYERS
OUTPUT LAYER
Layer-wise Relevance Propagation
Surface Temperature Map
“2000-2009”
DECADE CLASS
“2070-2079”
“1920-1929”
BACK-PROPAGATE THROUGH NETWORK = EXPLAINABLE AI
ARTIFICIAL NEURAL NETWORK (ANN)
[Barnes et al. 2020, JAMES]
[Labe and Barnes 2021, JAMES]
1960-1999: ANNUAL MEAN TEMPERATURE TRENDS
Greenhouse gases fixed
to 1920 levels
[AEROSOLS PREVAIL]
Industrial aerosols fixed
to 1920 levels
[GREENHOUSE GASES PREVAIL]
All forcings
[STANDARD CESM-LE]
DATA
1960-1999: ANNUAL MEAN TEMPERATURE TRENDS
Greenhouse gases fixed
to 1920 levels
[AEROSOLS PREVAIL]
Industrial aerosols fixed
to 1920 levels
[GREENHOUSE GASES PREVAIL]
All forcings
[STANDARD CESM-LE]
DATA
1960-1999: ANNUAL MEAN TEMPERATURE TRENDS
Greenhouse gases fixed
to 1920 levels
[AEROSOLS PREVAIL]
Industrial aerosols fixed
to 1920 levels
[GREENHOUSE GASES PREVAIL]
All forcings
[STANDARD CESM-LE]
DATA
1960-1999: ANNUAL MEAN TEMPERATURE TRENDS
Greenhouse gases fixed
to 1920 levels
[AEROSOLS PREVAIL]
Industrial aerosols fixed
to 1920 levels
[GREENHOUSE GASES PREVAIL]
All forcings
[STANDARD CESM-LE]
DATA
CLIMATE MODEL DATA PREDICT THE YEAR FROM MAPS OF TEMPERATURE
AEROSOLS
PREVAIL
GREENHOUSE GASES
PREVAIL
STANDARD
CLIMATE MODEL
[Labe and Barnes 2021, JAMES]
OBSERVATIONS PREDICT THE YEAR FROM MAPS OF TEMPERATURE
AEROSOLS
PREVAIL
GREENHOUSE GASES
PREVAIL
STANDARD
CLIMATE MODEL
[Labe and Barnes 2021, JAMES]
OBSERVATIONS
SLOPES
PREDICT THE YEAR FROM MAPS OF TEMPERATURE
AEROSOLS
PREVAIL
GREENHOUSE GASES
PREVAIL
STANDARD
CLIMATE MODEL
[Labe and Barnes 2021, JAMES]
[Labe
and
Barnes
2021,
JAMES]
ARE THE RESULTS ROBUST?
YES!
COMBINATIONS OF TRAINING/TESTING DATA
HOW DID THE ANN
MAKE ITS
PREDICTIONS?
HOW DID THE ANN
MAKE ITS
PREDICTIONS?
WHY IS THERE
GREATER SKILL
FOR GHG+?
RESULTS FROM LRP
[Labe and Barnes 2021, JAMES]
Low High
Higher LRP values indicate greater relevance
for the ANN’s prediction
AVERAGED OVER 1960-2039
Aerosol-driven
Greenhouse gas-driven
All forcings
Low High
[Labe and Barnes 2021, JAMES]
DISTRIBUTIONS OF LRP
AVERAGED OVER 1960-2039
[Labe and Barnes 2021, JAMES]
DISTRIBUTIONS OF LRP
AVERAGED OVER 1960-2039
[Labe and Barnes 2021, JAMES]
KEY POINTS FROM EXAMPLE #1
1. Using explainable AI methods with artificial neural networks (ANN)
reveals climate patterns in large ensemble simulations
2. A metric is proposed for quantifying the uncertainty of an ANN
visualization method that extracts signals from different external
forcings
3. Predictions from an ANN trained using a large ensemble without
time-evolving aerosols show the highest correlation with actual
observations
Labe, Z.M. and E.A. Barnes (2021), Detecting climate signals using explainable AI with single-forcing
large ensembles. Journal of Advances in Modeling Earth Systems, DOI:10.1029/2021MS002464
[Eischeid et al., submitted]
Temperature anomalies [ °C ] relative to 1981-2010
Temperature
anomalies
[
°C
]
relative
to
1981-2010
Observations
TRENDS IN GFDL SPEAR
Fully-Coupled [Historical + SSP5-8.5] SPEAR_MED, but NO anthropogenic aerosols SPEAR_MED, but NO anthropogenic forcings
TRENDS IN GFDL SPEAR
Fully-Coupled [Historical + SSP5-8.5] SPEAR_MED, but NO anthropogenic aerosols SPEAR_MED, but NO anthropogenic forcings
TRENDS IN GFDL SPEAR
Fully-Coupled [Historical + SSP5-8.5] SPEAR_MED, but NO anthropogenic aerosols SPEAR_MED, but NO anthropogenic forcings
SPEAR climatology is too cold!
ARTIFICIAL NEURAL NETWORK
Max year predicted in the 1921-1950
baseline for observations
Timing of
Emergence
Maximum Temperature
Minimum Temperature
June – August – Timing of Emergence (ToE) for observations
How is the neural network able to detect the year prior to 1990?
Temperature anomalies [ °C ] relative to 1981-2010
Mean Absolute Error (MAE) for ensemble member predictions over 1921 to 1989
Mean Absolute Error (MAE) for ensemble member predictions over 1921 to 1989 for different spatial resolutions
50 km resolution 100 km resolution
Machine Learning Explainability Methods
Western USA Central USA Eastern USA
Western USA Central USA Eastern USA
Western USA Central USA Eastern USA
What about the warming hole?
What about the warming hole?
Fully Coupled
ToE Statistical
Methods
Natural Forcings
Shuffling Map
Shuffling Time
1) Is it
aerosols?
Proof
Of
Concept
2) Is it systematic in CMIP6?
SPEAR_MED (Flux Adjusted) GFDL FLOR (RCP 8.5)
Machine Learning Explainability Methods
TRENDS FROM 1921 TO 1950
Fully-Coupled [Historical + SSP5-8.5] SPEAR_MED, but NO anthropogenic aerosols SPEAR_MED, but NO anthropogenic forcings
TRENDS IN SNOW? NO!
Fully-Coupled [Historical + SSP5-8.5] SPEAR_MED, but NO anthropogenic aerosols SPEAR_MED, but NO anthropogenic forcings
TRENDS IN ALBEDO? MAYBE?
Fully-Coupled [Historical + SSP5-8.5] SPEAR_MED, but NO anthropogenic aerosols SPEAR_MED, but NO anthropogenic forcings
Weird!
TRENDS IN EVAPORATION? !!!
Fully-Coupled [Historical + SSP5-8.5] SPEAR_MED, but NO anthropogenic aerosols SPEAR_MED, but NO anthropogenic forcings
TRENDS IN WATER AVAILABILITY?
Fully-Coupled [Historical + SSP5-8.5] SPEAR_MED, but NO anthropogenic aerosols SPEAR_MED, but NO anthropogenic forcings
WINTER
SNOW
SPRING
RUNOFF
P-E for the USA
P-E for the Western USA
Machine Learning
Explainability Methods
SUMMER
EVAPORATION
SUMMER
P-E
Western USA Central USA Eastern USA
INFLUENCE OF RESOLUTION
50 km 100 km
What about where we live?
KEY POINTS FROM EXAMPLE #2
1. Increasing spatial resolution improves the ability of neural networks
to skillfully detect patterns of climate indicators
2. Externally-forced temperature signals have emerged in the
observational record during summer across the United States
3. Increases in wintertime snowfall and springtime runoff over the
Western United States are linked to the emergence of temperature
signals in GFDL SPEAR in the early 20th century
Labe, Z.M., N.C. Johnson, and T.L. Delworth (2023), Forced signals in United States summer temperatures
revealed by explainable neural networks in climate models and observations, in prep
INPUT
[DATA]
PREDICTION
Machine
Learning
Explainable AI
Learn new
science!
KEY POINTS
Zachary Labe
zachary.labe@noaa.gov
@ZLabe
Labe, Z.M. and E.A. Barnes (2021), Detecting climate signals using explainable AI with single-forcing
large ensembles. Journal of Advances in Modeling Earth Systems, DOI:10.1029/2021MS002464
Labe, Z.M., N.C. Johnson, and T.L. Delworth (2023), Forced signals in United States summer temperatures
revealed by explainable neural networks in climate models and observations, in prep
1. Machine learning is just another tool to consider for our scientific workflow
2. We can use explainable AI (XAI) methods to peer into the black box of machine learning
3. We can learn new science by using XAI methods in conjunction with existing statistical tools

Contenu connexe

Similaire à Forced climate signals with explainable AI and large ensembles

Disentangling Climate Forcing in Multi-Model Large Ensembles Using Neural Net...
Disentangling Climate Forcing in Multi-Model Large Ensembles Using Neural Net...Disentangling Climate Forcing in Multi-Model Large Ensembles Using Neural Net...
Disentangling Climate Forcing in Multi-Model Large Ensembles Using Neural Net...Zachary Labe
 
Learning new climate science by opening the machine learning black box
Learning new climate science by opening the machine learning black boxLearning new climate science by opening the machine learning black box
Learning new climate science by opening the machine learning black boxZachary Labe
 
Revealing climate change signals with explainable AI
Revealing climate change signals with explainable AIRevealing climate change signals with explainable AI
Revealing climate change signals with explainable AIZachary Labe
 
Learning new climate science by thinking creatively with machine learning
Learning new climate science by thinking creatively with machine learningLearning new climate science by thinking creatively with machine learning
Learning new climate science by thinking creatively with machine learningZachary Labe
 
Explainable AI approach for evaluating climate models in the Arctic
Explainable AI approach for evaluating climate models in the ArcticExplainable AI approach for evaluating climate models in the Arctic
Explainable AI approach for evaluating climate models in the ArcticZachary Labe
 
Machine learning for evaluating climate model projections
Machine learning for evaluating climate model projectionsMachine learning for evaluating climate model projections
Machine learning for evaluating climate model projectionsZachary Labe
 
Climate change extremes by season in the United States
Climate change extremes by season in the United StatesClimate change extremes by season in the United States
Climate change extremes by season in the United StatesZachary Labe
 
Evaluating and communicating Arctic climate change projection
Evaluating and communicating Arctic climate change projectionEvaluating and communicating Arctic climate change projection
Evaluating and communicating Arctic climate change projectionZachary Labe
 
Distinguishing the regional emergence of United States summer temperatures be...
Distinguishing the regional emergence of United States summer temperatures be...Distinguishing the regional emergence of United States summer temperatures be...
Distinguishing the regional emergence of United States summer temperatures be...Zachary Labe
 
Explainable neural networks for evaluating patterns of climate change and var...
Explainable neural networks for evaluating patterns of climate change and var...Explainable neural networks for evaluating patterns of climate change and var...
Explainable neural networks for evaluating patterns of climate change and var...Zachary Labe
 
Exploring climate model large ensembles with explainable neural networks
Exploring climate model large ensembles with explainable neural networksExploring climate model large ensembles with explainable neural networks
Exploring climate model large ensembles with explainable neural networksZachary Labe
 
Using explainable AI to identify key regions of climate change in GFDL SPEAR ...
Using explainable AI to identify key regions of climate change in GFDL SPEAR ...Using explainable AI to identify key regions of climate change in GFDL SPEAR ...
Using explainable AI to identify key regions of climate change in GFDL SPEAR ...Zachary Labe
 
Using explainable machine learning to evaluate climate change projections
Using explainable machine learning to evaluate climate change projectionsUsing explainable machine learning to evaluate climate change projections
Using explainable machine learning to evaluate climate change projectionsZachary Labe
 
Explainable AI for distinguishing future climate change scenarios
Explainable AI for distinguishing future climate change scenariosExplainable AI for distinguishing future climate change scenarios
Explainable AI for distinguishing future climate change scenariosZachary Labe
 
Making effective science figures
Making effective science figuresMaking effective science figures
Making effective science figuresZachary Labe
 
Using explainable neural networks for comparing climate model projections
Using explainable neural networks for comparing climate model projectionsUsing explainable neural networks for comparing climate model projections
Using explainable neural networks for comparing climate model projectionsZachary Labe
 
Guest Lecture: Our changing Arctic in the past and future
Guest Lecture: Our changing Arctic in the past and futureGuest Lecture: Our changing Arctic in the past and future
Guest Lecture: Our changing Arctic in the past and futureZachary Labe
 
data-driven approach to identifying key regions of change associated with fut...
data-driven approach to identifying key regions of change associated with fut...data-driven approach to identifying key regions of change associated with fut...
data-driven approach to identifying key regions of change associated with fut...Zachary Labe
 
TH4.T04.3.ppt
TH4.T04.3.pptTH4.T04.3.ppt
TH4.T04.3.pptgrssieee
 
Creative machine learning approaches for climate change detection
Creative machine learning approaches for climate change detectionCreative machine learning approaches for climate change detection
Creative machine learning approaches for climate change detectionZachary Labe
 

Similaire à Forced climate signals with explainable AI and large ensembles (20)

Disentangling Climate Forcing in Multi-Model Large Ensembles Using Neural Net...
Disentangling Climate Forcing in Multi-Model Large Ensembles Using Neural Net...Disentangling Climate Forcing in Multi-Model Large Ensembles Using Neural Net...
Disentangling Climate Forcing in Multi-Model Large Ensembles Using Neural Net...
 
Learning new climate science by opening the machine learning black box
Learning new climate science by opening the machine learning black boxLearning new climate science by opening the machine learning black box
Learning new climate science by opening the machine learning black box
 
Revealing climate change signals with explainable AI
Revealing climate change signals with explainable AIRevealing climate change signals with explainable AI
Revealing climate change signals with explainable AI
 
Learning new climate science by thinking creatively with machine learning
Learning new climate science by thinking creatively with machine learningLearning new climate science by thinking creatively with machine learning
Learning new climate science by thinking creatively with machine learning
 
Explainable AI approach for evaluating climate models in the Arctic
Explainable AI approach for evaluating climate models in the ArcticExplainable AI approach for evaluating climate models in the Arctic
Explainable AI approach for evaluating climate models in the Arctic
 
Machine learning for evaluating climate model projections
Machine learning for evaluating climate model projectionsMachine learning for evaluating climate model projections
Machine learning for evaluating climate model projections
 
Climate change extremes by season in the United States
Climate change extremes by season in the United StatesClimate change extremes by season in the United States
Climate change extremes by season in the United States
 
Evaluating and communicating Arctic climate change projection
Evaluating and communicating Arctic climate change projectionEvaluating and communicating Arctic climate change projection
Evaluating and communicating Arctic climate change projection
 
Distinguishing the regional emergence of United States summer temperatures be...
Distinguishing the regional emergence of United States summer temperatures be...Distinguishing the regional emergence of United States summer temperatures be...
Distinguishing the regional emergence of United States summer temperatures be...
 
Explainable neural networks for evaluating patterns of climate change and var...
Explainable neural networks for evaluating patterns of climate change and var...Explainable neural networks for evaluating patterns of climate change and var...
Explainable neural networks for evaluating patterns of climate change and var...
 
Exploring climate model large ensembles with explainable neural networks
Exploring climate model large ensembles with explainable neural networksExploring climate model large ensembles with explainable neural networks
Exploring climate model large ensembles with explainable neural networks
 
Using explainable AI to identify key regions of climate change in GFDL SPEAR ...
Using explainable AI to identify key regions of climate change in GFDL SPEAR ...Using explainable AI to identify key regions of climate change in GFDL SPEAR ...
Using explainable AI to identify key regions of climate change in GFDL SPEAR ...
 
Using explainable machine learning to evaluate climate change projections
Using explainable machine learning to evaluate climate change projectionsUsing explainable machine learning to evaluate climate change projections
Using explainable machine learning to evaluate climate change projections
 
Explainable AI for distinguishing future climate change scenarios
Explainable AI for distinguishing future climate change scenariosExplainable AI for distinguishing future climate change scenarios
Explainable AI for distinguishing future climate change scenarios
 
Making effective science figures
Making effective science figuresMaking effective science figures
Making effective science figures
 
Using explainable neural networks for comparing climate model projections
Using explainable neural networks for comparing climate model projectionsUsing explainable neural networks for comparing climate model projections
Using explainable neural networks for comparing climate model projections
 
Guest Lecture: Our changing Arctic in the past and future
Guest Lecture: Our changing Arctic in the past and futureGuest Lecture: Our changing Arctic in the past and future
Guest Lecture: Our changing Arctic in the past and future
 
data-driven approach to identifying key regions of change associated with fut...
data-driven approach to identifying key regions of change associated with fut...data-driven approach to identifying key regions of change associated with fut...
data-driven approach to identifying key regions of change associated with fut...
 
TH4.T04.3.ppt
TH4.T04.3.pptTH4.T04.3.ppt
TH4.T04.3.ppt
 
Creative machine learning approaches for climate change detection
Creative machine learning approaches for climate change detectionCreative machine learning approaches for climate change detection
Creative machine learning approaches for climate change detection
 

Plus de Zachary Labe

Welcome to GFDL for Take Your Child To Work Day
Welcome to GFDL for Take Your Child To Work DayWelcome to GFDL for Take Your Child To Work Day
Welcome to GFDL for Take Your Child To Work DayZachary Labe
 
Reexamining future projections of Arctic climate linkages
Reexamining future projections of Arctic climate linkagesReexamining future projections of Arctic climate linkages
Reexamining future projections of Arctic climate linkagesZachary Labe
 
Techniques and Considerations for Improving Accessibility in Online Media
Techniques and Considerations for Improving Accessibility in Online MediaTechniques and Considerations for Improving Accessibility in Online Media
Techniques and Considerations for Improving Accessibility in Online MediaZachary Labe
 
An intro to explainable AI for polar climate science
An intro to  explainable AI for  polar climate scienceAn intro to  explainable AI for  polar climate science
An intro to explainable AI for polar climate scienceZachary Labe
 
Using accessible data to communicate global climate change
Using accessible data to communicate global climate changeUsing accessible data to communicate global climate change
Using accessible data to communicate global climate changeZachary Labe
 
Water in a Frozen Arctic: Cross-Disciplinary Perspectives
Water in a Frozen Arctic: Cross-Disciplinary PerspectivesWater in a Frozen Arctic: Cross-Disciplinary Perspectives
Water in a Frozen Arctic: Cross-Disciplinary PerspectivesZachary Labe
 
Researching and Communicating Our Changing Climate
Researching and Communicating Our Changing ClimateResearching and Communicating Our Changing Climate
Researching and Communicating Our Changing ClimateZachary Labe
 
Revisiting projections of Arctic climate change linkages
Revisiting projections of Arctic climate change linkagesRevisiting projections of Arctic climate change linkages
Revisiting projections of Arctic climate change linkagesZachary Labe
 
Visualizing climate change through data
Visualizing climate change through dataVisualizing climate change through data
Visualizing climate change through dataZachary Labe
 
Contrasting polar climate change in the past, present, and future
Contrasting polar climate change in the past, present, and futureContrasting polar climate change in the past, present, and future
Contrasting polar climate change in the past, present, and futureZachary Labe
 
Climate Projections - What Really is Business as Usual?
Climate Projections - What Really is Business as Usual?Climate Projections - What Really is Business as Usual?
Climate Projections - What Really is Business as Usual?Zachary Labe
 
Monitoring indicators of climate change through data-driven visualization
Monitoring indicators of climate change through data-driven visualizationMonitoring indicators of climate change through data-driven visualization
Monitoring indicators of climate change through data-driven visualizationZachary Labe
 
Techniques and Considerations for Improving Accessibility in Online Media
Techniques and Considerations for Improving Accessibility in Online MediaTechniques and Considerations for Improving Accessibility in Online Media
Techniques and Considerations for Improving Accessibility in Online MediaZachary Labe
 
Career pathways and research opportunities in the Earth sciences
Career pathways and research opportunities in the Earth sciencesCareer pathways and research opportunities in the Earth sciences
Career pathways and research opportunities in the Earth sciencesZachary Labe
 
Telling data-driven climate stories
Telling data-driven climate storiesTelling data-driven climate stories
Telling data-driven climate storiesZachary Labe
 

Plus de Zachary Labe (16)

Welcome to GFDL for Take Your Child To Work Day
Welcome to GFDL for Take Your Child To Work DayWelcome to GFDL for Take Your Child To Work Day
Welcome to GFDL for Take Your Child To Work Day
 
Reexamining future projections of Arctic climate linkages
Reexamining future projections of Arctic climate linkagesReexamining future projections of Arctic climate linkages
Reexamining future projections of Arctic climate linkages
 
Techniques and Considerations for Improving Accessibility in Online Media
Techniques and Considerations for Improving Accessibility in Online MediaTechniques and Considerations for Improving Accessibility in Online Media
Techniques and Considerations for Improving Accessibility in Online Media
 
An intro to explainable AI for polar climate science
An intro to  explainable AI for  polar climate scienceAn intro to  explainable AI for  polar climate science
An intro to explainable AI for polar climate science
 
Using accessible data to communicate global climate change
Using accessible data to communicate global climate changeUsing accessible data to communicate global climate change
Using accessible data to communicate global climate change
 
Water in a Frozen Arctic: Cross-Disciplinary Perspectives
Water in a Frozen Arctic: Cross-Disciplinary PerspectivesWater in a Frozen Arctic: Cross-Disciplinary Perspectives
Water in a Frozen Arctic: Cross-Disciplinary Perspectives
 
Researching and Communicating Our Changing Climate
Researching and Communicating Our Changing ClimateResearching and Communicating Our Changing Climate
Researching and Communicating Our Changing Climate
 
Revisiting projections of Arctic climate change linkages
Revisiting projections of Arctic climate change linkagesRevisiting projections of Arctic climate change linkages
Revisiting projections of Arctic climate change linkages
 
Visualizing climate change through data
Visualizing climate change through dataVisualizing climate change through data
Visualizing climate change through data
 
Contrasting polar climate change in the past, present, and future
Contrasting polar climate change in the past, present, and futureContrasting polar climate change in the past, present, and future
Contrasting polar climate change in the past, present, and future
 
Climate Projections - What Really is Business as Usual?
Climate Projections - What Really is Business as Usual?Climate Projections - What Really is Business as Usual?
Climate Projections - What Really is Business as Usual?
 
Monitoring indicators of climate change through data-driven visualization
Monitoring indicators of climate change through data-driven visualizationMonitoring indicators of climate change through data-driven visualization
Monitoring indicators of climate change through data-driven visualization
 
Sea Ice Anomalies
Sea Ice AnomaliesSea Ice Anomalies
Sea Ice Anomalies
 
Techniques and Considerations for Improving Accessibility in Online Media
Techniques and Considerations for Improving Accessibility in Online MediaTechniques and Considerations for Improving Accessibility in Online Media
Techniques and Considerations for Improving Accessibility in Online Media
 
Career pathways and research opportunities in the Earth sciences
Career pathways and research opportunities in the Earth sciencesCareer pathways and research opportunities in the Earth sciences
Career pathways and research opportunities in the Earth sciences
 
Telling data-driven climate stories
Telling data-driven climate storiesTelling data-driven climate stories
Telling data-driven climate stories
 

Dernier

CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡anilsa9823
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...Sérgio Sacani
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfSumit Kumar yadav
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxkessiyaTpeter
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisDiwakar Mishra
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Patrick Diehl
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)PraveenaKalaiselvan1
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCEPRINCE C P
 
Chemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfChemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfSumit Kumar yadav
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxgindu3009
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsSumit Kumar yadav
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )aarthirajkumar25
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSarthak Sekhar Mondal
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfSumit Kumar yadav
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptxanandsmhk
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxpradhanghanshyam7136
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfSumit Kumar yadav
 
G9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptG9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptMAESTRELLAMesa2
 

Dernier (20)

CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdf
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
 
Chemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfChemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdf
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questions
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdf
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptx
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdf
 
G9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptG9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.ppt
 

Forced climate signals with explainable AI and large ensembles

  • 1. Forced climate signals with explainable AI and large ensembles @ZLabe Zachary M. Labe Postdoc at Princeton University and NOAA GFDL 10 February 2023 AOS Student/Postdoc Seminar https://zacklabe.com/
  • 6. Computer Science Artificial Intelligence Machine Learning Deep Learning Supervised Learning Unsupervised Learning Labeled data Classification Regression Unlabeled data Clustering Dimension reduction
  • 7. • Do it better • e.g., parameterizations in climate models are not perfect, use ML to make them more accurate • Do it faster • e.g., code in climate models is very slow (but we know the right answer) - use ML methods to speed things up • Do something new • e.g., go looking for non-linear relationships you didn’t know were there Very relevant for research: may be slower and worse, but can still learn something WHY SHOULD WE CONSIDER MACHINE LEARNING?
  • 9.
  • 10. ADAPTED FROM EYRING ET AL. 2016 CMIP6
  • 13.
  • 14. Python tools for machine learning
  • 15. Machine learning for weather IDENTIFYING SEVERE THUNDERSTORMS Molina et al. 2021 Toms et al. 2021 CLASSIFYING PHASE OF MADDEN-JULLIAN OSCILLATION SATELLITE DETECTION Lee et al. 2021 DETECTING TORNADOES McGovern et al. 2019
  • 16. Machine learning for climate FINDING FORECASTS OF OPPORTUNITY Mayer and Barnes, 2021 PREDICTING CLIMATE MODES OF VARIABILITY Gordon et al. 2021 TIMING OF CLIMATE CHANGE Barnes et al. 2019
  • 17. Machine learning for oceanography CLASSIFYING ARCTIC OCEAN ACIDIFICATION Krasting et al. 2022 TRACK AND REVEAL DEEP WATER MASSES Sonnewald and Lguensat, 2021 ESTIMATING OCEAN SURFACE CURRENTS Sinha and Abernathey, 2021
  • 22. Linear regression! Artificial Neural Networks [ANN] X1 X2 W1 W2 ∑ = X1W1+ X2W2 + b INPUTS NODE
  • 23. Artificial Neural Networks [ANN] X1 X2 W1 W2 ∑ INPUTS NODE Linear regression with non-linear mapping by an “activation function” Training of the network is merely determining the weights “w” and bias/offset “b" = factivation(X1W1+ X2W2 + b)
  • 24. Artificial Neural Networks [ANN] X1 X2 W1 W2 ∑ INPUTS NODE = factivation(X1W1+ X2W2 + b) ReLU Sigmoid Linear
  • 26. Complexity and nonlinearities of the ANN allow it to learn many different pathways of predictable behavior Once trained, you have an array of weights and biases which can be used for prediction on new data INPUT [DATA] PREDICTION Artificial Neural Networks [ANN]
  • 28. X Y Our data Just an exercise in curve fitting…
  • 30. TEMPERATURE We know some metadata… + What year is it? + Where did it come from?
  • 31. We know some metadata… + What year is it? + Where did it come from? [Labe and Barnes, 2022; ESS] TEMPERATURE
  • 32. TEMPERATURE Neural network learns nonlinear combinations of forced climate patterns to identify the year We know some metadata… + What year is it? + Where did it come from? [Labe and Barnes, 2022; ESS]
  • 33. ----ANN---- 2 Hidden Layers 10 Nodes each Ridge Regularization Early Stopping [e.g., Barnes et al. 2019, 2020] [e.g., Labe and Barnes, 2021] TIMING OF EMERGENCE (COMBINED VARIABLES) RESPONSES TO EXTERNAL CLIMATE FORCINGS PATTERNS OF CLIMATE INDICATORS [e.g., Rader et al. 2022] Surface Temperature Map Precipitation Map + TEMPERATURE We know some metadata… + What year is it? + Where did it come from? [Labe and Barnes, 2022; ESS]
  • 34. ----ANN---- 2 Hidden Layers 10 Nodes each Ridge Regularization Early Stopping [e.g., Barnes et al. 2019, 2020] [e.g., Labe and Barnes, 2021] TIMING OF EMERGENCE (COMBINED VARIABLES) RESPONSES TO EXTERNAL CLIMATE FORCINGS PATTERNS OF CLIMATE INDICATORS Surface Temperature Map Precipitation Map + TEMPERATURE [e.g., Rader et al. 2022] We know some metadata… + What year is it? + Where did it come from? [Labe and Barnes, 2022; ESS]
  • 35. THE REAL WORLD (Observations) What is the annual mean temperature of Earth?
  • 36. What is the annual mean temperature of Earth? THE REAL WORLD (Observations) Anomaly is relative to 1951-1980
  • 37. What is the annual mean temperature of Earth? THE REAL WORLD (Observations) Let’s run a climate model
  • 38. What is the annual mean temperature of Earth? THE REAL WORLD (Observations) Let’s run a climate model again
  • 39. What is the annual mean temperature of Earth? THE REAL WORLD (Observations) Let’s run a climate model again & again
  • 40. What is the annual mean temperature of Earth? THE REAL WORLD (Observations) CLIMATE MODEL ENSEMBLES
  • 41. What is the annual mean temperature of Earth? THE REAL WORLD (Observations) CLIMATE MODEL ENSEMBLES Range of ensembles = internal variability (noise) Mean of ensembles = forced response (climate change)
  • 42. What is the annual mean temperature of Earth? Range of ensembles = internal variability (noise) Mean of ensembles = forced response (climate change) But let’s remove climate change…
  • 43. What is the annual mean temperature of Earth? Range of ensembles = internal variability (noise) Mean of ensembles = forced response (climate change) After removing the forced response… anomalies/noise!
  • 44. What is the annual mean temperature of Earth? • Increasing greenhouse gases (CO2, CH4, N2O) • Changes in industrial aerosols (SO4, BC, OC) • Changes in biomass burning (aerosols) • Changes in land-use & land-cover (albedo)
  • 45. What is the annual mean temperature of Earth? • Increasing greenhouse gases (CO2, CH4, N2O) • Changes in industrial aerosols (SO4, BC, OC) • Changes in biomass burning (aerosols) • Changes in land-use & land-cover (albedo) Plus everything else… (Natural/internal variability)
  • 46. What is the annual mean temperature of Earth?
  • 47. Greenhouse gases fixed to 1920 levels All forcings (CESM-LE) Industrial aerosols fixed to 1920 levels [Deser et al. 2020, JCLI] Fully-coupled CESM1.1 20 Ensemble Members Run from 1920-2080 Observations
  • 48. So what? Greenhouse gases = warming Aerosols = ?? (though mostly cooling) What are the relative responses between greenhouse gas and aerosol forcing?
  • 49. Surface Temperature Map ARTIFICIAL NEURAL NETWORK (ANN)
  • 50. INPUT LAYER Surface Temperature Map ARTIFICIAL NEURAL NETWORK (ANN)
  • 51. INPUT LAYER HIDDEN LAYERS OUTPUT LAYER Surface Temperature Map “2000-2009” DECADE CLASS “2070-2079” “1920-1929” ARTIFICIAL NEURAL NETWORK (ANN)
  • 52. INPUT LAYER HIDDEN LAYERS OUTPUT LAYER Surface Temperature Map “2000-2009” DECADE CLASS “2070-2079” “1920-1929” BACK-PROPAGATE THROUGH NETWORK = EXPLAINABLE AI ARTIFICIAL NEURAL NETWORK (ANN)
  • 53. INPUT LAYER HIDDEN LAYERS OUTPUT LAYER Layer-wise Relevance Propagation Surface Temperature Map “2000-2009” DECADE CLASS “2070-2079” “1920-1929” BACK-PROPAGATE THROUGH NETWORK = EXPLAINABLE AI ARTIFICIAL NEURAL NETWORK (ANN) [Barnes et al. 2020, JAMES] [Labe and Barnes 2021, JAMES]
  • 54. Visualizing something we already know…
  • 55. Neural Network [0] La Niña [1] El Niño [Toms et al. 2020, JAMES] Input a map of sea surface temperatures
  • 56. Visualizing something we already know… Input maps of sea surface temperatures to identify El Niño or La Niña Use ‘LRP’ to see how the neural network is making its decision [Toms et al. 2020, JAMES] Layer-wise Relevance Propagation Composite Observations LRP [Relevance] SST Anomaly [°C] 0.00 0.75 0.0 1.5 -1.5
  • 57. INPUT LAYER HIDDEN LAYERS OUTPUT LAYER Layer-wise Relevance Propagation Surface Temperature Map “2000-2009” DECADE CLASS “2070-2079” “1920-1929” BACK-PROPAGATE THROUGH NETWORK = EXPLAINABLE AI ARTIFICIAL NEURAL NETWORK (ANN) [Barnes et al. 2020, JAMES] [Labe and Barnes 2021, JAMES]
  • 58. 1960-1999: ANNUAL MEAN TEMPERATURE TRENDS Greenhouse gases fixed to 1920 levels [AEROSOLS PREVAIL] Industrial aerosols fixed to 1920 levels [GREENHOUSE GASES PREVAIL] All forcings [STANDARD CESM-LE] DATA
  • 59. 1960-1999: ANNUAL MEAN TEMPERATURE TRENDS Greenhouse gases fixed to 1920 levels [AEROSOLS PREVAIL] Industrial aerosols fixed to 1920 levels [GREENHOUSE GASES PREVAIL] All forcings [STANDARD CESM-LE] DATA
  • 60. 1960-1999: ANNUAL MEAN TEMPERATURE TRENDS Greenhouse gases fixed to 1920 levels [AEROSOLS PREVAIL] Industrial aerosols fixed to 1920 levels [GREENHOUSE GASES PREVAIL] All forcings [STANDARD CESM-LE] DATA
  • 61. 1960-1999: ANNUAL MEAN TEMPERATURE TRENDS Greenhouse gases fixed to 1920 levels [AEROSOLS PREVAIL] Industrial aerosols fixed to 1920 levels [GREENHOUSE GASES PREVAIL] All forcings [STANDARD CESM-LE] DATA
  • 62. CLIMATE MODEL DATA PREDICT THE YEAR FROM MAPS OF TEMPERATURE AEROSOLS PREVAIL GREENHOUSE GASES PREVAIL STANDARD CLIMATE MODEL [Labe and Barnes 2021, JAMES]
  • 63. OBSERVATIONS PREDICT THE YEAR FROM MAPS OF TEMPERATURE AEROSOLS PREVAIL GREENHOUSE GASES PREVAIL STANDARD CLIMATE MODEL [Labe and Barnes 2021, JAMES]
  • 64. OBSERVATIONS SLOPES PREDICT THE YEAR FROM MAPS OF TEMPERATURE AEROSOLS PREVAIL GREENHOUSE GASES PREVAIL STANDARD CLIMATE MODEL [Labe and Barnes 2021, JAMES]
  • 65. [Labe and Barnes 2021, JAMES] ARE THE RESULTS ROBUST? YES! COMBINATIONS OF TRAINING/TESTING DATA
  • 66. HOW DID THE ANN MAKE ITS PREDICTIONS?
  • 67. HOW DID THE ANN MAKE ITS PREDICTIONS? WHY IS THERE GREATER SKILL FOR GHG+?
  • 68. RESULTS FROM LRP [Labe and Barnes 2021, JAMES] Low High
  • 69. Higher LRP values indicate greater relevance for the ANN’s prediction AVERAGED OVER 1960-2039 Aerosol-driven Greenhouse gas-driven All forcings Low High [Labe and Barnes 2021, JAMES]
  • 70. DISTRIBUTIONS OF LRP AVERAGED OVER 1960-2039 [Labe and Barnes 2021, JAMES]
  • 71. DISTRIBUTIONS OF LRP AVERAGED OVER 1960-2039 [Labe and Barnes 2021, JAMES]
  • 72. KEY POINTS FROM EXAMPLE #1 1. Using explainable AI methods with artificial neural networks (ANN) reveals climate patterns in large ensemble simulations 2. A metric is proposed for quantifying the uncertainty of an ANN visualization method that extracts signals from different external forcings 3. Predictions from an ANN trained using a large ensemble without time-evolving aerosols show the highest correlation with actual observations Labe, Z.M. and E.A. Barnes (2021), Detecting climate signals using explainable AI with single-forcing large ensembles. Journal of Advances in Modeling Earth Systems, DOI:10.1029/2021MS002464
  • 73.
  • 74.
  • 75.
  • 76. [Eischeid et al., submitted]
  • 77. Temperature anomalies [ °C ] relative to 1981-2010
  • 79. TRENDS IN GFDL SPEAR Fully-Coupled [Historical + SSP5-8.5] SPEAR_MED, but NO anthropogenic aerosols SPEAR_MED, but NO anthropogenic forcings
  • 80. TRENDS IN GFDL SPEAR Fully-Coupled [Historical + SSP5-8.5] SPEAR_MED, but NO anthropogenic aerosols SPEAR_MED, but NO anthropogenic forcings
  • 81. TRENDS IN GFDL SPEAR Fully-Coupled [Historical + SSP5-8.5] SPEAR_MED, but NO anthropogenic aerosols SPEAR_MED, but NO anthropogenic forcings
  • 82. SPEAR climatology is too cold!
  • 83.
  • 84.
  • 86.
  • 87. Max year predicted in the 1921-1950 baseline for observations Timing of Emergence
  • 90. June – August – Timing of Emergence (ToE) for observations
  • 91. How is the neural network able to detect the year prior to 1990? Temperature anomalies [ °C ] relative to 1981-2010
  • 92. Mean Absolute Error (MAE) for ensemble member predictions over 1921 to 1989
  • 93. Mean Absolute Error (MAE) for ensemble member predictions over 1921 to 1989 for different spatial resolutions 50 km resolution 100 km resolution
  • 95. Western USA Central USA Eastern USA
  • 96. Western USA Central USA Eastern USA
  • 97. Western USA Central USA Eastern USA
  • 98. What about the warming hole?
  • 99. What about the warming hole?
  • 105. 2) Is it systematic in CMIP6?
  • 106. SPEAR_MED (Flux Adjusted) GFDL FLOR (RCP 8.5)
  • 108.
  • 109. TRENDS FROM 1921 TO 1950 Fully-Coupled [Historical + SSP5-8.5] SPEAR_MED, but NO anthropogenic aerosols SPEAR_MED, but NO anthropogenic forcings
  • 110. TRENDS IN SNOW? NO! Fully-Coupled [Historical + SSP5-8.5] SPEAR_MED, but NO anthropogenic aerosols SPEAR_MED, but NO anthropogenic forcings
  • 111. TRENDS IN ALBEDO? MAYBE? Fully-Coupled [Historical + SSP5-8.5] SPEAR_MED, but NO anthropogenic aerosols SPEAR_MED, but NO anthropogenic forcings
  • 112. Weird!
  • 113. TRENDS IN EVAPORATION? !!! Fully-Coupled [Historical + SSP5-8.5] SPEAR_MED, but NO anthropogenic aerosols SPEAR_MED, but NO anthropogenic forcings
  • 114. TRENDS IN WATER AVAILABILITY? Fully-Coupled [Historical + SSP5-8.5] SPEAR_MED, but NO anthropogenic aerosols SPEAR_MED, but NO anthropogenic forcings
  • 116. P-E for the USA
  • 117. P-E for the Western USA
  • 119. Western USA Central USA Eastern USA
  • 121. What about where we live?
  • 122. KEY POINTS FROM EXAMPLE #2 1. Increasing spatial resolution improves the ability of neural networks to skillfully detect patterns of climate indicators 2. Externally-forced temperature signals have emerged in the observational record during summer across the United States 3. Increases in wintertime snowfall and springtime runoff over the Western United States are linked to the emergence of temperature signals in GFDL SPEAR in the early 20th century Labe, Z.M., N.C. Johnson, and T.L. Delworth (2023), Forced signals in United States summer temperatures revealed by explainable neural networks in climate models and observations, in prep
  • 124.
  • 125. KEY POINTS Zachary Labe zachary.labe@noaa.gov @ZLabe Labe, Z.M. and E.A. Barnes (2021), Detecting climate signals using explainable AI with single-forcing large ensembles. Journal of Advances in Modeling Earth Systems, DOI:10.1029/2021MS002464 Labe, Z.M., N.C. Johnson, and T.L. Delworth (2023), Forced signals in United States summer temperatures revealed by explainable neural networks in climate models and observations, in prep 1. Machine learning is just another tool to consider for our scientific workflow 2. We can use explainable AI (XAI) methods to peer into the black box of machine learning 3. We can learn new science by using XAI methods in conjunction with existing statistical tools