SlideShare une entreprise Scribd logo
1  sur  24
Télécharger pour lire hors ligne
6.036 midterm review
1Wednesday, March 18, 15
Topics covered
• supervised learning
• unsupervised learning
• semi-supervised learning
labels available
no labels available
some labels available
2Wednesday, March 18, 15
- what algorithms have you learned that correspond to each of these categories?
Topics covered
• supervised learning
• classification
• online learning algorithms (linear and non-linear)
• perceptron algorithm
• passive aggressive algorithm
• maximum-margin separator (SVM) (linear and non-linear)
• boosting (non-linear)
• neural networks (non-linear)
• regression
• unsupervised learning
• clustering
• k-means clustering
• k-medoids clustering
• semi-supervised learning
• collaborative filtering
3Wednesday, March 18, 15
Topics covered
• supervised learning
• classification
• online learning algorithms (linear and non-linear)
• perceptron algorithm
• passive aggressive algorithm
• maximum-margin separator (SVM) (linear and non-linear)
• boosting (non-linear)
• neural networks (non-linear)
• regression
• unsupervised learning
• clustering
• k-means clustering
• k-medoids clustering
• semi-supervised learning
• collaborative filtering
kernelized
binary
AdaBoost
ridge regression
4Wednesday, March 18, 15
- you have seen binary classification -> how do you think we can extend to multi-class
classification? (many binary classifiers)
- ensemble methods combine the opinions of multiple learners; boosting is one way of doing
this; AdaBoost is a particular implementation of boosting
- you have seen ridge regression - can also have lasso regression (difference in penalty
function - i.e. regularization)
- semi-supervised learning can also occur with clustering, for instance, with some exemplars
in the clusters labeled; this information can be used for classification (project 2!)
Common themes
• objective function (minimize error)
• loss functions: euclidean, exponential
• iterative algorithms (e.g. mistake-driven learning)
• gradient descent
• generalization and regularization
• training error vs test error
• overfitting
• cross-validation
• feature representations
• nonlinear feature mapping (e.g. kernelized methods)
• dimensionality reduction (e.g. PCA)
• similarity/distance measures
• cosine, euclidean, manhattan
• kernels
5Wednesday, March 18, 15
- exercise: in which contexts (for which algorithms, problems) have you seen these themes
come up?
Relationship b/w regression and classification
x · ✓ + ✓o
sign(x · ✓ + ✓o)
Regression setting:
given data point (vector) x, make a prediction:
Classification setting:
given data point (vector) x, make a prediction:
binary classification
+++
+ ++
+
6Wednesday, March 18, 15
Relationship b/w regression and classification
x · ✓ + ✓o
sign(x · ✓ + ✓o)
Regression setting:
given data point (vector) x, make a prediction:
Classification setting:
given data point (vector) x, make a prediction:
binary classification
-
+++
+ ++ +
7Wednesday, March 18, 15
input
true values
predicted values by model 1
predicted values by model 2
Effect of regularization
consider generalized linear
regression on 1D input:
8Wednesday, March 18, 15
time
true values
predicted values by model 1
predicted values by model 2
Effect of regularization
goal: to make predictions
for new points
some
financial
quantity
x
real-world use case:
9Wednesday, March 18, 15
more regularized
= less likely to overfit
training values
= more likely to
generalize
input
true values
predicted values by model 1
predicted values by model 2
Effect of regularization
10Wednesday, March 18, 15
in
Generalized linear regression and kernels
y = (x) · ✓
y = x✓
11Wednesday, March 18, 15
Generalized linear regression and kernels
(x) = (x3
,
p
3x2
,
p
3x, 1)
in
y = (x) · ✓
y = (x3
,
p
3x2
,
p
3x, 1) · (✓1, ✓2, ✓3, ✓4)
y = x3
✓1 +
p
3x2
✓2 +
p
3x✓3 + ✓4
12Wednesday, March 18, 15
Generalized linear regression and kernels
(x) = (x3
,
p
3x2
,
p
3x, 1)
in
K(x, z) = (x · z + 1)3
= x3
z3
+ 3x2
z2
+ 3xz + 1
y = (x) · ✓
y = (x3
,
p
3x2
,
p
3x, 1) · (✓1, ✓2, ✓3, ✓4)
y = x3
✓1 +
p
3x2
✓2 +
p
3x✓3 + ✓4
13Wednesday, March 18, 15
Generalized linear regression and kernels
(x) = (x3
,
p
3x2
,
p
3x, 1)
in
K(x, z) = (x · z + 1)3
= x3
z3
+ 3x2
z2
+ 3xz + 1
Note: function is linear in
new feature space but
projects into a polynomial
in original feature space
y = (x) · ✓
y = (x3
,
p
3x2
,
p
3x, 1) · (✓1, ✓2, ✓3, ✓4)
y = x3
✓1 +
p
3x2
✓2 +
p
3x✓3 + ✓4
14Wednesday, March 18, 15
Generalized linear regression and kernels
(x) = (x3
,
p
3x2
,
p
3x, 1)
in
what happens when we regularize Ɵ?
y = (x) · ✓
y = (x3
,
p
3x2
,
p
3x, 1) · (✓1, ✓2, ✓3, ✓4)
y = x3
✓1 +
p
3x2
✓2 +
p
3x✓3 + ✓4
15Wednesday, March 18, 15
Generalized linear regression and kernels
(x) = (x3
,
p
3x2
,
p
3x, 1)
in
what happens when we regularize Ɵ?
all the components of Ɵ become smaller
so higher-order terms of x don’t get multiplied by
large quantities
y = (x) · ✓
y = (x3
,
p
3x2
,
p
3x, 1) · (✓1, ✓2, ✓3, ✓4)
y = x3
✓1 +
p
3x2
✓2 +
p
3x✓3 + ✓4
16Wednesday, March 18, 15
Regularization example (for linear regression)
17Wednesday, March 18, 15
Regularization example (for linear regression)
18Wednesday, March 18, 15
how to think about these problems:
- what is the best fit?
- what has been modified to move
away from best fit?
- would changing the slope yield a
better fit? if yes, perhaps slope was
overly regularized
- would changing the offset yield a
better fit? if yes, perhaps offset was
overly regularized
Regularization example (for linear regression)
19Wednesday, March 18, 15
Max-margin separator:
Support Vector Machine (SVM)
min1
2 k✓k2
subject to y(i)
(✓ · x(i)
) 1
max 1
k✓k
20Wednesday, March 18, 15
Max-margin separator:
Support Vector Machine (SVM)
min1
2 k✓k2
subject to y(i)
(✓ · x(i)
) 1
max 1
k✓k
Note that the decision
boundary is fully specified
by the training examples
21Wednesday, March 18, 15
Max-margin separator:
Support Vector Machine (SVM)
max 1
k✓k
prediction: sign(✓ · x(new)
)
x
22Wednesday, March 18, 15
We want to make a prediction for a new data point. To do this, we use our computed decision
boundary (specified by theta). But our decision boundary is fully specified by our training
examples, so why not directly use them?
Max-margin separator:
Support Vector Machine (SVM)
max 1
k✓k
prediction: sign(
P
i ↵(i)
y(i)
K(x(i)
, x(new)
))
x just a similarity function
23Wednesday, March 18, 15
we can! this is an alternative (dual) formulation of the SVM problem that does not rely on the
explicit computation of the decision boundary
Q: does our decision boundary depend on ALL the points, or only a subset of them?
A: only a subset of points - our support vectors are required!
Studying tips
• go through all the derivations and see if you can translate them to English
sentences (ask yourself: what do we do at this step and why?)
• consider how different parts of a function depend on and influence each
other
• modify the original formulations and see what happens when you vary
different components (regularization, offset, loss function)
• consider how the algorithms you have learned behave under different
situations (many vs few training examples, linearly (in)separable cases, etc.)
• in other words: GENERALIZE from the examples you saw in class
24Wednesday, March 18, 15

Contenu connexe

Tendances

2. Prasad_Komal JNU2015 (1)
2. Prasad_Komal JNU2015 (1)2. Prasad_Komal JNU2015 (1)
2. Prasad_Komal JNU2015 (1)
Komal Goyal
 
Algorithms 9528637
Algorithms 9528637Algorithms 9528637
Algorithms 9528637
inddxp
 
Math22 Lecture1
Math22 Lecture1Math22 Lecture1
Math22 Lecture1
hdsierra
 
Quasistatic Fracture using Nonliner-Nonlocal Elastostatics with an Analytic T...
Quasistatic Fracture using Nonliner-Nonlocal Elastostatics with an Analytic T...Quasistatic Fracture using Nonliner-Nonlocal Elastostatics with an Analytic T...
Quasistatic Fracture using Nonliner-Nonlocal Elastostatics with an Analytic T...
Patrick Diehl
 
Oct 22 Integers
Oct 22 IntegersOct 22 Integers
Oct 22 Integers
spmath
 
Day 19 distributive property equations
Day 19 distributive property equationsDay 19 distributive property equations
Day 19 distributive property equations
Erik Tjersland
 
2.5 Calculus of Vector & Matrix_2022.ppsx
2.5  Calculus of Vector & Matrix_2022.ppsx2.5  Calculus of Vector & Matrix_2022.ppsx
2.5 Calculus of Vector & Matrix_2022.ppsx
EvelynEvelyn37
 
Lesson 26: Integration by Substitution (handout)
Lesson 26: Integration by Substitution (handout)Lesson 26: Integration by Substitution (handout)
Lesson 26: Integration by Substitution (handout)
Matthew Leingang
 

Tendances (20)

A lattice-based consensus clustering
A lattice-based consensus clusteringA lattice-based consensus clustering
A lattice-based consensus clustering
 
Algebraic identities
Algebraic identitiesAlgebraic identities
Algebraic identities
 
Combined Functions
Combined FunctionsCombined Functions
Combined Functions
 
Bresenham Line Drawing Algorithm
Bresenham Line Drawing AlgorithmBresenham Line Drawing Algorithm
Bresenham Line Drawing Algorithm
 
2. Prasad_Komal JNU2015 (1)
2. Prasad_Komal JNU2015 (1)2. Prasad_Komal JNU2015 (1)
2. Prasad_Komal JNU2015 (1)
 
Anti-differentiating approximation algorithms: A case study with min-cuts, sp...
Anti-differentiating approximation algorithms: A case study with min-cuts, sp...Anti-differentiating approximation algorithms: A case study with min-cuts, sp...
Anti-differentiating approximation algorithms: A case study with min-cuts, sp...
 
Some common Fixed Point Theorems for compatible  - contractions in G-metric ...
Some common Fixed Point Theorems for compatible  - contractions in G-metric ...Some common Fixed Point Theorems for compatible  - contractions in G-metric ...
Some common Fixed Point Theorems for compatible  - contractions in G-metric ...
 
Tutorial7
Tutorial7Tutorial7
Tutorial7
 
Algorithms 9528637
Algorithms 9528637Algorithms 9528637
Algorithms 9528637
 
Design and analysis of algorithms question paper 2015 tutorialsduniya.com
Design and analysis of algorithms  question paper 2015   tutorialsduniya.comDesign and analysis of algorithms  question paper 2015   tutorialsduniya.com
Design and analysis of algorithms question paper 2015 tutorialsduniya.com
 
3D Geometry QA 10
3D Geometry QA 103D Geometry QA 10
3D Geometry QA 10
 
Math22 Lecture1
Math22 Lecture1Math22 Lecture1
Math22 Lecture1
 
Quasistatic Fracture using Nonliner-Nonlocal Elastostatics with an Analytic T...
Quasistatic Fracture using Nonliner-Nonlocal Elastostatics with an Analytic T...Quasistatic Fracture using Nonliner-Nonlocal Elastostatics with an Analytic T...
Quasistatic Fracture using Nonliner-Nonlocal Elastostatics with an Analytic T...
 
Oct 22 Integers
Oct 22 IntegersOct 22 Integers
Oct 22 Integers
 
Latihan soal (vektor)
Latihan soal (vektor)Latihan soal (vektor)
Latihan soal (vektor)
 
Common fixed point and weak commuting mappings
Common fixed point and weak commuting mappingsCommon fixed point and weak commuting mappings
Common fixed point and weak commuting mappings
 
Day 19 distributive property equations
Day 19 distributive property equationsDay 19 distributive property equations
Day 19 distributive property equations
 
2.5 Calculus of Vector & Matrix_2022.ppsx
2.5  Calculus of Vector & Matrix_2022.ppsx2.5  Calculus of Vector & Matrix_2022.ppsx
2.5 Calculus of Vector & Matrix_2022.ppsx
 
Lesson 26: Integration by Substitution (handout)
Lesson 26: Integration by Substitution (handout)Lesson 26: Integration by Substitution (handout)
Lesson 26: Integration by Substitution (handout)
 
Big data matrix factorizations and Overlapping community detection in graphs
Big data matrix factorizations and Overlapping community detection in graphsBig data matrix factorizations and Overlapping community detection in graphs
Big data matrix factorizations and Overlapping community detection in graphs
 

En vedette

Ap4 zba exec overview
Ap4 zba exec overviewAp4 zba exec overview
Ap4 zba exec overview
Jill Noyes
 
Aspectos importante en la motricidad
Aspectos importante en  la motricidadAspectos importante en  la motricidad
Aspectos importante en la motricidad
Perdomo Dany
 
La animacion como educacion no formal
La animacion como educacion no formalLa animacion como educacion no formal
La animacion como educacion no formal
elena sugey
 

En vedette (20)

PARTES DEL DIENTE . L.D.R.C
PARTES DEL DIENTE .                L.D.R.CPARTES DEL DIENTE .                L.D.R.C
PARTES DEL DIENTE . L.D.R.C
 
Ap4 zba exec overview
Ap4 zba exec overviewAp4 zba exec overview
Ap4 zba exec overview
 
Vine adorarte
Vine adorarteVine adorarte
Vine adorarte
 
Celebrad
CelebradCelebrad
Celebrad
 
Aunque en esta vida
Aunque en esta vidaAunque en esta vida
Aunque en esta vida
 
How not to lie with visualization
How not to lie with visualizationHow not to lie with visualization
How not to lie with visualization
 
LA ALEGRIA
LA ALEGRIALA ALEGRIA
LA ALEGRIA
 
Linear regression
Linear regressionLinear regression
Linear regression
 
Week 9 final presentation
Week 9 final presentationWeek 9 final presentation
Week 9 final presentation
 
短時間で合意形成に導く!ポジティブアプローチを活用した視覚化ファシリテーションのススメ
短時間で合意形成に導く!ポジティブアプローチを活用した視覚化ファシリテーションのススメ短時間で合意形成に導く!ポジティブアプローチを活用した視覚化ファシリテーションのススメ
短時間で合意形成に導く!ポジティブアプローチを活用した視覚化ファシリテーションのススメ
 
Designing for Mobile: UX for designers and developers
Designing for Mobile: UX for designers and developersDesigning for Mobile: UX for designers and developers
Designing for Mobile: UX for designers and developers
 
Violencia familiar
Violencia familiarViolencia familiar
Violencia familiar
 
Funciones básicas de una computadora
Funciones básicas de una computadoraFunciones básicas de una computadora
Funciones básicas de una computadora
 
Aspectos importante en la motricidad
Aspectos importante en  la motricidadAspectos importante en  la motricidad
Aspectos importante en la motricidad
 
27 06-2014
27 06-201427 06-2014
27 06-2014
 
Appraisals
AppraisalsAppraisals
Appraisals
 
La animacion como educacion no formal
La animacion como educacion no formalLa animacion como educacion no formal
La animacion como educacion no formal
 
Pulse Candy - DS Group
Pulse Candy - DS GroupPulse Candy - DS Group
Pulse Candy - DS Group
 
Hoe samen te werken met de energieke samenleving?
Hoe samen te werken met de energieke samenleving?Hoe samen te werken met de energieke samenleving?
Hoe samen te werken met de energieke samenleving?
 
Interdependencia entre medios y acción social: estrategias y efectos comunica...
Interdependencia entre medios y acción social: estrategias y efectos comunica...Interdependencia entre medios y acción social: estrategias y efectos comunica...
Interdependencia entre medios y acción social: estrategias y efectos comunica...
 

Similaire à Relationship between some machine learning concepts

Bayesian hybrid variable selection under generalized linear models
Bayesian hybrid variable selection under generalized linear modelsBayesian hybrid variable selection under generalized linear models
Bayesian hybrid variable selection under generalized linear models
Caleb (Shiqiang) Jin
 
CP1-Chp6-Matrices (2).pptx used for revision
CP1-Chp6-Matrices (2).pptx used for revisionCP1-Chp6-Matrices (2).pptx used for revision
CP1-Chp6-Matrices (2).pptx used for revision
rachaelgiwa11
 
week10_Reinforce.pdf
week10_Reinforce.pdfweek10_Reinforce.pdf
week10_Reinforce.pdf
YuChianWu
 

Similaire à Relationship between some machine learning concepts (20)

Uncertainty Awareness in Integrating Machine Learning and Game Theory
Uncertainty Awareness in Integrating Machine Learning and Game TheoryUncertainty Awareness in Integrating Machine Learning and Game Theory
Uncertainty Awareness in Integrating Machine Learning and Game Theory
 
Clustering:k-means, expect-maximization and gaussian mixture model
Clustering:k-means, expect-maximization and gaussian mixture modelClustering:k-means, expect-maximization and gaussian mixture model
Clustering:k-means, expect-maximization and gaussian mixture model
 
Paper Study: Melding the data decision pipeline
Paper Study: Melding the data decision pipelinePaper Study: Melding the data decision pipeline
Paper Study: Melding the data decision pipeline
 
Bayesian hybrid variable selection under generalized linear models
Bayesian hybrid variable selection under generalized linear modelsBayesian hybrid variable selection under generalized linear models
Bayesian hybrid variable selection under generalized linear models
 
ML unit-1.pptx
ML unit-1.pptxML unit-1.pptx
ML unit-1.pptx
 
ppt - Deep Learning From Scratch.pdf
ppt - Deep Learning From Scratch.pdfppt - Deep Learning From Scratch.pdf
ppt - Deep Learning From Scratch.pdf
 
Introduction to PyTorch
Introduction to PyTorchIntroduction to PyTorch
Introduction to PyTorch
 
CP1-Chp6-Matrices (2).pptx used for revision
CP1-Chp6-Matrices (2).pptx used for revisionCP1-Chp6-Matrices (2).pptx used for revision
CP1-Chp6-Matrices (2).pptx used for revision
 
2018 MUMS Fall Course - Introduction to statistical and mathematical model un...
2018 MUMS Fall Course - Introduction to statistical and mathematical model un...2018 MUMS Fall Course - Introduction to statistical and mathematical model un...
2018 MUMS Fall Course - Introduction to statistical and mathematical model un...
 
Svm map reduce_slides
Svm map reduce_slidesSvm map reduce_slides
Svm map reduce_slides
 
SASA 2016
SASA 2016SASA 2016
SASA 2016
 
week10_Reinforce.pdf
week10_Reinforce.pdfweek10_Reinforce.pdf
week10_Reinforce.pdf
 
20MEMECH Part 3- Classification.pdf
20MEMECH Part 3- Classification.pdf20MEMECH Part 3- Classification.pdf
20MEMECH Part 3- Classification.pdf
 
Safe and Efficient Off-Policy Reinforcement Learning
Safe and Efficient Off-Policy Reinforcement LearningSafe and Efficient Off-Policy Reinforcement Learning
Safe and Efficient Off-Policy Reinforcement Learning
 
K-Means, its Variants and its Applications
K-Means, its Variants and its ApplicationsK-Means, its Variants and its Applications
K-Means, its Variants and its Applications
 
Anomaly detection using deep one class classifier
Anomaly detection using deep one class classifierAnomaly detection using deep one class classifier
Anomaly detection using deep one class classifier
 
SAT based planning for multiagent systems
SAT based planning for multiagent systemsSAT based planning for multiagent systems
SAT based planning for multiagent systems
 
Augmented Arithmetic Operations Proposed for IEEE-754 2018
Augmented Arithmetic Operations Proposed for IEEE-754 2018Augmented Arithmetic Operations Proposed for IEEE-754 2018
Augmented Arithmetic Operations Proposed for IEEE-754 2018
 
Presentation.pdf
Presentation.pdfPresentation.pdf
Presentation.pdf
 
MLHEP Lectures - day 1, basic track
MLHEP Lectures - day 1, basic trackMLHEP Lectures - day 1, basic track
MLHEP Lectures - day 1, basic track
 

Dernier

Gartner's Data Analytics Maturity Model.pptx
Gartner's Data Analytics Maturity Model.pptxGartner's Data Analytics Maturity Model.pptx
Gartner's Data Analytics Maturity Model.pptx
chadhar227
 
Jual obat aborsi Bandung ( 085657271886 ) Cytote pil telat bulan penggugur ka...
Jual obat aborsi Bandung ( 085657271886 ) Cytote pil telat bulan penggugur ka...Jual obat aborsi Bandung ( 085657271886 ) Cytote pil telat bulan penggugur ka...
Jual obat aborsi Bandung ( 085657271886 ) Cytote pil telat bulan penggugur ka...
Klinik kandungan
 
Top profile Call Girls In dimapur [ 7014168258 ] Call Me For Genuine Models W...
Top profile Call Girls In dimapur [ 7014168258 ] Call Me For Genuine Models W...Top profile Call Girls In dimapur [ 7014168258 ] Call Me For Genuine Models W...
Top profile Call Girls In dimapur [ 7014168258 ] Call Me For Genuine Models W...
gajnagarg
 
Top profile Call Girls In Purnia [ 7014168258 ] Call Me For Genuine Models We...
Top profile Call Girls In Purnia [ 7014168258 ] Call Me For Genuine Models We...Top profile Call Girls In Purnia [ 7014168258 ] Call Me For Genuine Models We...
Top profile Call Girls In Purnia [ 7014168258 ] Call Me For Genuine Models We...
nirzagarg
 
Sealdah % High Class Call Girls Kolkata - 450+ Call Girl Cash Payment 8005736...
Sealdah % High Class Call Girls Kolkata - 450+ Call Girl Cash Payment 8005736...Sealdah % High Class Call Girls Kolkata - 450+ Call Girl Cash Payment 8005736...
Sealdah % High Class Call Girls Kolkata - 450+ Call Girl Cash Payment 8005736...
HyderabadDolls
 
怎样办理圣地亚哥州立大学毕业证(SDSU毕业证书)成绩单学校原版复制
怎样办理圣地亚哥州立大学毕业证(SDSU毕业证书)成绩单学校原版复制怎样办理圣地亚哥州立大学毕业证(SDSU毕业证书)成绩单学校原版复制
怎样办理圣地亚哥州立大学毕业证(SDSU毕业证书)成绩单学校原版复制
vexqp
 
Top profile Call Girls In Vadodara [ 7014168258 ] Call Me For Genuine Models ...
Top profile Call Girls In Vadodara [ 7014168258 ] Call Me For Genuine Models ...Top profile Call Girls In Vadodara [ 7014168258 ] Call Me For Genuine Models ...
Top profile Call Girls In Vadodara [ 7014168258 ] Call Me For Genuine Models ...
gajnagarg
 
Reconciling Conflicting Data Curation Actions: Transparency Through Argument...
Reconciling Conflicting Data Curation Actions:  Transparency Through Argument...Reconciling Conflicting Data Curation Actions:  Transparency Through Argument...
Reconciling Conflicting Data Curation Actions: Transparency Through Argument...
Bertram Ludäscher
 
Top profile Call Girls In Hapur [ 7014168258 ] Call Me For Genuine Models We ...
Top profile Call Girls In Hapur [ 7014168258 ] Call Me For Genuine Models We ...Top profile Call Girls In Hapur [ 7014168258 ] Call Me For Genuine Models We ...
Top profile Call Girls In Hapur [ 7014168258 ] Call Me For Genuine Models We ...
nirzagarg
 
Top profile Call Girls In bhavnagar [ 7014168258 ] Call Me For Genuine Models...
Top profile Call Girls In bhavnagar [ 7014168258 ] Call Me For Genuine Models...Top profile Call Girls In bhavnagar [ 7014168258 ] Call Me For Genuine Models...
Top profile Call Girls In bhavnagar [ 7014168258 ] Call Me For Genuine Models...
gajnagarg
 

Dernier (20)

5CL-ADBA,5cladba, Chinese supplier, safety is guaranteed
5CL-ADBA,5cladba, Chinese supplier, safety is guaranteed5CL-ADBA,5cladba, Chinese supplier, safety is guaranteed
5CL-ADBA,5cladba, Chinese supplier, safety is guaranteed
 
Vadodara 💋 Call Girl 7737669865 Call Girls in Vadodara Escort service book now
Vadodara 💋 Call Girl 7737669865 Call Girls in Vadodara Escort service book nowVadodara 💋 Call Girl 7737669865 Call Girls in Vadodara Escort service book now
Vadodara 💋 Call Girl 7737669865 Call Girls in Vadodara Escort service book now
 
Digital Transformation Playbook by Graham Ware
Digital Transformation Playbook by Graham WareDigital Transformation Playbook by Graham Ware
Digital Transformation Playbook by Graham Ware
 
Gartner's Data Analytics Maturity Model.pptx
Gartner's Data Analytics Maturity Model.pptxGartner's Data Analytics Maturity Model.pptx
Gartner's Data Analytics Maturity Model.pptx
 
Jual obat aborsi Bandung ( 085657271886 ) Cytote pil telat bulan penggugur ka...
Jual obat aborsi Bandung ( 085657271886 ) Cytote pil telat bulan penggugur ka...Jual obat aborsi Bandung ( 085657271886 ) Cytote pil telat bulan penggugur ka...
Jual obat aborsi Bandung ( 085657271886 ) Cytote pil telat bulan penggugur ka...
 
Top profile Call Girls In dimapur [ 7014168258 ] Call Me For Genuine Models W...
Top profile Call Girls In dimapur [ 7014168258 ] Call Me For Genuine Models W...Top profile Call Girls In dimapur [ 7014168258 ] Call Me For Genuine Models W...
Top profile Call Girls In dimapur [ 7014168258 ] Call Me For Genuine Models W...
 
Top profile Call Girls In Purnia [ 7014168258 ] Call Me For Genuine Models We...
Top profile Call Girls In Purnia [ 7014168258 ] Call Me For Genuine Models We...Top profile Call Girls In Purnia [ 7014168258 ] Call Me For Genuine Models We...
Top profile Call Girls In Purnia [ 7014168258 ] Call Me For Genuine Models We...
 
High Profile Call Girls Service in Jalore { 9332606886 } VVIP NISHA Call Girl...
High Profile Call Girls Service in Jalore { 9332606886 } VVIP NISHA Call Girl...High Profile Call Girls Service in Jalore { 9332606886 } VVIP NISHA Call Girl...
High Profile Call Girls Service in Jalore { 9332606886 } VVIP NISHA Call Girl...
 
Statistics notes ,it includes mean to index numbers
Statistics notes ,it includes mean to index numbersStatistics notes ,it includes mean to index numbers
Statistics notes ,it includes mean to index numbers
 
Sealdah % High Class Call Girls Kolkata - 450+ Call Girl Cash Payment 8005736...
Sealdah % High Class Call Girls Kolkata - 450+ Call Girl Cash Payment 8005736...Sealdah % High Class Call Girls Kolkata - 450+ Call Girl Cash Payment 8005736...
Sealdah % High Class Call Girls Kolkata - 450+ Call Girl Cash Payment 8005736...
 
怎样办理圣地亚哥州立大学毕业证(SDSU毕业证书)成绩单学校原版复制
怎样办理圣地亚哥州立大学毕业证(SDSU毕业证书)成绩单学校原版复制怎样办理圣地亚哥州立大学毕业证(SDSU毕业证书)成绩单学校原版复制
怎样办理圣地亚哥州立大学毕业证(SDSU毕业证书)成绩单学校原版复制
 
Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...
Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...
Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...
 
Gulbai Tekra * Cheap Call Girls In Ahmedabad Phone No 8005736733 Elite Escort...
Gulbai Tekra * Cheap Call Girls In Ahmedabad Phone No 8005736733 Elite Escort...Gulbai Tekra * Cheap Call Girls In Ahmedabad Phone No 8005736733 Elite Escort...
Gulbai Tekra * Cheap Call Girls In Ahmedabad Phone No 8005736733 Elite Escort...
 
Top profile Call Girls In Vadodara [ 7014168258 ] Call Me For Genuine Models ...
Top profile Call Girls In Vadodara [ 7014168258 ] Call Me For Genuine Models ...Top profile Call Girls In Vadodara [ 7014168258 ] Call Me For Genuine Models ...
Top profile Call Girls In Vadodara [ 7014168258 ] Call Me For Genuine Models ...
 
20240412-SmartCityIndex-2024-Full-Report.pdf
20240412-SmartCityIndex-2024-Full-Report.pdf20240412-SmartCityIndex-2024-Full-Report.pdf
20240412-SmartCityIndex-2024-Full-Report.pdf
 
Kings of Saudi Arabia, information about them
Kings of Saudi Arabia, information about themKings of Saudi Arabia, information about them
Kings of Saudi Arabia, information about them
 
Nirala Nagar / Cheap Call Girls In Lucknow Phone No 9548273370 Elite Escort S...
Nirala Nagar / Cheap Call Girls In Lucknow Phone No 9548273370 Elite Escort S...Nirala Nagar / Cheap Call Girls In Lucknow Phone No 9548273370 Elite Escort S...
Nirala Nagar / Cheap Call Girls In Lucknow Phone No 9548273370 Elite Escort S...
 
Reconciling Conflicting Data Curation Actions: Transparency Through Argument...
Reconciling Conflicting Data Curation Actions:  Transparency Through Argument...Reconciling Conflicting Data Curation Actions:  Transparency Through Argument...
Reconciling Conflicting Data Curation Actions: Transparency Through Argument...
 
Top profile Call Girls In Hapur [ 7014168258 ] Call Me For Genuine Models We ...
Top profile Call Girls In Hapur [ 7014168258 ] Call Me For Genuine Models We ...Top profile Call Girls In Hapur [ 7014168258 ] Call Me For Genuine Models We ...
Top profile Call Girls In Hapur [ 7014168258 ] Call Me For Genuine Models We ...
 
Top profile Call Girls In bhavnagar [ 7014168258 ] Call Me For Genuine Models...
Top profile Call Girls In bhavnagar [ 7014168258 ] Call Me For Genuine Models...Top profile Call Girls In bhavnagar [ 7014168258 ] Call Me For Genuine Models...
Top profile Call Girls In bhavnagar [ 7014168258 ] Call Me For Genuine Models...
 

Relationship between some machine learning concepts

  • 2. Topics covered • supervised learning • unsupervised learning • semi-supervised learning labels available no labels available some labels available 2Wednesday, March 18, 15 - what algorithms have you learned that correspond to each of these categories?
  • 3. Topics covered • supervised learning • classification • online learning algorithms (linear and non-linear) • perceptron algorithm • passive aggressive algorithm • maximum-margin separator (SVM) (linear and non-linear) • boosting (non-linear) • neural networks (non-linear) • regression • unsupervised learning • clustering • k-means clustering • k-medoids clustering • semi-supervised learning • collaborative filtering 3Wednesday, March 18, 15
  • 4. Topics covered • supervised learning • classification • online learning algorithms (linear and non-linear) • perceptron algorithm • passive aggressive algorithm • maximum-margin separator (SVM) (linear and non-linear) • boosting (non-linear) • neural networks (non-linear) • regression • unsupervised learning • clustering • k-means clustering • k-medoids clustering • semi-supervised learning • collaborative filtering kernelized binary AdaBoost ridge regression 4Wednesday, March 18, 15 - you have seen binary classification -> how do you think we can extend to multi-class classification? (many binary classifiers) - ensemble methods combine the opinions of multiple learners; boosting is one way of doing this; AdaBoost is a particular implementation of boosting - you have seen ridge regression - can also have lasso regression (difference in penalty function - i.e. regularization) - semi-supervised learning can also occur with clustering, for instance, with some exemplars in the clusters labeled; this information can be used for classification (project 2!)
  • 5. Common themes • objective function (minimize error) • loss functions: euclidean, exponential • iterative algorithms (e.g. mistake-driven learning) • gradient descent • generalization and regularization • training error vs test error • overfitting • cross-validation • feature representations • nonlinear feature mapping (e.g. kernelized methods) • dimensionality reduction (e.g. PCA) • similarity/distance measures • cosine, euclidean, manhattan • kernels 5Wednesday, March 18, 15 - exercise: in which contexts (for which algorithms, problems) have you seen these themes come up?
  • 6. Relationship b/w regression and classification x · ✓ + ✓o sign(x · ✓ + ✓o) Regression setting: given data point (vector) x, make a prediction: Classification setting: given data point (vector) x, make a prediction: binary classification +++ + ++ + 6Wednesday, March 18, 15
  • 7. Relationship b/w regression and classification x · ✓ + ✓o sign(x · ✓ + ✓o) Regression setting: given data point (vector) x, make a prediction: Classification setting: given data point (vector) x, make a prediction: binary classification - +++ + ++ + 7Wednesday, March 18, 15
  • 8. input true values predicted values by model 1 predicted values by model 2 Effect of regularization consider generalized linear regression on 1D input: 8Wednesday, March 18, 15
  • 9. time true values predicted values by model 1 predicted values by model 2 Effect of regularization goal: to make predictions for new points some financial quantity x real-world use case: 9Wednesday, March 18, 15
  • 10. more regularized = less likely to overfit training values = more likely to generalize input true values predicted values by model 1 predicted values by model 2 Effect of regularization 10Wednesday, March 18, 15
  • 11. in Generalized linear regression and kernels y = (x) · ✓ y = x✓ 11Wednesday, March 18, 15
  • 12. Generalized linear regression and kernels (x) = (x3 , p 3x2 , p 3x, 1) in y = (x) · ✓ y = (x3 , p 3x2 , p 3x, 1) · (✓1, ✓2, ✓3, ✓4) y = x3 ✓1 + p 3x2 ✓2 + p 3x✓3 + ✓4 12Wednesday, March 18, 15
  • 13. Generalized linear regression and kernels (x) = (x3 , p 3x2 , p 3x, 1) in K(x, z) = (x · z + 1)3 = x3 z3 + 3x2 z2 + 3xz + 1 y = (x) · ✓ y = (x3 , p 3x2 , p 3x, 1) · (✓1, ✓2, ✓3, ✓4) y = x3 ✓1 + p 3x2 ✓2 + p 3x✓3 + ✓4 13Wednesday, March 18, 15
  • 14. Generalized linear regression and kernels (x) = (x3 , p 3x2 , p 3x, 1) in K(x, z) = (x · z + 1)3 = x3 z3 + 3x2 z2 + 3xz + 1 Note: function is linear in new feature space but projects into a polynomial in original feature space y = (x) · ✓ y = (x3 , p 3x2 , p 3x, 1) · (✓1, ✓2, ✓3, ✓4) y = x3 ✓1 + p 3x2 ✓2 + p 3x✓3 + ✓4 14Wednesday, March 18, 15
  • 15. Generalized linear regression and kernels (x) = (x3 , p 3x2 , p 3x, 1) in what happens when we regularize Ɵ? y = (x) · ✓ y = (x3 , p 3x2 , p 3x, 1) · (✓1, ✓2, ✓3, ✓4) y = x3 ✓1 + p 3x2 ✓2 + p 3x✓3 + ✓4 15Wednesday, March 18, 15
  • 16. Generalized linear regression and kernels (x) = (x3 , p 3x2 , p 3x, 1) in what happens when we regularize Ɵ? all the components of Ɵ become smaller so higher-order terms of x don’t get multiplied by large quantities y = (x) · ✓ y = (x3 , p 3x2 , p 3x, 1) · (✓1, ✓2, ✓3, ✓4) y = x3 ✓1 + p 3x2 ✓2 + p 3x✓3 + ✓4 16Wednesday, March 18, 15
  • 17. Regularization example (for linear regression) 17Wednesday, March 18, 15
  • 18. Regularization example (for linear regression) 18Wednesday, March 18, 15
  • 19. how to think about these problems: - what is the best fit? - what has been modified to move away from best fit? - would changing the slope yield a better fit? if yes, perhaps slope was overly regularized - would changing the offset yield a better fit? if yes, perhaps offset was overly regularized Regularization example (for linear regression) 19Wednesday, March 18, 15
  • 20. Max-margin separator: Support Vector Machine (SVM) min1 2 k✓k2 subject to y(i) (✓ · x(i) ) 1 max 1 k✓k 20Wednesday, March 18, 15
  • 21. Max-margin separator: Support Vector Machine (SVM) min1 2 k✓k2 subject to y(i) (✓ · x(i) ) 1 max 1 k✓k Note that the decision boundary is fully specified by the training examples 21Wednesday, March 18, 15
  • 22. Max-margin separator: Support Vector Machine (SVM) max 1 k✓k prediction: sign(✓ · x(new) ) x 22Wednesday, March 18, 15 We want to make a prediction for a new data point. To do this, we use our computed decision boundary (specified by theta). But our decision boundary is fully specified by our training examples, so why not directly use them?
  • 23. Max-margin separator: Support Vector Machine (SVM) max 1 k✓k prediction: sign( P i ↵(i) y(i) K(x(i) , x(new) )) x just a similarity function 23Wednesday, March 18, 15 we can! this is an alternative (dual) formulation of the SVM problem that does not rely on the explicit computation of the decision boundary Q: does our decision boundary depend on ALL the points, or only a subset of them? A: only a subset of points - our support vectors are required!
  • 24. Studying tips • go through all the derivations and see if you can translate them to English sentences (ask yourself: what do we do at this step and why?) • consider how different parts of a function depend on and influence each other • modify the original formulations and see what happens when you vary different components (regularization, offset, loss function) • consider how the algorithms you have learned behave under different situations (many vs few training examples, linearly (in)separable cases, etc.) • in other words: GENERALIZE from the examples you saw in class 24Wednesday, March 18, 15