SlideShare une entreprise Scribd logo
1  sur  85
Network Effects
A N U H A R I H A R A N E T A L
What are
network effects?
Properties, terms,
and laws of
networks
Strategies for
building
network effects
What aren’t
network effects?
Case studies of
companies with
network effects
Simply put, a network effect* occurs when a
product or a service becomes more valuable to
its users as more people use it
*also known as:
demand-side economies of scale
Because understanding network effects helps build
better products and businesses
Especially since network effects are the key
dynamic behind many successful
software-based companies
Why does this matter?
Create barriers to exit for existing users and
barriers to entry for new companies
(help build moats)
Protect software companies from competitors’
eating away at their margins
Can help create or tip winner-take-all markets
Network effects
What are
network effects?
Properties,
terms, and laws
of networks
Strategies for
building network
effects
What aren’t
network effects?
Case studies of
companies with
network effects
Networks, which are basically just a set of nodes
connected by links, have various properties
Some of those relevant properties include:
1. Whether the nodes are homogeneous or heterogeneous
2. Their type of clustering and degree of connections
3. Directionality of those connections
4. Whether they have (or are) complements
Putting the ‘network’ in network effects
1. Homogeneous or heterogeneous?
Homogeneous
Composed of similar types of nodes
Heterogeneous
Skype is an example of a homogeneous
network where most of the value is
derived from a single class of users, all
interested in placing a phone call
Composed of different types of nodes
OpenTable is an example of a
heterogeneous network with two distinct
categories of participants: one side is
restaurants, the other side is diners
Image source (Skype): http://letsbytecode.com/security/skype-the-phantom-menace/
2. Degree of connections and type of clustering
Source: Albert-László Barabási, Linked: The New Science of Networks
Source (original chart): https://griffsgraphs.wordpress.com/tag/clustering/
Degree: Measures number of
connections to a single node
Clustering coefficient:
Measures degree to which nodes
in a graph (e.g., social graph,
interest graph, intent graph, etc.)
cluster together
Type of cluster: Can range from
hub-and-spoke (star) to
connected (clique)
Example of Facebook friends connections clustering
(high school, college, significant other’s, etc. clusters)
Zooming in a bit further on those terms
Degree
Number of connections
to a single node
Homogeneous
Type of Cluster
The resulting CC(A) represents the
fraction of possible interconnections
between the neighbors of A
0 ≤ CC(A) ≤ 1
[For operating systems, Microsoft
Windows is regarded as a central hub,
with 85% share of the network!]
Node A has 4 connections,
therefore its degree is 4
Clustering Coefficient (CC)
How likely are two nodes that are
connected part of a highly
connected group of nodes?
If A is the node,
and d is the degree A = 4,
then n is the # of links between
neighbors (blue dots) of A = 1
For example:
CC(A) = 2*N/D(D-1) = 1/6
In hub-and-spoke or star networks, the fittest
node (central hub) grabs all connections,
leaving very little for the rest of the nodes
In clique networks, node A is connected
to its neighbors and all those neighbors
are connected to each other
cliquehub-and-spoke
Source: https://youtu.be/K2WF4pT5pFY
See also: Albert-László Barabási, Linked: The New Science of Networks
3. Connections: Unidirectional or Bidirectional?
Friends
Facebook, for example, is one place where
connections tend to be bidirectional
With bidirectional or two-way friending, you are
more likely to have balanced connections:
Follower
Twitter, for example, is one place where
connections can more easily be unidirectional
Unidirectional or one-way following leads to
asymmetrical connections (e.g., the asymmetric
follow)
Note: You could still have balanced connections here where
you both or neither of you follow each other
• You are friends
• You are not friends • People follow you, but you
don’t follow them back
• People don’t follow you, but
you do follow them
4. Complementary Networks
More usage of the
MS Windows
operating system
More usage of the
MS Office suite of
applications
Increase in usage of one product
by a set of users reinforces and
increases the value of a
complementary (but separate!)
product, which in turn, increases
the value of the original
Source: http://cdixon.org/2009/08/25/six-strategies-for-overcoming-chicken-and-egg-problems/
T W O P R O D U C T S A R E C O M P L E M E N TA RY W H E N T H E Y A R E S E PA R AT E B U T A R E M O R E U S E F U L T O U S E R S
T O G E T H E R
operating systems have strong
network effects of their own (via
developers) as do productivity apps
(via file formats), but in this case they
also reinforce each other
Besides those properties, networks
(more specifically, communication networks)
can also exhibit the following laws:
3 common laws for assessing the
value of communication networks
Sarnoff’s law
Value of a network is
proportional to the number
of viewers
Broadcast
Yahoo
1
Value of a network is
proportional to square
of number of connected
users
Peer to Peer
Facebook
Metcalfe’s law
2
Value of a group-forming
network is proportional to
number and ease with which
groups form within it (subgroups
grow faster than sheer number
of P2P participants)
Group Forming
Slack or WhatsApp groups
Reed’s law
3
Sources: Andrew Odlyzko et al http://www.dtc.umn.edu/~odlyzko/doc/metcalfe.pdf
Facebook is a classic example of Metcalfe’s law
Every new user connecting to
other peers in the network (peer-
to-peer) non-linearly increases
the number of connections
Source: Bob Metcalfe/ IEEE Computer 2013, via Bill Krause
And finally, let’s define some commonly used
terms in the context of network effects
Terms and definitions for our purposes
Network is a group of interconnected people (social network) or system of things
(telephones, printers to computers)
Marketplace is a network where money/transactions flow between two or more
sides with distinct (i.e., heterogeneous) groups of users on each side; a successful
marketplace is where supply and demand are attracted to the same place
Platform is a network of users and developers; the multi-sided feedback loop
between those users, developers, and the platform itself creates a flywheel effect
increasing value for each of those groups. It can also be thought of as a network
that can be programmed, customized, and extended by outside users—often meets
needs and creates niches not defined by its original developers at the outset
Examples
Platform
Operating systems
Messaging app like
WeChat
Marketplace
Online auction
marketplace
Dating sites (can be
heterogeneous or
homogeneous!)
Network
Social network
Telephone network
Office printer &
computer network
So why do any of these details—topologies, other
properties, precision of terms—matter to startup founders?
Because these details suggest what questions to ask
(e.g., is this network defensible?) and what the
corresponding entrepreneurial strategy should be
For example, if it’s X, then ask Y:
Platform
Will the market we’re eyeing
eventually be served by a
single platform and will it be
shared (Ethernet) or will it be
a fight for proprietary control
(MS vs Apple)?
Marketplace
How do we build liquidity in the
marketplace/solve the
chicken-and-egg (which side
comes first) problem?
Which is the money side vs
subsidy side of the marketplace?
Network
What should the entry point be (to
build a network effect)?
What are the growth
levers/tactics/hacks to get to critical
mass?
What’s the critical mass inflection
point (at which a network
effect occurs)?
How do you drive engagement?
How do we take advantage of
irregular topologies to find clusters
and sub clusters?
Most of these questions really boil down to
What’s the initial growth lever or tactic
to help us get to scale?
Another way of thinking about this is:
What’s the deterministic (not-so-random) solution
to the bootstrapping problem?
These questions help counter the wishful thinking
and sometimes faulty assumption behind the belief that
if we build it, they will come
We’ll share specific strategies for
attacking all these questions
First, let’s look at some examples
But there’s one more question/definition
to know before doing so…
Is the product single or multiplayer mode?
Source: http://cdixon.org/2010/06/12/designing-products-for-single-and-multiplayer-modes/
Single Player Mode
The product has immediate
utility for a single user
Examples
Multiplayer Mode
The product has no utility
for a single player
(especially true for communication
products—a phone is useless without
someone at other end)
Examples
(early days):
tool to store
private photos
(early days):
bookmark restaurants
you’ve been to need connections
to other users to
make calls
messaging for teams
Note: You can sometimes have both
single and multiplayer mode for a single product
Single player mode is more powerful when accompanied by an initial
‘hack’ or other bootstrapping of early network growth.
(e.g., Instagram’s cool photo filters was a way to post photos
on Twitter before there was enough critical mass)
Single player mode can also help with adoption in the early stages
of a product, when network effects aren’t strong enough yet
come for the tool, stay for the network.
(e.g., Medium offering a beautiful publishing tool before
it built its network of people and ideas)
What are
network effects?
Case studies of
companies with
network effects
Strategies for
building network
effects
What aren’t
network effects?
Properties, terms
and laws of
networks
Facebook
T H E U LT I M AT E C A S E S T U D Y I N N E T W O R K E F F E C T S
Started off as a social
network (peer to peer
connections)
Became a platform
(with developers)
Has elements of a
marketplace
(users/advertisers,
Instant Articles)
So what led to network effects for Facebook?
Mode/product value Growth tactic Engagement trigger Network effects
Began as online student
directory with information
that was immediately useful
even to a single player
(user)
Became a way for college
students in courses and
clubs to connect with other
(multiplayer mode)
Accessed the entire
Harvard directory early
on; critical in driving
early adoption
And because the product
had inherent virality, it
spread from one user to
another as an organic
consequence of use
Identified early on that
connecting a new user to
10 friends within 14 days
of sign up was critical to
improving retention
So they used email
contact imports,
suggested friends and
embedded widgets to
drive that engagement
Continued tweaking
product (relationship
status, timelines, etc.) to
get everybody to join and
stay on board
So made sure there was
an increase in usage
even as the number of
their users grew
C O R R E S P O N D I N G Q U E S T I O N S : W H AT ’ S T H E E N T RY P O I N T ? W H AT A R E T H E G R O W T H L E V E R S ?
W H AT ’ S T H E C R I T I C A L M A S S I N F L E C T I O N P O I N T ? H O W D O W E D R I V E E N G A G E M E N T ?
Sources: Mark Zuckerberg interview with James Breyer, https://youtu.be/WA_ma359Meg
Chamath Palihapitiya interview https://youtu.be/raIUQP71SBU
By the numbers: Early growth as key (but not sole) indicator
1 6 12
58
145
360
608
845
0
100
200
300
400
500
600
700
800
900
2004 2005 2006 2007 2008 2009 2010 2011
(millions,year-end)
MAUs
Founded at
Harvard
800+ college
networks
FB mobile
and share
on partner
sites
Launched
platform
with
developers
and apps
Introduced
chat
Introduced
Like button
and
payments
Introduced
Graph API
for easy
integration
Introduced
Timeline
Source: Facebook S-1
C O N S TA N T LY R O L L E D O U T N E W F E AT U R E S A N D O P T I M I Z E D T H E S I T E T O I N C R E A S E E N G A G E M E N T, D A I LY
0
200
400
600
800
1000
Mar-09 Jun-09 Sep-09 Dec-09 Mar-10 Jun-10 Sep-10 Dec-10 Mar-11 Jun-11 Sep-11 Dec-11
Inmillions
Hyper growth in DAUs and MAUs pre-IPO
MAUs
DAUs
By the numbers: Focus on daily usage to help grow network
Source: Facebook S-1
By the numbers: A sign of network effects
I N C R E A S E I N U S A G E E V E N A S N U M B E R O F U S E R S G R E W
45% 47%
51% 54% 53% 53% 54% 55% 56% 57% 57%
0%
20%
40%
60%
80%
100%
Mar-09 Jun-09 Sep-09 Dec-09 Mar-10 Jun-10 Sep-10 Dec-10 Mar-11 Jun-11 Sep-11 Dec-11
DAUS/MAUs(%)
Source: public company data
While many social networks today start off launching to everyone,
Facebook’s entry strategy was taking a clustered approach (get Harvard)
before rolling it out to other clusters (Stanford, etc.)
More importantly, they were focused on engagement, not just growth
Contrary to popular belief, Facebook kicked off offering immediate utility in
single player mode (the online school directory), but people started
connecting with each other (multiplayer mode) right away too
Some takeaways
Airbnb
T W O S I D E D M A R K E T P L A C E W I T H O V E R L A P I N B O T H S I D E S
More
guests
More
hosts
Network effect from both
sides of the network
More hosts attract more
guests and vice versa
More hosts = more
availability for guests
More guests = more
business/$ for hosts
A unique aspect of some peer-to-peer
marketplaces like Airbnb is overlap between
supply (hosts) and demand (guests)
In other words, guests also become hosts and
hosts also become guests!
How did Airbnb achieve its network effects?
Critical mass on
both sides
Network effects
Airbnb capitalized on an
existing problem/need—
very limited or expensive
hotel space
Turning homes to lodging
provided immediate value
to users: 30%-80%
cheaper than hotels and
highly differentiated type of
inventory (less sterile and
more personal/social than
hotel rooms)
As more guests stayed in
more places (demand), more
hosts got more business and
more hosts offered their
places which in turn created
more supply for guests
As measured by number
of room nights
Mode/product value
Airbnb targeted cities with
sold-out events and
constrained hotel supply (such
as during the Democratic Party
national campaign or World’s
Cup) with traditional
marketing and other methods
to advertise its alternative
Growth tactics
Launched photography
services to make offerings
more appealing to guests
Also added ability for mutual
social connections to see who
else had stayed to help build
trust in the marketplace
Critical mass Network effects
C O R R E S P O N D I N G Q U E S T I O N S : H O W T O B U I L D L I Q U I D I T Y / S O LV E T H E C H I C K E N - E G G P R O B L E M ?
By the numbers: There was no viral growth in the early days.
launched photography
program
launched social
connections
# of new listings (early days of Airbnb: March 2008 to May 2011)
# of transacting users (early days of Airbnb)
traditional marketing around
targeted events
Note: Y-axes masked for confidentiality
But then there was a sign of network effects
I N C R E A S E I N N U M B E R O F G U E S T S T H AT S TAY E D E A C H Y E A R , C R E AT I N G M O R E S U P P LY A N D M O R E D E M A N D
-
2
4
6
8
10
12
14
16
18
2008 2009 2010 2011 2012 2013 2014
Millions
took nearly 36 months to
build sufficient liquidity
and to start seeing signs
of network effects
Source: Company data
Airbnb focused early features on building the demand side and in a
marketplace, supply will always go to where the demand is
(and will stay if you help grow their business)
Note: a product or service does not necessarily have to have viral
growth to lead to network effects
Traditional marketing methods—branding, design,
targeting, direct advertising—can help
Trust and safety is paramount in all marketplaces
Some takeaways
Source: Jeff Jordan in http://a16z.com/2015/02/24/managing-tensions-in-online-marketplaces/
See also http://www.forbes.com/sites/valleyvoices/2015/10/21/how-to-guard-your-marketplace-against-fraudsters/
Medium
T W O - S I D E D N E T W O R K W I T H C R O S S A N D S A M E - S I D E N E T W O R K E F F E C T S
More
writers
More
readers
Network effect from
both sides of
the network
More writers = more time
readers spend on
Medium
More readers = More
writers begin to write
But can be on
the same side of
the network,
too!
When readers invite other
readers (via highlights,
mentions, replies, and
annotations), the overall
value of the entire
network increases as
more ideas are shared in
that network itself
What is leading to network effects for Medium?
Critical mass on
both sides
Network effects
Provided immediate,
single-player utility—in the
form of an elegant and
easy-to-use publishing tool
Often described as the “best
web editor I’ve ever used”
for both experienced and
inexperienced writers
More writers writing directly
on Medium and more readers
spending more time reading
directly on Medium
Becoming a network of
people and ideas
Mode/product value
Curated special content
collections/star contributors to
create perceived exclusivity
and as a beachhead to attract
other influencers
Used the 1-9-90 internet
rule—where 1% users actively
write, 9% participants edit,
90% read—to invite those
who engaged to also
become writers
Growth tactic
As they built critical mass,
Medium designed the
platform itself to optimize for
engagement—through
“in-content interactor”
features such as highlights,
recommends, responds,
and mentions
Used taxonomy of collections
and publications to cluster
highly engaged community
around topics of interest
Engagement trigger Network effects
C O R R E S P O N D I N G Q U E S T I O N S : H O W T O B U I L D L I Q U I D I T Y ? H O W T O D R I V E E N G A G E M E N T ?
Source: Ev Williams https://medium.com/the-story/medium-is-not-a-publishing-tool-4c3c63fa41d2
By the numbers: Early signs of network effects
N O N - V I R A L S T O R I E S G E T A M A J O R I T Y O F T R A F F I C F R O M W I T H I N M E D I U M
12%
30%
48%
54%
35%
23%
34%
35%
29%
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Top
Middle
Tail
Medium Social OtherTTR (total time reading) by
referrer increasingly coming from
Medium for long tail and middle—
represents the audience that writers
can’t easily reach on their own
without Medium
Source: https://medium.com/data-lab/quantifying-network-effects-7e6bc167aea5 , company data
Some takeaways
Reminder that single player mode can help get to multiplayer mode. The
appeal of the tool attracts users initially to help build enough critical mass, and
then getting those users to participate over time creates the network
come for the tool, stay for the network
They didn’t just built the tool and wait for users to come; a lot of up-front work
went into curating and editing early content and community
See also: http://cdixon.org/2015/01/31/come-for-the-tool-stay-for-the-network/
WhatsApp
A N E V E N M O R E H I G H LY C L U S T E R E D N E T W O R K T H A N FA C E B O O K
1 WhatsApp user
had ≈20 connections
compared to ≈980
friends on Facebook
While this is fewer
connections, they
were highly clustered
among close family
and friends or
WhatsApp Groups
and therefore led to
more engagement
What led to WhatsApp’s network effects?
Critical mass on
both sides
Network effects
Single-player utility:
Initial product enabled
“what’s up” status
updates of phone
contacts that were useful
even without interaction
Multi-player utility:
Provided instant
messaging—essentially
better, simpler, sand free
SMS in international
markets (now 50% bigger
than global SMS)
WhatsApp didn’t just have
growth, it had more
engagement (as indicated by
% DAU x % MAU growth)—in
other words, more users
added more value for other
users (that engagement is
high at over 70%)
Mode/product value
Was one of the early apps
to leverage the phone
book as social graph:
Each user invited users
from their phone contacts
(“closest family and
friends”)
Started small with close-
knit Russian community in
West San Jose to build
initial critical mass before
spreading to
other subclusters
Growth tactic
Group Chat feature
helped it go beyond
pairwise connections
Multimedia (MMS) helped
it be used like Facebook
(family photo sharing, etc.)
in India and other places
where people didn’t use
web-based apps as much
Engagement triggers Network effects
C O R R E S P O N D I N G Q U E S T I O N S : W H AT S H O U L D T H E E N T RY P O I N T / S T R AT E G Y B E ? H O W D O W E TA K E A D VA N TA G E
O F I R R E G U L A R T O P O L O G I E S T O F I N D C L U S T E R S A N D S U B C L U S T E R S ?
Sources: http://www.forbes.com/sites/parmyolson/2014/02/19/exclusive-inside-story-how-jan-koum-built-whatsapp-into-facebooks-new-19-billion-baby/
http://www.businessinsider.com/whatsapp-engagement-chart-2014-2 https://growthhackers.com/growth-studies/whatsapp
WhatsApp Growth vs Other Popular Platforms
Source (WhatsApp): http://www.forbes.com/sites/parmyolson/2014/02/19/exclusive-inside-story-how-jan-koum-built-whatsapp-into-facebooks-new-19-billion-baby/
FA S T G R O W T H : H I T 6 7 M M A U S I N 2 Y E A R S ( 5 . 5 X B I G G E R T H A N FA C E B O O K A N D 1 7 X B I G G E R T H A N T W I T T E R Y E A R
T W O )
0
50
100
150
200
250
300
350
400
450
Year 0 Year 1 Year 2 Year 3 Year 4
(millions)
MAUs
Facebook: 145m
WhatsApp: 419m
(800m+ today)
Gmail: 123m(1)
Twitter: 54m(2)
Skype: 52m(3)
By the numbers: Sign of network effects
P E O P L E A R E N ’ T J U S T R E A D I N G / R E C E I V I N G M E S S A G E S B U T W R I T I N G / S E N D I NG M E S S A G E S
0
5
10
15
20
25
30
35
Sep-11 Mar-12 Sep-12 Mar-13 13-Sep Mar-14 Sep-14 Mar-15 Mar-15
WhatsApp outgoing messages/day (bn)
Sources: WhatsApp, a16z
See also: http://ben-evans.com/benedictevans/2015/1/11/whatsapp-sails-past-sms-but-where-does-messaging-go-next
Some takeaways
Remember, usage—not just growth—is what helps indicate
network effects
Unlike Facebook, WhatsApp launched globally at outset but still pursued a
clustered approach by making sure product was working in one subcluster
first...Product continued to grow in clusters, not just peer to peer
“No ads, no gimmicks, no games”—focused on simplicity first which tends
to viral before adding extra features
Also, phone as login provided a very low barrier to entry for users
(especially internationally, where more people
have phone numbers than email addresses)
What are
network effects?
Strategies for building
network effects
What aren’t
network effects?
Properties, terms
and laws of networks
Case studies of
companies with
network effects
How do you build—and maintain—network effects?
Product should provide
inherent value,
whether in single or
multiplayer mode
Growth tactics to
drive adoption
Engagement
trigger
Sustain network
effects
Viral growth
note that viral growth, while very helpful, is
not necessary for critical mass
Some strategies for building network effects
What is your entry
strategy?
Bowling pin strategy
1
What are the growth
levers to drive adoption?
Growth strategy
2
What is your critical
mass inflection point?
Critical mass goals
3
What are the
engagement triggers?
Engagement strategy
4
How can you leverage an
irregular network?
Irregular networks
5
1. Bowling pin strategy to overcome chicken-egg problem
Segment
Segment Segment
Segment Segment Segment
Facebook did this well by starting with Harvard before moving to other schools and then
opening up to everyone
Should I build supply first
or demand first
And how much of each
do I need?
Where do I start?
One way to overcome
that tension is to use
Geoffrey Moore’s
(Crossing the Chasm)
Bowling Pin strategy:
Start with a niche
segment where the
chicken and egg can
both be easily overcome,
then eventually move to
other niches and the
broader market
2. Bootstrapping growth to drive adoption early on
Source: https://www.quora.com/What-are-some-growth-strategies-used-by-Reddit
See also: https://medium.com/@nishrocks/why-we-created-the-yelp-elite-squad-b8fa7dd2bead
Accessed the entire
Harvard directory early
on to provide immediate
utility for early adoption
Canvassed friends and
family for early feedback
and reviews; also found
and nurtured the
top 100 super users
as tastemakers
Made it “the” place to find
and discuss all things hip
and cool related to a
particular city
Created several
accounts on their own
and submitted a lot of
interesting content link to
make the site feel alive
for new users and thus
quickly helped create
a community
3. Setting goals to help attain ‘critical mass’ more quickly
Connect a new user to 10
friends within 14 days of sign up
Tag at least 3 friends
to each campaign
Facebook realized
early on that it was
important to connect
each new user to at
least 10 friends for
them to stay engaged
on the platform
(repeat usage)
This focus from
Facebook on repeat
engagement is what
drove network effects
Similarly, Tilt
observed in the
early days that
campaigns were
75% more likely to
tilt if at least 3
friends were tagged
4. Having specific triggers to sustain engagement in
network
Constantly rolled out new
features (Like button,
news feed, chat) to keep
engagement on
the platform
First of its kind to
leverage “phone book
contacts”; the stickiest
cluster coupled with the
high utility of the product
(free SMS in international
markets) helped keep
engagement high
5. Leverage irregular network topologies
B Y F I N D I N G C L U S T E R S , C O M PA N I E S C A N R E A C H C R I T I C A L M A S S W I T H I N T H O S E S U B C L U S T E R S A N D E X PA N D
B E Y O N D
Real life networks are
often very different
from the uniform
distributed networks
pictured in textbooks
WhatsApp took
advantage of the fact
that social
connections are
highly clustered in
your phonebook and
used that as a
“beachhead” to
launch groups
They also targeted
the international
communities (e.g.,
Russian community
in bay area) that
found WhatsApp a
cheaper alternative
to expensive SMS
Strategies for creating network effects
How do you attract the
harder side of the
marketplace?
6
Subsidizing strategy
M A R K E T P L A C E S
Via cdixon.org
6. Attracting the harder side of the marketplace
In almost every
two-sided market, one
side is harder to
acquire than the other
Common way to attract
the harder side is to
subsidize that
harder side
For example, single bars
often have special
ladies’ nights promotions
on slower nights offering
women discounts
on drinks
More
men
More
womenBars
Reducing prices for the hard side of the market (e.g., Adobe Flash and
PDF for end users) can help build critical mass
But solving the chicken-egg problem only by subsidizing has to be
considered carefully in the context of the overall business model—i.e.,
there’s a difference between building initial critical mass and building a
sustainable business (can’t ignore overall unit economics)
This is why understanding which is the money side of the marketplace
and the side of the marketplace where the most value is coming from
matters so much because then you know
which side to carefully subsidize
See also: Thomas Eisenmann https://hbr.org/2006/10/strategies-for-two-sided-markets
However, this dynamic may play out a little differently in
so-called “sharing economy marketplaces
Because such marketplaces can be supply-constrained due to
unfamiliarity with the sharing economy model
So those marketplaces have to work harder to get more supply
as well, and hence may also subsidize that side or build other
features to address these issues in other ways
Strategies for creating network effects
Show long-term
commitment to platform
7
Provide stand alone
value of the base
8
Vertically integrate when
supply uncertain
9
P L AT F O R M S
Via cdixon.org
7. Showing a long-term commitment to the platform
W H E N FA C E B O O K A C Q U I R E D O C U L U S , T H E Y S I G N A L E D T H E I R L O N G - T E R M C O M M I T M E N T T O H E L P D R I V E
P L AT F O R M S U C C E S S ; O C U L U S A L S O A N N O U N C E D I T W I L L P U M P $ 1 0 M I N T O I N D E P E N D E N T G A M E - D E V E L O P M E N T
E F F O R T S
Getting to critical mass in
indirect networks
can be challenging
Because you are a
platform you are
dependent on 3rd party
developers to remain
engaged and grow
your platform
See also: http://cdixon.org/2009/08/25/six-strategies-for-overcoming-chicken-and-egg-problems/
W H E N T H E Y L A U N C H E D T H E X B O X , M I C R O S O F T
D I D S O M E T H I N G S I M I L A R I N P R O M O T I N G T H E I R
P L AT F O R M A N D S I G N A L I N G T H E I R C O M M I T M E N T
8. Providing standalone value of the base
T H I S C O M P L E M E N TA RY N E T W O R K E F F E C T I M P R O V E D T H E VA L U E A N D I N C R E A S E D S A L E S V E L O C I T Y O F
B O T H T H E B A S E P R O D U C T ( V C R ) A N D C O M P L E M E N T ( V I D E O C A S S E T T E S ) A N D R E M A I N E D T H E
S TA N D A R D F O R Q U I T E A L O N G T I M E !
The standalone value of
the VCR—“time shifting”
of TV programming”—
was strong enough to get
>1M people to purchase
one early on
This installed base
enticed entrepreneurs to
develop a market for pre-
recorded videocassettes,
creating an indirect
network effect improving
the value of the VCR and
protecting it from
incremental alternatives
Source: http://cdixon.org/2009/08/25/six-strategies-for-overcoming-chicken-and-egg-problems/
9. Integrate vertically into critical complements
By vertically integrating
the complement
product (game) as well
as the base product
console), a company
can attempt to ensure
adequate supply of
both goods
For example,
Nintendo is the
leading developer of
games for its own
consoles and
Microsoft and Sony
also fund many of
the most popular
games on their
platforms as well
In platforms, one
doesn’t necessarily
have to be
dependent only on
outside
developers—
companies can
ensure critical
complements are
built by themselves
as well
Source: http://cdixon.org/2009/08/25/six-strategies-for-overcoming-chicken-and-egg-problems/
What are
network effects?
What aren’t
network effects?
Properties, terms
and laws of
networks
Case studies of
companies with
network effects
Strategies for
building network
effects
Debunking some common misconceptions
Network effects and
virality are NOT the
same thing
1
Viral growth is NOT
necessary for
network effects
2
Just because a platform
has scale does NOT
mean you have
network effects
3
1. Network effects and virality are not the same thing!
Network effects increases value as more users join a network,
whereas viral growth increases just the speed of adoption
(of a particular network’s product/service)
These two concepts are often co-occurring so are sometimes
conflated, but they’re not the same thing
What’s the difference?
D E F I N I T I O N S
Network effects
Product becomes more valuable
as more users use it
Network effects help build a moat
for the business, leading to high
engagement/ repeat rates and
higher margins
Represented by Metcalfe’s Law:
value of telecom network is
proportional to square of number
of connected users of system (n2)
Value
Virality
Product that spreads from one
user to another through direct
customer to customer contact
Viral growth implies low CAC
(customer acquisition cost)
Often measured by viral
coefficient (K factor): [average
number of invitations sent by each
existing user] * [conversion rate of
invitation to new user]
Speed
See also: Sangeet Chaudhary http://platformed.info/virality-viral-growth-network-effects/
This is something that
spreads without
financial or other
sharing incentive due
to being exclusive,
invite-only, or other
Example: Gmail
created buzz (the hot
thing with 1GB
storage that was
available only to a
few) and encouraged
existing customers to
send invites slowly
Distinguishing between various flavors of viral growth
Referrals with no incentivesNetwork effects
A product that has
inherent virality—i.e.,
spreads from one user
to another as an
organic consequence
of use—will have a
network effect
(referred to as a ‘direct
network effect’ in
academic literature)
Example: Facebook
without friend
connections is
not useful
Word-of-mouth
This is where
customers
recommend the
product to other
customers or
distribute it via other
platforms (like
Facebook and Twitter)
due to a positive
experience with it
Example: games like
Angry Birds;
BuzzFeed ‘The Dress’
Casual contact
This is where a product
spreads virally via
customer to customer
contact (not via users
intentionally inviting
other users)
Example: Hotmail
acquired users by
including footers for free
accounts at bottom of
every email; DocSend
acquires customers
when users email links to
view/download files
TRADITIONAL VIRALITY‘PRODUCT VIRALITY’
See also: Thomas Eisenmann http://platformsandnetworks.blogspot.com/2011/07/business-model-analysis-part-5-virality.html
So why do those distinctions
matter?
Because product virality (a product that is
inherently viral) leads to network effects
But traditional virality does not always
lead to network effects
By the numbers: Product virality leads to network effects
FA C E B O O K I S T H E C L A S S I C E X A M P L E O F T H I S
Product spread from one user to another as an
organic consequence of its use, allowing Facebook
to acquire users at $0 CAC
The platform became more valuable as more users joined
The signpost of network effect in this case is high
engagement even as number of users increased
1 6 12
58
145
360
608
845
0
100
200
300
400
500
600
700
800
900
2004 2005 2006 2007 2008 2009 2010 2011
(millions,year-end)
MAUs
MAUs CAGR ‘04-’11: 162%
45% 47%
51% 54% 53% 53% 54% 55% 56% 57% 57%
0%
20%
40%
60%
80%
100%
DAUS/MAUs(%)
Engagement (DAUs/MAUs)
Product virality = Connections with friends Network effects
Source: public company data
This distinction also explains cases where things that
(seemed to) have viral growth did not lead to network effects
In most cases, that viral growth was really word-of-mouth
By the numbers: Word of mouth ≠ Network effects
A N G RY B I R D S I S A N E X A M P L E O F T H I S
Product spread from one user to another via
word of mouth referrals/ brand popularity as
people started playing on their own—did not
spread as an organic consequence of its use
Users do not get incremental value when other
users download and play the game
So Angry Birds does NOT have network effects
(and has a weak competitive moat as a result)
The key difference: Organic consequence of use
Key question: Does value increase for users?
30 100
225
350
400
500
0
100
200
300
400
500
600
Angry Birds (est. downloads in millions)
Chart source: https://www.macstories.net/news/angry-birds-reaches-half-a-billion-downloads/
And remember, you can have network effects
without (product or traditional) virality
A I R B N B I S A N E X A M P L E O F T H I S
Early days required traditional marketing and
numerous growth hacks to build liquidity on
both sides of the marketplace
# of guests that stayed at Airbnb saw hyper growth
3 years after launch
Leads to more money for hosts and
more availability for guests
No virality…. …yet strong network effects over time
# of new listings between 2008 and 2011
# of transacting users between 2008 and 2011
-
5
10
15
20
2008 2009 2010 2011 2012 2013 2014
Millions
By the numbers: Network effects without virality
Source: Company data
To clarify one final term/misconception:
Just because a platform has scale does NOT
mean it has network effects
What’s the difference?
Economies of scale
Product becomes cheaper to
produce as business increases in
size and output
Increasing scale leads to lower
cost per unit of output (cost per
unit decreases as fixed costs are
spread out over more units)
Network effects
Product becomes more valuable
as more users use it
Network effects help build a
moat—leading to high/repeat rates
of engagement, higher margins
ValueCost
D E F I N I T I O N S
See also: Sangeet Chaudhary http://platformed.info/virality-viral-growth-network-effects/
To sum up: Network effects vs Virality vs Economies of
scale
Network effects
Virality
Economies of scale
1P
SUPPLY SIDE
Economies of scale (also referred to as just ‘economies of scale’) is
a function of production size; so scale leads to lower cost per unit of
output (unit economic efficiency)
DEMAND SIDE
Economies of scale (also referred to as network effects) is a function
of users, so with scale leads to more utility for users
They’re both competitive moats, but network effects tend to be
stronger—users have higher barriers to exit
Zooming in on economies of scale
Amazon’s ecommerce site (1P) has supply-side economies of
scale—shared warehouse facilities, cheaper shipping options, etc.—
that benefit Amazon in the form of purchasing power and buyers in
the form of lower costs
Amazon’s peer-to-peer marketplace (3P) has demand-side
economies of scale—aka network effects—which help make it the
winner-take-all… is growing much faster than the ecommerce
aspect of the site
Example: amazon.com
Strategies: Don’t forget these less obvious, but no less
important, sources of network effects
Hardware Infrastructure
1 2
Data
3
“
MAX LEVCHIN:
The defensibility of these businesses lies in their ability to build…a network effect of
data.
MATT TURCK:
Data network effects occur when your product, generally powered by machine
learning, becomes smarter as it gets more data from your users. In other words: the
more users use your product, the more data they contribute; the more data they
contribute, the smarter your product becomes (which can mean anything from core
performance improvements to predictions, recommendations, personalization, etc.);
the smarter your product is, the better it serves your users and the more likely they
are to come back often and contribute more data—and so on and so forth.
Simply put, a data network effect is
a network effect that results from data
Sources: http://max.levch.in/post/41116802381/dld13-keynote
http://mattturck.com/2016/01/04/the-power-of-data-network-effects/
But simply having a lot of data does not a data network
effect make!
The data needs to not only benefit from/extract that data,
but also add value back to the network of users
A missing graph we’d love to see in pitches that posit data
network effects is something that answers this:
How much data do
you have over time?
How much does the
value of the product or
service increase as a
result of the data?
Chris Dixon
Jeff Jordan
Sonal Chokshi
Kathy Wang
A D D I T I O N A L A C K N O W L E D G E M E N T S ( N O T I N C L U D I N G E X P E R T S & A R T I C L E S C I T E D A S S O U R C E S T H R O U G H O U T )

Contenu connexe

Tendances

Dropbox Startup Lessons Learned
Dropbox Startup Lessons LearnedDropbox Startup Lessons Learned
Dropbox Startup Lessons Learnedgueste94e4c
 
Platform Strategy: Openness, Innovation & Control
Platform Strategy: Openness, Innovation & ControlPlatform Strategy: Openness, Innovation & Control
Platform Strategy: Openness, Innovation & ControlMarshall Van Alstyne
 
STATE OF THE PLATFORM REVOLUTION 2021 - by Sangeet Paul Choudary
STATE OF THE PLATFORM REVOLUTION 2021 - by Sangeet Paul ChoudarySTATE OF THE PLATFORM REVOLUTION 2021 - by Sangeet Paul Choudary
STATE OF THE PLATFORM REVOLUTION 2021 - by Sangeet Paul ChoudarySangeet Paul Choudary
 
Bolt pitch deck: $393M Series D, $6B+ valuation
Bolt pitch deck: $393M Series D, $6B+ valuationBolt pitch deck: $393M Series D, $6B+ valuation
Bolt pitch deck: $393M Series D, $6B+ valuationPitch Decks
 
100 Task Playbook - Sample
100 Task Playbook - Sample100 Task Playbook - Sample
100 Task Playbook - SampleMartin Bell
 
Linkedin Series B Pitch Deck
Linkedin Series B Pitch DeckLinkedin Series B Pitch Deck
Linkedin Series B Pitch DeckJoseph Hsieh
 
Go-to-Market Best Practices for Startups
Go-to-Market Best Practices for StartupsGo-to-Market Best Practices for Startups
Go-to-Market Best Practices for Startupsa16z
 
Unit of Value: A Framework for Scaling
Unit of Value: A Framework for ScalingUnit of Value: A Framework for Scaling
Unit of Value: A Framework for ScalingGreylock Partners
 
The new new competition - How digital platforms change competitive strategy
The new new competition - How digital platforms change competitive strategyThe new new competition - How digital platforms change competitive strategy
The new new competition - How digital platforms change competitive strategyPlatform Revolution
 
Why Product-Led Growth is the most effective GTM strategy
Why Product-Led Growth is the most effective GTM strategyWhy Product-Led Growth is the most effective GTM strategy
Why Product-Led Growth is the most effective GTM strategyMickey Alon
 
Y Combinator Pitch Deck Template For Startup Founders
Y Combinator Pitch Deck Template For Startup FoundersY Combinator Pitch Deck Template For Startup Founders
Y Combinator Pitch Deck Template For Startup FoundersAA BB
 
Platform Revolution - Ch 02 Network Effects: Power of the Platform
Platform Revolution - Ch 02 Network Effects: Power of the PlatformPlatform Revolution - Ch 02 Network Effects: Power of the Platform
Platform Revolution - Ch 02 Network Effects: Power of the PlatformGeoff Parker
 
Metaverse, Digital Marketing and the Future of the Web
Metaverse, Digital Marketing and the Future of the WebMetaverse, Digital Marketing and the Future of the Web
Metaverse, Digital Marketing and the Future of the WebYuri van Geest
 
12 Key Levers of SaaS Success
12 Key Levers of SaaS Success12 Key Levers of SaaS Success
12 Key Levers of SaaS SuccessDavid Skok
 
Go to Market Strategy
Go to Market StrategyGo to Market Strategy
Go to Market StrategyRajiv Netra
 
Foursquare's 1st Pitch Deck
Foursquare's 1st Pitch DeckFoursquare's 1st Pitch Deck
Foursquare's 1st Pitch DeckRami Al-Karmi
 
Pendo Series B Investor Deck External
Pendo Series B Investor Deck ExternalPendo Series B Investor Deck External
Pendo Series B Investor Deck ExternalTodd Olson
 
Blockchain Startup Pitch Deck
Blockchain Startup Pitch DeckBlockchain Startup Pitch Deck
Blockchain Startup Pitch DeckFedor Bushlanov
 

Tendances (20)

Dropbox Startup Lessons Learned
Dropbox Startup Lessons LearnedDropbox Startup Lessons Learned
Dropbox Startup Lessons Learned
 
Network effects
Network effectsNetwork effects
Network effects
 
Platform Strategy: Openness, Innovation & Control
Platform Strategy: Openness, Innovation & ControlPlatform Strategy: Openness, Innovation & Control
Platform Strategy: Openness, Innovation & Control
 
STATE OF THE PLATFORM REVOLUTION 2021 - by Sangeet Paul Choudary
STATE OF THE PLATFORM REVOLUTION 2021 - by Sangeet Paul ChoudarySTATE OF THE PLATFORM REVOLUTION 2021 - by Sangeet Paul Choudary
STATE OF THE PLATFORM REVOLUTION 2021 - by Sangeet Paul Choudary
 
Bolt pitch deck: $393M Series D, $6B+ valuation
Bolt pitch deck: $393M Series D, $6B+ valuationBolt pitch deck: $393M Series D, $6B+ valuation
Bolt pitch deck: $393M Series D, $6B+ valuation
 
100 Task Playbook - Sample
100 Task Playbook - Sample100 Task Playbook - Sample
100 Task Playbook - Sample
 
Linkedin Series B Pitch Deck
Linkedin Series B Pitch DeckLinkedin Series B Pitch Deck
Linkedin Series B Pitch Deck
 
Go-to-Market Best Practices for Startups
Go-to-Market Best Practices for StartupsGo-to-Market Best Practices for Startups
Go-to-Market Best Practices for Startups
 
Unit of Value: A Framework for Scaling
Unit of Value: A Framework for ScalingUnit of Value: A Framework for Scaling
Unit of Value: A Framework for Scaling
 
Uber pitch deck
Uber pitch deckUber pitch deck
Uber pitch deck
 
The new new competition - How digital platforms change competitive strategy
The new new competition - How digital platforms change competitive strategyThe new new competition - How digital platforms change competitive strategy
The new new competition - How digital platforms change competitive strategy
 
Why Product-Led Growth is the most effective GTM strategy
Why Product-Led Growth is the most effective GTM strategyWhy Product-Led Growth is the most effective GTM strategy
Why Product-Led Growth is the most effective GTM strategy
 
Y Combinator Pitch Deck Template For Startup Founders
Y Combinator Pitch Deck Template For Startup FoundersY Combinator Pitch Deck Template For Startup Founders
Y Combinator Pitch Deck Template For Startup Founders
 
Platform Revolution - Ch 02 Network Effects: Power of the Platform
Platform Revolution - Ch 02 Network Effects: Power of the PlatformPlatform Revolution - Ch 02 Network Effects: Power of the Platform
Platform Revolution - Ch 02 Network Effects: Power of the Platform
 
Metaverse, Digital Marketing and the Future of the Web
Metaverse, Digital Marketing and the Future of the WebMetaverse, Digital Marketing and the Future of the Web
Metaverse, Digital Marketing and the Future of the Web
 
12 Key Levers of SaaS Success
12 Key Levers of SaaS Success12 Key Levers of SaaS Success
12 Key Levers of SaaS Success
 
Go to Market Strategy
Go to Market StrategyGo to Market Strategy
Go to Market Strategy
 
Foursquare's 1st Pitch Deck
Foursquare's 1st Pitch DeckFoursquare's 1st Pitch Deck
Foursquare's 1st Pitch Deck
 
Pendo Series B Investor Deck External
Pendo Series B Investor Deck ExternalPendo Series B Investor Deck External
Pendo Series B Investor Deck External
 
Blockchain Startup Pitch Deck
Blockchain Startup Pitch DeckBlockchain Startup Pitch Deck
Blockchain Startup Pitch Deck
 

En vedette

Software is Eating Bio
Software is Eating BioSoftware is Eating Bio
Software is Eating Bioa16z
 
Mobile Is Eating the World (2014)
Mobile Is Eating the World (2014)Mobile Is Eating the World (2014)
Mobile Is Eating the World (2014)a16z
 
Mobile Is Eating the World, 2016-2017
Mobile Is Eating the World, 2016-2017Mobile Is Eating the World, 2016-2017
Mobile Is Eating the World, 2016-2017a16z
 
Habits at Work - Merci Victoria Grace, Growth, Slack - 2016 Habit Summit
Habits at Work - Merci Victoria Grace, Growth, Slack - 2016 Habit SummitHabits at Work - Merci Victoria Grace, Growth, Slack - 2016 Habit Summit
Habits at Work - Merci Victoria Grace, Growth, Slack - 2016 Habit SummitHabit Summit
 
10 Best Practices of a Best Company to Work For
10 Best Practices of a Best Company to Work For10 Best Practices of a Best Company to Work For
10 Best Practices of a Best Company to Work ForO.C. Tanner
 
Mobile Is Eating the World (2016)
Mobile Is Eating the World (2016)Mobile Is Eating the World (2016)
Mobile Is Eating the World (2016)a16z
 
Piwik in enterprise munich 2014
Piwik in enterprise munich 2014Piwik in enterprise munich 2014
Piwik in enterprise munich 2014piwik
 
Piwik elasticsearch kibana at OSC Tokyo 2016 Spring
Piwik elasticsearch kibana at OSC Tokyo 2016 SpringPiwik elasticsearch kibana at OSC Tokyo 2016 Spring
Piwik elasticsearch kibana at OSC Tokyo 2016 SpringTakashi Yamamoto
 
Wii Powerpoint
Wii PowerpointWii Powerpoint
Wii PowerpointMrG
 
European Aviation Safety Agency (EASA) - EU Regulation 2042/2003
European Aviation Safety Agency (EASA) - EU Regulation 2042/2003European Aviation Safety Agency (EASA) - EU Regulation 2042/2003
European Aviation Safety Agency (EASA) - EU Regulation 2042/2003Noman Khan - MBA (Aviation Mgt)
 
Europe & Israel 1Q17 Venture Capital Review
Europe & Israel 1Q17 Venture Capital ReviewEurope & Israel 1Q17 Venture Capital Review
Europe & Israel 1Q17 Venture Capital ReviewGil Dibner
 
Reach Edtech Outlook 2017
Reach Edtech Outlook 2017Reach Edtech Outlook 2017
Reach Edtech Outlook 2017Chian Gong
 
Beyond Personalisation: The Customer Conversation with Sitecore
Beyond Personalisation: The Customer Conversation with SitecoreBeyond Personalisation: The Customer Conversation with Sitecore
Beyond Personalisation: The Customer Conversation with SitecoreSitecore
 
Europe & Israel 2016 VC Year in Review
Europe & Israel 2016 VC Year in ReviewEurope & Israel 2016 VC Year in Review
Europe & Israel 2016 VC Year in ReviewGil Dibner
 
Content Modelling for Personalisation
Content Modelling for PersonalisationContent Modelling for Personalisation
Content Modelling for Personalisationcleveg
 
Europe & Israel 3Q17 Venture Capital Review
Europe & Israel 3Q17 Venture Capital ReviewEurope & Israel 3Q17 Venture Capital Review
Europe & Israel 3Q17 Venture Capital ReviewGil Dibner
 
Startup Metrics for Pirates (SF, Jan 2010)
Startup Metrics for Pirates (SF, Jan 2010)Startup Metrics for Pirates (SF, Jan 2010)
Startup Metrics for Pirates (SF, Jan 2010)Dave McClure
 
U.S. Technology Funding -- What's Going On?
U.S. Technology Funding -- What's Going On? U.S. Technology Funding -- What's Going On?
U.S. Technology Funding -- What's Going On? a16z
 

En vedette (20)

Software is Eating Bio
Software is Eating BioSoftware is Eating Bio
Software is Eating Bio
 
Mobile Is Eating the World (2014)
Mobile Is Eating the World (2014)Mobile Is Eating the World (2014)
Mobile Is Eating the World (2014)
 
Mobile Is Eating the World, 2016-2017
Mobile Is Eating the World, 2016-2017Mobile Is Eating the World, 2016-2017
Mobile Is Eating the World, 2016-2017
 
Habits at Work - Merci Victoria Grace, Growth, Slack - 2016 Habit Summit
Habits at Work - Merci Victoria Grace, Growth, Slack - 2016 Habit SummitHabits at Work - Merci Victoria Grace, Growth, Slack - 2016 Habit Summit
Habits at Work - Merci Victoria Grace, Growth, Slack - 2016 Habit Summit
 
10 Best Practices of a Best Company to Work For
10 Best Practices of a Best Company to Work For10 Best Practices of a Best Company to Work For
10 Best Practices of a Best Company to Work For
 
Mobile Is Eating the World (2016)
Mobile Is Eating the World (2016)Mobile Is Eating the World (2016)
Mobile Is Eating the World (2016)
 
42816848-MIT
42816848-MIT42816848-MIT
42816848-MIT
 
Piwik in enterprise munich 2014
Piwik in enterprise munich 2014Piwik in enterprise munich 2014
Piwik in enterprise munich 2014
 
Piwik elasticsearch kibana at OSC Tokyo 2016 Spring
Piwik elasticsearch kibana at OSC Tokyo 2016 SpringPiwik elasticsearch kibana at OSC Tokyo 2016 Spring
Piwik elasticsearch kibana at OSC Tokyo 2016 Spring
 
Wii Powerpoint
Wii PowerpointWii Powerpoint
Wii Powerpoint
 
European Aviation Safety Agency (EASA) - EU Regulation 2042/2003
European Aviation Safety Agency (EASA) - EU Regulation 2042/2003European Aviation Safety Agency (EASA) - EU Regulation 2042/2003
European Aviation Safety Agency (EASA) - EU Regulation 2042/2003
 
Europe & Israel 1Q17 Venture Capital Review
Europe & Israel 1Q17 Venture Capital ReviewEurope & Israel 1Q17 Venture Capital Review
Europe & Israel 1Q17 Venture Capital Review
 
Reach Edtech Outlook 2017
Reach Edtech Outlook 2017Reach Edtech Outlook 2017
Reach Edtech Outlook 2017
 
Nintendo presentation 3.0
Nintendo presentation 3.0Nintendo presentation 3.0
Nintendo presentation 3.0
 
Beyond Personalisation: The Customer Conversation with Sitecore
Beyond Personalisation: The Customer Conversation with SitecoreBeyond Personalisation: The Customer Conversation with Sitecore
Beyond Personalisation: The Customer Conversation with Sitecore
 
Europe & Israel 2016 VC Year in Review
Europe & Israel 2016 VC Year in ReviewEurope & Israel 2016 VC Year in Review
Europe & Israel 2016 VC Year in Review
 
Content Modelling for Personalisation
Content Modelling for PersonalisationContent Modelling for Personalisation
Content Modelling for Personalisation
 
Europe & Israel 3Q17 Venture Capital Review
Europe & Israel 3Q17 Venture Capital ReviewEurope & Israel 3Q17 Venture Capital Review
Europe & Israel 3Q17 Venture Capital Review
 
Startup Metrics for Pirates (SF, Jan 2010)
Startup Metrics for Pirates (SF, Jan 2010)Startup Metrics for Pirates (SF, Jan 2010)
Startup Metrics for Pirates (SF, Jan 2010)
 
U.S. Technology Funding -- What's Going On?
U.S. Technology Funding -- What's Going On? U.S. Technology Funding -- What's Going On?
U.S. Technology Funding -- What's Going On?
 

Similaire à Network Effects Explained: Properties, Strategies and Case Studies

Digital Evolutions: Startups, Platforms and Ecosystems
Digital Evolutions: Startups, Platforms and EcosystemsDigital Evolutions: Startups, Platforms and Ecosystems
Digital Evolutions: Startups, Platforms and EcosystemsSimone Cicero
 
Hypersoft Social Network Analysis
Hypersoft Social Network AnalysisHypersoft Social Network Analysis
Hypersoft Social Network AnalysisDavidHypersoft
 
Economics of Open Source Software
Economics of Open Source SoftwareEconomics of Open Source Software
Economics of Open Source SoftwareRay Toal
 
Clearvale Overview October 2010
Clearvale Overview October 2010Clearvale Overview October 2010
Clearvale Overview October 2010Andrea Rubei
 
Discovering Influential User by Coupling Multiplex Heterogeneous OSN’S
Discovering Influential User by Coupling Multiplex Heterogeneous OSN’SDiscovering Influential User by Coupling Multiplex Heterogeneous OSN’S
Discovering Influential User by Coupling Multiplex Heterogeneous OSN’SIRJET Journal
 
Testing Vitality Ranking and Prediction in Social Networking Services With Dy...
Testing Vitality Ranking and Prediction in Social Networking Services With Dy...Testing Vitality Ranking and Prediction in Social Networking Services With Dy...
Testing Vitality Ranking and Prediction in Social Networking Services With Dy...reshma reshu
 
SNA of M2M Organisations
SNA of M2M OrganisationsSNA of M2M Organisations
SNA of M2M OrganisationsLee Cox
 
Future platform for internet of things
Future platform for internet of thingsFuture platform for internet of things
Future platform for internet of thingsColdbeans Software
 
Sucess of Open Source - Steven Weber (Book Review)
Sucess of Open Source - Steven Weber  (Book Review)Sucess of Open Source - Steven Weber  (Book Review)
Sucess of Open Source - Steven Weber (Book Review)Ritesh Nayak
 
Various Types of Vendors that Exist in the Software Ecosystem
Various Types of Vendors that Exist in the Software EcosystemVarious Types of Vendors that Exist in the Software Ecosystem
Various Types of Vendors that Exist in the Software EcosystemPallavi Srivastava
 
An improvised model for identifying influential nodes in multi parameter soci...
An improvised model for identifying influential nodes in multi parameter soci...An improvised model for identifying influential nodes in multi parameter soci...
An improvised model for identifying influential nodes in multi parameter soci...csandit
 
Instant message
Instant  messageInstant  message
Instant messagekplshrm222
 
Elements of Innovation Management in Computer Software and Services
Elements of Innovation Management in Computer Software and ServicesElements of Innovation Management in Computer Software and Services
Elements of Innovation Management in Computer Software and ServicesMichael Le Duc
 
Metalayer now Colayer - Part 3/3 - full Presentation
Metalayer now Colayer - Part 3/3 - full PresentationMetalayer now Colayer - Part 3/3 - full Presentation
Metalayer now Colayer - Part 3/3 - full PresentationMarkus Hegi
 
Measuring Conversation
Measuring ConversationMeasuring Conversation
Measuring ConversationBroadsight
 
ENG 102 Unit Six Page 1 of 1 ENG 102 Composition II .docx
ENG 102 Unit Six Page 1 of 1  ENG 102 Composition II  .docxENG 102 Unit Six Page 1 of 1  ENG 102 Composition II  .docx
ENG 102 Unit Six Page 1 of 1 ENG 102 Composition II .docxSALU18
 
1 IT 140 A Mini History of Text-Based Games Text
1  IT 140 A Mini History of Text-Based Games  Text1  IT 140 A Mini History of Text-Based Games  Text
1 IT 140 A Mini History of Text-Based Games TextMartineMccracken314
 
1 IT 140 A Mini History of Text-Based Games Text
1  IT 140 A Mini History of Text-Based Games  Text1  IT 140 A Mini History of Text-Based Games  Text
1 IT 140 A Mini History of Text-Based Games TextSilvaGraf83
 

Similaire à Network Effects Explained: Properties, Strategies and Case Studies (20)

Digital Evolutions: Startups, Platforms and Ecosystems
Digital Evolutions: Startups, Platforms and EcosystemsDigital Evolutions: Startups, Platforms and Ecosystems
Digital Evolutions: Startups, Platforms and Ecosystems
 
Hypersoft Social Network Analysis
Hypersoft Social Network AnalysisHypersoft Social Network Analysis
Hypersoft Social Network Analysis
 
Economics of Open Source Software
Economics of Open Source SoftwareEconomics of Open Source Software
Economics of Open Source Software
 
Clearvale Overview October 2010
Clearvale Overview October 2010Clearvale Overview October 2010
Clearvale Overview October 2010
 
Discovering Influential User by Coupling Multiplex Heterogeneous OSN’S
Discovering Influential User by Coupling Multiplex Heterogeneous OSN’SDiscovering Influential User by Coupling Multiplex Heterogeneous OSN’S
Discovering Influential User by Coupling Multiplex Heterogeneous OSN’S
 
Testing Vitality Ranking and Prediction in Social Networking Services With Dy...
Testing Vitality Ranking and Prediction in Social Networking Services With Dy...Testing Vitality Ranking and Prediction in Social Networking Services With Dy...
Testing Vitality Ranking and Prediction in Social Networking Services With Dy...
 
SNA of M2M Organisations
SNA of M2M OrganisationsSNA of M2M Organisations
SNA of M2M Organisations
 
Future platform for internet of things
Future platform for internet of thingsFuture platform for internet of things
Future platform for internet of things
 
Sucess of Open Source - Steven Weber (Book Review)
Sucess of Open Source - Steven Weber  (Book Review)Sucess of Open Source - Steven Weber  (Book Review)
Sucess of Open Source - Steven Weber (Book Review)
 
Various Types of Vendors that Exist in the Software Ecosystem
Various Types of Vendors that Exist in the Software EcosystemVarious Types of Vendors that Exist in the Software Ecosystem
Various Types of Vendors that Exist in the Software Ecosystem
 
An improvised model for identifying influential nodes in multi parameter soci...
An improvised model for identifying influential nodes in multi parameter soci...An improvised model for identifying influential nodes in multi parameter soci...
An improvised model for identifying influential nodes in multi parameter soci...
 
Instant message
Instant  messageInstant  message
Instant message
 
Elements of Innovation Management in Computer Software and Services
Elements of Innovation Management in Computer Software and ServicesElements of Innovation Management in Computer Software and Services
Elements of Innovation Management in Computer Software and Services
 
Metalayer now Colayer - Part 3/3 - full Presentation
Metalayer now Colayer - Part 3/3 - full PresentationMetalayer now Colayer - Part 3/3 - full Presentation
Metalayer now Colayer - Part 3/3 - full Presentation
 
Building an Information System
Building an Information SystemBuilding an Information System
Building an Information System
 
Introducing Treesaver
Introducing TreesaverIntroducing Treesaver
Introducing Treesaver
 
Measuring Conversation
Measuring ConversationMeasuring Conversation
Measuring Conversation
 
ENG 102 Unit Six Page 1 of 1 ENG 102 Composition II .docx
ENG 102 Unit Six Page 1 of 1  ENG 102 Composition II  .docxENG 102 Unit Six Page 1 of 1  ENG 102 Composition II  .docx
ENG 102 Unit Six Page 1 of 1 ENG 102 Composition II .docx
 
1 IT 140 A Mini History of Text-Based Games Text
1  IT 140 A Mini History of Text-Based Games  Text1  IT 140 A Mini History of Text-Based Games  Text
1 IT 140 A Mini History of Text-Based Games Text
 
1 IT 140 A Mini History of Text-Based Games Text
1  IT 140 A Mini History of Text-Based Games  Text1  IT 140 A Mini History of Text-Based Games  Text
1 IT 140 A Mini History of Text-Based Games Text
 

Network Effects Explained: Properties, Strategies and Case Studies

  • 1. Network Effects A N U H A R I H A R A N E T A L
  • 2. What are network effects? Properties, terms, and laws of networks Strategies for building network effects What aren’t network effects? Case studies of companies with network effects
  • 3. Simply put, a network effect* occurs when a product or a service becomes more valuable to its users as more people use it *also known as: demand-side economies of scale
  • 4. Because understanding network effects helps build better products and businesses Especially since network effects are the key dynamic behind many successful software-based companies Why does this matter?
  • 5. Create barriers to exit for existing users and barriers to entry for new companies (help build moats) Protect software companies from competitors’ eating away at their margins Can help create or tip winner-take-all markets Network effects
  • 6. What are network effects? Properties, terms, and laws of networks Strategies for building network effects What aren’t network effects? Case studies of companies with network effects
  • 7. Networks, which are basically just a set of nodes connected by links, have various properties Some of those relevant properties include: 1. Whether the nodes are homogeneous or heterogeneous 2. Their type of clustering and degree of connections 3. Directionality of those connections 4. Whether they have (or are) complements Putting the ‘network’ in network effects
  • 8. 1. Homogeneous or heterogeneous? Homogeneous Composed of similar types of nodes Heterogeneous Skype is an example of a homogeneous network where most of the value is derived from a single class of users, all interested in placing a phone call Composed of different types of nodes OpenTable is an example of a heterogeneous network with two distinct categories of participants: one side is restaurants, the other side is diners Image source (Skype): http://letsbytecode.com/security/skype-the-phantom-menace/
  • 9. 2. Degree of connections and type of clustering Source: Albert-László Barabási, Linked: The New Science of Networks Source (original chart): https://griffsgraphs.wordpress.com/tag/clustering/ Degree: Measures number of connections to a single node Clustering coefficient: Measures degree to which nodes in a graph (e.g., social graph, interest graph, intent graph, etc.) cluster together Type of cluster: Can range from hub-and-spoke (star) to connected (clique) Example of Facebook friends connections clustering (high school, college, significant other’s, etc. clusters)
  • 10. Zooming in a bit further on those terms Degree Number of connections to a single node Homogeneous Type of Cluster The resulting CC(A) represents the fraction of possible interconnections between the neighbors of A 0 ≤ CC(A) ≤ 1 [For operating systems, Microsoft Windows is regarded as a central hub, with 85% share of the network!] Node A has 4 connections, therefore its degree is 4 Clustering Coefficient (CC) How likely are two nodes that are connected part of a highly connected group of nodes? If A is the node, and d is the degree A = 4, then n is the # of links between neighbors (blue dots) of A = 1 For example: CC(A) = 2*N/D(D-1) = 1/6 In hub-and-spoke or star networks, the fittest node (central hub) grabs all connections, leaving very little for the rest of the nodes In clique networks, node A is connected to its neighbors and all those neighbors are connected to each other cliquehub-and-spoke Source: https://youtu.be/K2WF4pT5pFY See also: Albert-László Barabási, Linked: The New Science of Networks
  • 11. 3. Connections: Unidirectional or Bidirectional? Friends Facebook, for example, is one place where connections tend to be bidirectional With bidirectional or two-way friending, you are more likely to have balanced connections: Follower Twitter, for example, is one place where connections can more easily be unidirectional Unidirectional or one-way following leads to asymmetrical connections (e.g., the asymmetric follow) Note: You could still have balanced connections here where you both or neither of you follow each other • You are friends • You are not friends • People follow you, but you don’t follow them back • People don’t follow you, but you do follow them
  • 12. 4. Complementary Networks More usage of the MS Windows operating system More usage of the MS Office suite of applications Increase in usage of one product by a set of users reinforces and increases the value of a complementary (but separate!) product, which in turn, increases the value of the original Source: http://cdixon.org/2009/08/25/six-strategies-for-overcoming-chicken-and-egg-problems/ T W O P R O D U C T S A R E C O M P L E M E N TA RY W H E N T H E Y A R E S E PA R AT E B U T A R E M O R E U S E F U L T O U S E R S T O G E T H E R operating systems have strong network effects of their own (via developers) as do productivity apps (via file formats), but in this case they also reinforce each other
  • 13. Besides those properties, networks (more specifically, communication networks) can also exhibit the following laws:
  • 14. 3 common laws for assessing the value of communication networks Sarnoff’s law Value of a network is proportional to the number of viewers Broadcast Yahoo 1 Value of a network is proportional to square of number of connected users Peer to Peer Facebook Metcalfe’s law 2 Value of a group-forming network is proportional to number and ease with which groups form within it (subgroups grow faster than sheer number of P2P participants) Group Forming Slack or WhatsApp groups Reed’s law 3 Sources: Andrew Odlyzko et al http://www.dtc.umn.edu/~odlyzko/doc/metcalfe.pdf
  • 15. Facebook is a classic example of Metcalfe’s law Every new user connecting to other peers in the network (peer- to-peer) non-linearly increases the number of connections Source: Bob Metcalfe/ IEEE Computer 2013, via Bill Krause
  • 16. And finally, let’s define some commonly used terms in the context of network effects
  • 17. Terms and definitions for our purposes Network is a group of interconnected people (social network) or system of things (telephones, printers to computers) Marketplace is a network where money/transactions flow between two or more sides with distinct (i.e., heterogeneous) groups of users on each side; a successful marketplace is where supply and demand are attracted to the same place Platform is a network of users and developers; the multi-sided feedback loop between those users, developers, and the platform itself creates a flywheel effect increasing value for each of those groups. It can also be thought of as a network that can be programmed, customized, and extended by outside users—often meets needs and creates niches not defined by its original developers at the outset
  • 18. Examples Platform Operating systems Messaging app like WeChat Marketplace Online auction marketplace Dating sites (can be heterogeneous or homogeneous!) Network Social network Telephone network Office printer & computer network
  • 19. So why do any of these details—topologies, other properties, precision of terms—matter to startup founders?
  • 20. Because these details suggest what questions to ask (e.g., is this network defensible?) and what the corresponding entrepreneurial strategy should be
  • 21. For example, if it’s X, then ask Y: Platform Will the market we’re eyeing eventually be served by a single platform and will it be shared (Ethernet) or will it be a fight for proprietary control (MS vs Apple)? Marketplace How do we build liquidity in the marketplace/solve the chicken-and-egg (which side comes first) problem? Which is the money side vs subsidy side of the marketplace? Network What should the entry point be (to build a network effect)? What are the growth levers/tactics/hacks to get to critical mass? What’s the critical mass inflection point (at which a network effect occurs)? How do you drive engagement? How do we take advantage of irregular topologies to find clusters and sub clusters?
  • 22. Most of these questions really boil down to What’s the initial growth lever or tactic to help us get to scale? Another way of thinking about this is: What’s the deterministic (not-so-random) solution to the bootstrapping problem? These questions help counter the wishful thinking and sometimes faulty assumption behind the belief that if we build it, they will come
  • 23. We’ll share specific strategies for attacking all these questions First, let’s look at some examples
  • 24. But there’s one more question/definition to know before doing so…
  • 25. Is the product single or multiplayer mode? Source: http://cdixon.org/2010/06/12/designing-products-for-single-and-multiplayer-modes/ Single Player Mode The product has immediate utility for a single user Examples Multiplayer Mode The product has no utility for a single player (especially true for communication products—a phone is useless without someone at other end) Examples (early days): tool to store private photos (early days): bookmark restaurants you’ve been to need connections to other users to make calls messaging for teams
  • 26. Note: You can sometimes have both single and multiplayer mode for a single product Single player mode is more powerful when accompanied by an initial ‘hack’ or other bootstrapping of early network growth. (e.g., Instagram’s cool photo filters was a way to post photos on Twitter before there was enough critical mass) Single player mode can also help with adoption in the early stages of a product, when network effects aren’t strong enough yet come for the tool, stay for the network. (e.g., Medium offering a beautiful publishing tool before it built its network of people and ideas)
  • 27. What are network effects? Case studies of companies with network effects Strategies for building network effects What aren’t network effects? Properties, terms and laws of networks
  • 28. Facebook T H E U LT I M AT E C A S E S T U D Y I N N E T W O R K E F F E C T S Started off as a social network (peer to peer connections) Became a platform (with developers) Has elements of a marketplace (users/advertisers, Instant Articles)
  • 29. So what led to network effects for Facebook? Mode/product value Growth tactic Engagement trigger Network effects Began as online student directory with information that was immediately useful even to a single player (user) Became a way for college students in courses and clubs to connect with other (multiplayer mode) Accessed the entire Harvard directory early on; critical in driving early adoption And because the product had inherent virality, it spread from one user to another as an organic consequence of use Identified early on that connecting a new user to 10 friends within 14 days of sign up was critical to improving retention So they used email contact imports, suggested friends and embedded widgets to drive that engagement Continued tweaking product (relationship status, timelines, etc.) to get everybody to join and stay on board So made sure there was an increase in usage even as the number of their users grew C O R R E S P O N D I N G Q U E S T I O N S : W H AT ’ S T H E E N T RY P O I N T ? W H AT A R E T H E G R O W T H L E V E R S ? W H AT ’ S T H E C R I T I C A L M A S S I N F L E C T I O N P O I N T ? H O W D O W E D R I V E E N G A G E M E N T ? Sources: Mark Zuckerberg interview with James Breyer, https://youtu.be/WA_ma359Meg Chamath Palihapitiya interview https://youtu.be/raIUQP71SBU
  • 30. By the numbers: Early growth as key (but not sole) indicator 1 6 12 58 145 360 608 845 0 100 200 300 400 500 600 700 800 900 2004 2005 2006 2007 2008 2009 2010 2011 (millions,year-end) MAUs Founded at Harvard 800+ college networks FB mobile and share on partner sites Launched platform with developers and apps Introduced chat Introduced Like button and payments Introduced Graph API for easy integration Introduced Timeline Source: Facebook S-1
  • 31. C O N S TA N T LY R O L L E D O U T N E W F E AT U R E S A N D O P T I M I Z E D T H E S I T E T O I N C R E A S E E N G A G E M E N T, D A I LY 0 200 400 600 800 1000 Mar-09 Jun-09 Sep-09 Dec-09 Mar-10 Jun-10 Sep-10 Dec-10 Mar-11 Jun-11 Sep-11 Dec-11 Inmillions Hyper growth in DAUs and MAUs pre-IPO MAUs DAUs By the numbers: Focus on daily usage to help grow network Source: Facebook S-1
  • 32. By the numbers: A sign of network effects I N C R E A S E I N U S A G E E V E N A S N U M B E R O F U S E R S G R E W 45% 47% 51% 54% 53% 53% 54% 55% 56% 57% 57% 0% 20% 40% 60% 80% 100% Mar-09 Jun-09 Sep-09 Dec-09 Mar-10 Jun-10 Sep-10 Dec-10 Mar-11 Jun-11 Sep-11 Dec-11 DAUS/MAUs(%) Source: public company data
  • 33. While many social networks today start off launching to everyone, Facebook’s entry strategy was taking a clustered approach (get Harvard) before rolling it out to other clusters (Stanford, etc.) More importantly, they were focused on engagement, not just growth Contrary to popular belief, Facebook kicked off offering immediate utility in single player mode (the online school directory), but people started connecting with each other (multiplayer mode) right away too Some takeaways
  • 34. Airbnb T W O S I D E D M A R K E T P L A C E W I T H O V E R L A P I N B O T H S I D E S More guests More hosts Network effect from both sides of the network More hosts attract more guests and vice versa More hosts = more availability for guests More guests = more business/$ for hosts
  • 35. A unique aspect of some peer-to-peer marketplaces like Airbnb is overlap between supply (hosts) and demand (guests) In other words, guests also become hosts and hosts also become guests!
  • 36. How did Airbnb achieve its network effects? Critical mass on both sides Network effects Airbnb capitalized on an existing problem/need— very limited or expensive hotel space Turning homes to lodging provided immediate value to users: 30%-80% cheaper than hotels and highly differentiated type of inventory (less sterile and more personal/social than hotel rooms) As more guests stayed in more places (demand), more hosts got more business and more hosts offered their places which in turn created more supply for guests As measured by number of room nights Mode/product value Airbnb targeted cities with sold-out events and constrained hotel supply (such as during the Democratic Party national campaign or World’s Cup) with traditional marketing and other methods to advertise its alternative Growth tactics Launched photography services to make offerings more appealing to guests Also added ability for mutual social connections to see who else had stayed to help build trust in the marketplace Critical mass Network effects C O R R E S P O N D I N G Q U E S T I O N S : H O W T O B U I L D L I Q U I D I T Y / S O LV E T H E C H I C K E N - E G G P R O B L E M ?
  • 37. By the numbers: There was no viral growth in the early days. launched photography program launched social connections # of new listings (early days of Airbnb: March 2008 to May 2011) # of transacting users (early days of Airbnb) traditional marketing around targeted events Note: Y-axes masked for confidentiality
  • 38. But then there was a sign of network effects I N C R E A S E I N N U M B E R O F G U E S T S T H AT S TAY E D E A C H Y E A R , C R E AT I N G M O R E S U P P LY A N D M O R E D E M A N D - 2 4 6 8 10 12 14 16 18 2008 2009 2010 2011 2012 2013 2014 Millions took nearly 36 months to build sufficient liquidity and to start seeing signs of network effects Source: Company data
  • 39. Airbnb focused early features on building the demand side and in a marketplace, supply will always go to where the demand is (and will stay if you help grow their business) Note: a product or service does not necessarily have to have viral growth to lead to network effects Traditional marketing methods—branding, design, targeting, direct advertising—can help Trust and safety is paramount in all marketplaces Some takeaways Source: Jeff Jordan in http://a16z.com/2015/02/24/managing-tensions-in-online-marketplaces/ See also http://www.forbes.com/sites/valleyvoices/2015/10/21/how-to-guard-your-marketplace-against-fraudsters/
  • 40. Medium T W O - S I D E D N E T W O R K W I T H C R O S S A N D S A M E - S I D E N E T W O R K E F F E C T S More writers More readers Network effect from both sides of the network More writers = more time readers spend on Medium More readers = More writers begin to write But can be on the same side of the network, too! When readers invite other readers (via highlights, mentions, replies, and annotations), the overall value of the entire network increases as more ideas are shared in that network itself
  • 41. What is leading to network effects for Medium? Critical mass on both sides Network effects Provided immediate, single-player utility—in the form of an elegant and easy-to-use publishing tool Often described as the “best web editor I’ve ever used” for both experienced and inexperienced writers More writers writing directly on Medium and more readers spending more time reading directly on Medium Becoming a network of people and ideas Mode/product value Curated special content collections/star contributors to create perceived exclusivity and as a beachhead to attract other influencers Used the 1-9-90 internet rule—where 1% users actively write, 9% participants edit, 90% read—to invite those who engaged to also become writers Growth tactic As they built critical mass, Medium designed the platform itself to optimize for engagement—through “in-content interactor” features such as highlights, recommends, responds, and mentions Used taxonomy of collections and publications to cluster highly engaged community around topics of interest Engagement trigger Network effects C O R R E S P O N D I N G Q U E S T I O N S : H O W T O B U I L D L I Q U I D I T Y ? H O W T O D R I V E E N G A G E M E N T ? Source: Ev Williams https://medium.com/the-story/medium-is-not-a-publishing-tool-4c3c63fa41d2
  • 42. By the numbers: Early signs of network effects N O N - V I R A L S T O R I E S G E T A M A J O R I T Y O F T R A F F I C F R O M W I T H I N M E D I U M 12% 30% 48% 54% 35% 23% 34% 35% 29% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Top Middle Tail Medium Social OtherTTR (total time reading) by referrer increasingly coming from Medium for long tail and middle— represents the audience that writers can’t easily reach on their own without Medium Source: https://medium.com/data-lab/quantifying-network-effects-7e6bc167aea5 , company data
  • 43. Some takeaways Reminder that single player mode can help get to multiplayer mode. The appeal of the tool attracts users initially to help build enough critical mass, and then getting those users to participate over time creates the network come for the tool, stay for the network They didn’t just built the tool and wait for users to come; a lot of up-front work went into curating and editing early content and community See also: http://cdixon.org/2015/01/31/come-for-the-tool-stay-for-the-network/
  • 44. WhatsApp A N E V E N M O R E H I G H LY C L U S T E R E D N E T W O R K T H A N FA C E B O O K 1 WhatsApp user had ≈20 connections compared to ≈980 friends on Facebook While this is fewer connections, they were highly clustered among close family and friends or WhatsApp Groups and therefore led to more engagement
  • 45. What led to WhatsApp’s network effects? Critical mass on both sides Network effects Single-player utility: Initial product enabled “what’s up” status updates of phone contacts that were useful even without interaction Multi-player utility: Provided instant messaging—essentially better, simpler, sand free SMS in international markets (now 50% bigger than global SMS) WhatsApp didn’t just have growth, it had more engagement (as indicated by % DAU x % MAU growth)—in other words, more users added more value for other users (that engagement is high at over 70%) Mode/product value Was one of the early apps to leverage the phone book as social graph: Each user invited users from their phone contacts (“closest family and friends”) Started small with close- knit Russian community in West San Jose to build initial critical mass before spreading to other subclusters Growth tactic Group Chat feature helped it go beyond pairwise connections Multimedia (MMS) helped it be used like Facebook (family photo sharing, etc.) in India and other places where people didn’t use web-based apps as much Engagement triggers Network effects C O R R E S P O N D I N G Q U E S T I O N S : W H AT S H O U L D T H E E N T RY P O I N T / S T R AT E G Y B E ? H O W D O W E TA K E A D VA N TA G E O F I R R E G U L A R T O P O L O G I E S T O F I N D C L U S T E R S A N D S U B C L U S T E R S ? Sources: http://www.forbes.com/sites/parmyolson/2014/02/19/exclusive-inside-story-how-jan-koum-built-whatsapp-into-facebooks-new-19-billion-baby/ http://www.businessinsider.com/whatsapp-engagement-chart-2014-2 https://growthhackers.com/growth-studies/whatsapp
  • 46. WhatsApp Growth vs Other Popular Platforms Source (WhatsApp): http://www.forbes.com/sites/parmyolson/2014/02/19/exclusive-inside-story-how-jan-koum-built-whatsapp-into-facebooks-new-19-billion-baby/ FA S T G R O W T H : H I T 6 7 M M A U S I N 2 Y E A R S ( 5 . 5 X B I G G E R T H A N FA C E B O O K A N D 1 7 X B I G G E R T H A N T W I T T E R Y E A R T W O ) 0 50 100 150 200 250 300 350 400 450 Year 0 Year 1 Year 2 Year 3 Year 4 (millions) MAUs Facebook: 145m WhatsApp: 419m (800m+ today) Gmail: 123m(1) Twitter: 54m(2) Skype: 52m(3)
  • 47. By the numbers: Sign of network effects P E O P L E A R E N ’ T J U S T R E A D I N G / R E C E I V I N G M E S S A G E S B U T W R I T I N G / S E N D I NG M E S S A G E S 0 5 10 15 20 25 30 35 Sep-11 Mar-12 Sep-12 Mar-13 13-Sep Mar-14 Sep-14 Mar-15 Mar-15 WhatsApp outgoing messages/day (bn) Sources: WhatsApp, a16z See also: http://ben-evans.com/benedictevans/2015/1/11/whatsapp-sails-past-sms-but-where-does-messaging-go-next
  • 48. Some takeaways Remember, usage—not just growth—is what helps indicate network effects Unlike Facebook, WhatsApp launched globally at outset but still pursued a clustered approach by making sure product was working in one subcluster first...Product continued to grow in clusters, not just peer to peer “No ads, no gimmicks, no games”—focused on simplicity first which tends to viral before adding extra features Also, phone as login provided a very low barrier to entry for users (especially internationally, where more people have phone numbers than email addresses)
  • 49. What are network effects? Strategies for building network effects What aren’t network effects? Properties, terms and laws of networks Case studies of companies with network effects
  • 50. How do you build—and maintain—network effects? Product should provide inherent value, whether in single or multiplayer mode Growth tactics to drive adoption Engagement trigger Sustain network effects Viral growth note that viral growth, while very helpful, is not necessary for critical mass
  • 51. Some strategies for building network effects What is your entry strategy? Bowling pin strategy 1 What are the growth levers to drive adoption? Growth strategy 2 What is your critical mass inflection point? Critical mass goals 3 What are the engagement triggers? Engagement strategy 4 How can you leverage an irregular network? Irregular networks 5
  • 52. 1. Bowling pin strategy to overcome chicken-egg problem Segment Segment Segment Segment Segment Segment Facebook did this well by starting with Harvard before moving to other schools and then opening up to everyone Should I build supply first or demand first And how much of each do I need? Where do I start? One way to overcome that tension is to use Geoffrey Moore’s (Crossing the Chasm) Bowling Pin strategy: Start with a niche segment where the chicken and egg can both be easily overcome, then eventually move to other niches and the broader market
  • 53. 2. Bootstrapping growth to drive adoption early on Source: https://www.quora.com/What-are-some-growth-strategies-used-by-Reddit See also: https://medium.com/@nishrocks/why-we-created-the-yelp-elite-squad-b8fa7dd2bead Accessed the entire Harvard directory early on to provide immediate utility for early adoption Canvassed friends and family for early feedback and reviews; also found and nurtured the top 100 super users as tastemakers Made it “the” place to find and discuss all things hip and cool related to a particular city Created several accounts on their own and submitted a lot of interesting content link to make the site feel alive for new users and thus quickly helped create a community
  • 54. 3. Setting goals to help attain ‘critical mass’ more quickly Connect a new user to 10 friends within 14 days of sign up Tag at least 3 friends to each campaign Facebook realized early on that it was important to connect each new user to at least 10 friends for them to stay engaged on the platform (repeat usage) This focus from Facebook on repeat engagement is what drove network effects Similarly, Tilt observed in the early days that campaigns were 75% more likely to tilt if at least 3 friends were tagged
  • 55. 4. Having specific triggers to sustain engagement in network Constantly rolled out new features (Like button, news feed, chat) to keep engagement on the platform First of its kind to leverage “phone book contacts”; the stickiest cluster coupled with the high utility of the product (free SMS in international markets) helped keep engagement high
  • 56. 5. Leverage irregular network topologies B Y F I N D I N G C L U S T E R S , C O M PA N I E S C A N R E A C H C R I T I C A L M A S S W I T H I N T H O S E S U B C L U S T E R S A N D E X PA N D B E Y O N D Real life networks are often very different from the uniform distributed networks pictured in textbooks WhatsApp took advantage of the fact that social connections are highly clustered in your phonebook and used that as a “beachhead” to launch groups They also targeted the international communities (e.g., Russian community in bay area) that found WhatsApp a cheaper alternative to expensive SMS
  • 57. Strategies for creating network effects How do you attract the harder side of the marketplace? 6 Subsidizing strategy M A R K E T P L A C E S Via cdixon.org
  • 58. 6. Attracting the harder side of the marketplace In almost every two-sided market, one side is harder to acquire than the other Common way to attract the harder side is to subsidize that harder side For example, single bars often have special ladies’ nights promotions on slower nights offering women discounts on drinks More men More womenBars
  • 59. Reducing prices for the hard side of the market (e.g., Adobe Flash and PDF for end users) can help build critical mass But solving the chicken-egg problem only by subsidizing has to be considered carefully in the context of the overall business model—i.e., there’s a difference between building initial critical mass and building a sustainable business (can’t ignore overall unit economics) This is why understanding which is the money side of the marketplace and the side of the marketplace where the most value is coming from matters so much because then you know which side to carefully subsidize See also: Thomas Eisenmann https://hbr.org/2006/10/strategies-for-two-sided-markets
  • 60. However, this dynamic may play out a little differently in so-called “sharing economy marketplaces Because such marketplaces can be supply-constrained due to unfamiliarity with the sharing economy model So those marketplaces have to work harder to get more supply as well, and hence may also subsidize that side or build other features to address these issues in other ways
  • 61. Strategies for creating network effects Show long-term commitment to platform 7 Provide stand alone value of the base 8 Vertically integrate when supply uncertain 9 P L AT F O R M S Via cdixon.org
  • 62. 7. Showing a long-term commitment to the platform W H E N FA C E B O O K A C Q U I R E D O C U L U S , T H E Y S I G N A L E D T H E I R L O N G - T E R M C O M M I T M E N T T O H E L P D R I V E P L AT F O R M S U C C E S S ; O C U L U S A L S O A N N O U N C E D I T W I L L P U M P $ 1 0 M I N T O I N D E P E N D E N T G A M E - D E V E L O P M E N T E F F O R T S Getting to critical mass in indirect networks can be challenging Because you are a platform you are dependent on 3rd party developers to remain engaged and grow your platform See also: http://cdixon.org/2009/08/25/six-strategies-for-overcoming-chicken-and-egg-problems/ W H E N T H E Y L A U N C H E D T H E X B O X , M I C R O S O F T D I D S O M E T H I N G S I M I L A R I N P R O M O T I N G T H E I R P L AT F O R M A N D S I G N A L I N G T H E I R C O M M I T M E N T
  • 63. 8. Providing standalone value of the base T H I S C O M P L E M E N TA RY N E T W O R K E F F E C T I M P R O V E D T H E VA L U E A N D I N C R E A S E D S A L E S V E L O C I T Y O F B O T H T H E B A S E P R O D U C T ( V C R ) A N D C O M P L E M E N T ( V I D E O C A S S E T T E S ) A N D R E M A I N E D T H E S TA N D A R D F O R Q U I T E A L O N G T I M E ! The standalone value of the VCR—“time shifting” of TV programming”— was strong enough to get >1M people to purchase one early on This installed base enticed entrepreneurs to develop a market for pre- recorded videocassettes, creating an indirect network effect improving the value of the VCR and protecting it from incremental alternatives Source: http://cdixon.org/2009/08/25/six-strategies-for-overcoming-chicken-and-egg-problems/
  • 64. 9. Integrate vertically into critical complements By vertically integrating the complement product (game) as well as the base product console), a company can attempt to ensure adequate supply of both goods For example, Nintendo is the leading developer of games for its own consoles and Microsoft and Sony also fund many of the most popular games on their platforms as well In platforms, one doesn’t necessarily have to be dependent only on outside developers— companies can ensure critical complements are built by themselves as well Source: http://cdixon.org/2009/08/25/six-strategies-for-overcoming-chicken-and-egg-problems/
  • 65. What are network effects? What aren’t network effects? Properties, terms and laws of networks Case studies of companies with network effects Strategies for building network effects
  • 66. Debunking some common misconceptions Network effects and virality are NOT the same thing 1 Viral growth is NOT necessary for network effects 2 Just because a platform has scale does NOT mean you have network effects 3
  • 67. 1. Network effects and virality are not the same thing! Network effects increases value as more users join a network, whereas viral growth increases just the speed of adoption (of a particular network’s product/service) These two concepts are often co-occurring so are sometimes conflated, but they’re not the same thing
  • 68. What’s the difference? D E F I N I T I O N S Network effects Product becomes more valuable as more users use it Network effects help build a moat for the business, leading to high engagement/ repeat rates and higher margins Represented by Metcalfe’s Law: value of telecom network is proportional to square of number of connected users of system (n2) Value Virality Product that spreads from one user to another through direct customer to customer contact Viral growth implies low CAC (customer acquisition cost) Often measured by viral coefficient (K factor): [average number of invitations sent by each existing user] * [conversion rate of invitation to new user] Speed See also: Sangeet Chaudhary http://platformed.info/virality-viral-growth-network-effects/
  • 69. This is something that spreads without financial or other sharing incentive due to being exclusive, invite-only, or other Example: Gmail created buzz (the hot thing with 1GB storage that was available only to a few) and encouraged existing customers to send invites slowly Distinguishing between various flavors of viral growth Referrals with no incentivesNetwork effects A product that has inherent virality—i.e., spreads from one user to another as an organic consequence of use—will have a network effect (referred to as a ‘direct network effect’ in academic literature) Example: Facebook without friend connections is not useful Word-of-mouth This is where customers recommend the product to other customers or distribute it via other platforms (like Facebook and Twitter) due to a positive experience with it Example: games like Angry Birds; BuzzFeed ‘The Dress’ Casual contact This is where a product spreads virally via customer to customer contact (not via users intentionally inviting other users) Example: Hotmail acquired users by including footers for free accounts at bottom of every email; DocSend acquires customers when users email links to view/download files TRADITIONAL VIRALITY‘PRODUCT VIRALITY’ See also: Thomas Eisenmann http://platformsandnetworks.blogspot.com/2011/07/business-model-analysis-part-5-virality.html
  • 70. So why do those distinctions matter? Because product virality (a product that is inherently viral) leads to network effects But traditional virality does not always lead to network effects
  • 71. By the numbers: Product virality leads to network effects FA C E B O O K I S T H E C L A S S I C E X A M P L E O F T H I S Product spread from one user to another as an organic consequence of its use, allowing Facebook to acquire users at $0 CAC The platform became more valuable as more users joined The signpost of network effect in this case is high engagement even as number of users increased 1 6 12 58 145 360 608 845 0 100 200 300 400 500 600 700 800 900 2004 2005 2006 2007 2008 2009 2010 2011 (millions,year-end) MAUs MAUs CAGR ‘04-’11: 162% 45% 47% 51% 54% 53% 53% 54% 55% 56% 57% 57% 0% 20% 40% 60% 80% 100% DAUS/MAUs(%) Engagement (DAUs/MAUs) Product virality = Connections with friends Network effects Source: public company data
  • 72. This distinction also explains cases where things that (seemed to) have viral growth did not lead to network effects In most cases, that viral growth was really word-of-mouth
  • 73. By the numbers: Word of mouth ≠ Network effects A N G RY B I R D S I S A N E X A M P L E O F T H I S Product spread from one user to another via word of mouth referrals/ brand popularity as people started playing on their own—did not spread as an organic consequence of its use Users do not get incremental value when other users download and play the game So Angry Birds does NOT have network effects (and has a weak competitive moat as a result) The key difference: Organic consequence of use Key question: Does value increase for users? 30 100 225 350 400 500 0 100 200 300 400 500 600 Angry Birds (est. downloads in millions) Chart source: https://www.macstories.net/news/angry-birds-reaches-half-a-billion-downloads/
  • 74. And remember, you can have network effects without (product or traditional) virality
  • 75. A I R B N B I S A N E X A M P L E O F T H I S Early days required traditional marketing and numerous growth hacks to build liquidity on both sides of the marketplace # of guests that stayed at Airbnb saw hyper growth 3 years after launch Leads to more money for hosts and more availability for guests No virality…. …yet strong network effects over time # of new listings between 2008 and 2011 # of transacting users between 2008 and 2011 - 5 10 15 20 2008 2009 2010 2011 2012 2013 2014 Millions By the numbers: Network effects without virality Source: Company data
  • 76. To clarify one final term/misconception: Just because a platform has scale does NOT mean it has network effects
  • 77. What’s the difference? Economies of scale Product becomes cheaper to produce as business increases in size and output Increasing scale leads to lower cost per unit of output (cost per unit decreases as fixed costs are spread out over more units) Network effects Product becomes more valuable as more users use it Network effects help build a moat—leading to high/repeat rates of engagement, higher margins ValueCost D E F I N I T I O N S See also: Sangeet Chaudhary http://platformed.info/virality-viral-growth-network-effects/
  • 78. To sum up: Network effects vs Virality vs Economies of scale Network effects Virality Economies of scale 1P
  • 79. SUPPLY SIDE Economies of scale (also referred to as just ‘economies of scale’) is a function of production size; so scale leads to lower cost per unit of output (unit economic efficiency) DEMAND SIDE Economies of scale (also referred to as network effects) is a function of users, so with scale leads to more utility for users They’re both competitive moats, but network effects tend to be stronger—users have higher barriers to exit Zooming in on economies of scale
  • 80. Amazon’s ecommerce site (1P) has supply-side economies of scale—shared warehouse facilities, cheaper shipping options, etc.— that benefit Amazon in the form of purchasing power and buyers in the form of lower costs Amazon’s peer-to-peer marketplace (3P) has demand-side economies of scale—aka network effects—which help make it the winner-take-all… is growing much faster than the ecommerce aspect of the site Example: amazon.com
  • 81. Strategies: Don’t forget these less obvious, but no less important, sources of network effects Hardware Infrastructure 1 2 Data 3
  • 82. “ MAX LEVCHIN: The defensibility of these businesses lies in their ability to build…a network effect of data. MATT TURCK: Data network effects occur when your product, generally powered by machine learning, becomes smarter as it gets more data from your users. In other words: the more users use your product, the more data they contribute; the more data they contribute, the smarter your product becomes (which can mean anything from core performance improvements to predictions, recommendations, personalization, etc.); the smarter your product is, the better it serves your users and the more likely they are to come back often and contribute more data—and so on and so forth. Simply put, a data network effect is a network effect that results from data Sources: http://max.levch.in/post/41116802381/dld13-keynote http://mattturck.com/2016/01/04/the-power-of-data-network-effects/
  • 83. But simply having a lot of data does not a data network effect make! The data needs to not only benefit from/extract that data, but also add value back to the network of users
  • 84. A missing graph we’d love to see in pitches that posit data network effects is something that answers this: How much data do you have over time? How much does the value of the product or service increase as a result of the data?
  • 85. Chris Dixon Jeff Jordan Sonal Chokshi Kathy Wang A D D I T I O N A L A C K N O W L E D G E M E N T S ( N O T I N C L U D I N G E X P E R T S & A R T I C L E S C I T E D A S S O U R C E S T H R O U G H O U T )