SlideShare une entreprise Scribd logo
1  sur  17
Télécharger pour lire hors ligne
Basics of Spaceflight



    Spacecraft Attitude 
    S       f A i d
Determination and Control
D t    i ti       dC t l
          Prof. Dr.‐Ing. Bernd Dachwald
              dachwald@fh aachen.de
              dachwald@fh‐aachen de
            Aerospace Technology Department
        Hohenstaufenallee 6, 52064 Aachen, Germany



      FH Aachen University of Applied Sciences
               Winter 2009 / 2010
                             /
                       v1.0
Overview and Introduction

What is Spacecraft Attitude … and Why Do We Have to Control It?

   •        The orientation of the spacecraft in space is called its attitude
   •        Most spacecraft have instruments and/or antennas that must be 
            pointed into specific directions. Solar arrays must be pointed into the 
                   d           f d              l               b          d     h
            sun. The thruster must be pointed into the required direction during 
            thrust maneuvers
            thrust maneuvers
   •        To control the attitude, the spacecraft operators (or the spacecraft's 
            computer, in case of an autonomous system) must have the ability to
            1. Determine the current attitude
            2. Determine the error between the current and the desired attitude
            3. Apply torques to remove the error
   •        Therefore, the spacecraft needs an attitude determination and control 
            system (ADCS)
   •        Attitude determination requires sensors
   •        Attitude control requires actuators
            Attitude control requires actuators

Prof. Dr.‐Ing. Bernd Dachwald           Spacecraft Attitude Determination and Control   FH Aachen / Winter 2009/10 / v1.0      2
Overview and Introduction

Attitude Determination & Control Process
                                                                      Thruster must point 
                                                                      into thrust direction
                                                                                                        Attitude Requirements:
                                                                                                         Antenna must point 
                                                                                                         Antenna must point
                                  Actuators                                                              into Earth direction

            Torque                                                      Internal
           Demands                            Torques                                                               External
                                                                      Disturbance 
                                                                        stu ba ce
                                                                                                                    Disturbance Torques
                                                                                                                    Di t b      T
                                                                        Torques                                     ‐ Aerodynamic
                                                                                                                    ‐ Gravity‐Gradient
                                                                                                                    ‐ Magnetic
                 On board
                 On‐board                                                                                           ‐ Solar Radiation Pressure
                                                                                                                      Solar Radiation Pressure
                 Computer
                                          Measured                     Solar array               Sensor must
                                          Attitude                     must point                point into
  Attitude                                                             into sun                  target direction
                                                                       direction
                                                                       d
   Control                                                                               „Real“
 Commands                                                                               Attitude

                                Ground
                                Control                                 Attitude
                                                                        Sensors


                                     Measured Attitude

Prof. Dr.‐Ing. Bernd Dachwald                           Spacecraft Attitude Determination and Control                  FH Aachen / Winter 2009/10 / v1.0      3
Disturbing Forces and Torques      Overview

Disturbing Forces and Torques Acting on Spacecraft
   • Aerodynamic force / torque 
          from planetary atmospheres, at Earth: altitude / 500 km
   • Gravity gradient torque
     Gravity gradient torque 
          from planetary gravity fields, ∝ 1/R3, at Earth: altitude ≈ 500‐35000 km
   • Magnetic torque 
       g         q
          from planetary magnetic fields, ∝ 1/R3, at Earth: altitude ≈ 500‐35000 km
   • Solar radiation pressure force / torque 
          i th i         l      t      1/r t E th ltit d ' 600 km
          in the inner solar system, ∝ 1/ 2, at Earth: altitude ' 600 k
   • Force / torque from micrometeorite and debris impacts
          at all altitudes
   • Spacecraft generated forces / torques 
          e.g. from mass movements (mechanisms, propellant, astronauts), at all altitudes
   • Their relative importance is a generally a function of spacecraft size, mass,
     mass distribution, altitude, and design
                                                                                           R: Distance from Earth (center)
                                                                                           r: Distance from sun

Prof. Dr.‐Ing. Bernd Dachwald              Spacecraft Attitude Determination and Control               FH Aachen / Winter 2009/10 / v1.0      4
Disturbing Forces and Torques      Aerodynamic

Aerodynamic Torque (simplified)

   Aerodynamic drag (simplified):
                             1          ³ v´
                   FA       = ρCD A⊥ v 2 −
                             2             v                                          A⊥
                                                                                                        CP

          F A:          Aerodynamic force            v                                                                  FA
          ρ:            Atmospheric density                                                         r
          CD :          Aerodynamic (drag) coefficient                                                    CM
          A⊥ :          Area normal to the
                        spacecraft velocity vector
          v:            Spacecraft velocity vector

   Aerodynamic torque:
                   TD = r × FA

          T D:          Aerodynamic torque
          r:            Vector from the center of mass (CM) to the center of pressure (CP)


Prof. Dr.‐Ing. Bernd Dachwald                 Spacecraft Attitude Determination and Control   FH Aachen / Winter 2009/10 / v1.0      5
Disturbing Forces and Torques      Comparison

Typical Magnitude of Disturbing Torques

            Altitude
                                                                            Diagrams like this are strongly 
                                                                            dependent on the shape and 
                                                                            design of the spacecraft
    100 000

                                           Radiation P
                                           R di ti Pressure


       10 000
                                                      Gravity Gradient


                                                                       Magnetic Effects
         1 000
                                                                                   Aerodynamic Effects



             100                                                                                       Torque


Prof. Dr.‐Ing. Bernd Dachwald              Spacecraft Attitude Determination and Control        FH Aachen / Winter 2009/10 / v1.0      6
Attitude Description

Description of Spacecraft Attitude
    Spacecraft attitude is characterized by the orientation of a 
    spacecraft‐ fixed coordinate system with respect to a reference 
    coordinate system
    Example: orbit‐defined coordinate system Roll, Pitch, Yaw:
        p                               y
       – Yaw axis is directed toward nadir (i.e. Earth center)
       – Pitch axis is directed toward the south orbit normal
       – Roll axis is perpendicular to yaw and pitch axis




                                Yaw rotation


                                                   Roll rotation

                                       Pitch rotation




Prof. Dr.‐Ing. Bernd Dachwald         Spacecraft Attitude Determination and Control   FH Aachen / Winter 2009/10 / v1.0      7
Attitude Determination

Attitude Determination Objective and Sensors

   •        Objective: To determine the attitude, or orientation, or pointing direction of a 
            spacecraft‐fixed reference frame with respect to a known (usually inertial) 
            reference frame. 
            reference frame
   •        Attitude determination requires two or more attitude sensors like
             – M
               Magnetometers
                    measure the magnitude and direction of the magnetic field

             – Sun sensors
               Sun sensors 
                    measure the position of the sun

             – Earth sensors
               Earth sensors 
                    measure the position of the Earth or the attitude with respect to the horizon

             – Star sensors 
                    compare some image of the sky with a build‐in library

             – Gyroscopes 
                    measure the rotation of spacecraft without external references

Prof. Dr.‐Ing. Bernd Dachwald               Spacecraft Attitude Determination and Control   FH Aachen / Winter 2009/10 / v1.0      8
Attitude Sensors       Sun Sensors

Simple Sun Sensors


                        Sunlight
                             g
                                                                                   Sunlight
                                                                                   S li ht




                                                                       Sensors


                      Sensors
                   Electronics
                                     Signal




Prof. Dr.‐Ing. Bernd Dachwald      Spacecraft Attitude Determination and Control     FH Aachen / Winter 2009/10 / v1.0      9
Attitude Sensors       Sun Sensors

Sun Sensors
   • Accuracy limit of a sun sensor is about several arcseconds (0.1 – 0.01 deg) for 
     precise sensors and 0.5 deg for coarse sensors
   • O
     One sun sensor measurement does not give the complete attitude but only a 
                                  td         t i th         l t ttit d b t l
     direction (only two degrees of freedom of the vector are sensitive to the 
     attitude).
   • Two measurements are required to determine the attitude:
            – by a second independent sensor
            – by the same sensor but separated significantly in time
              by the same sensor but separated significantly in time.




                                                         ?
Prof. Dr.‐Ing. Bernd Dachwald           Spacecraft Attitude Determination and Control   FH Aachen / Winter 2009/10 / v1.0      10
Attitude Sensors       Star Sensors

Star Sensors
   •        Starlight strikes the CCD 
            of a camera
   •        By determining the 
             y              g
            direction to two                                                             Star 1
            different stars in the 
                                                                                                  Star 2
            picture, the
            complete attitude can 
            be determined
   •        Star sensors are very 
            accurate (typically 1‐3 
            arcsec, some up to
            0.001 arcsec) …
   •        … but they generally do 
            not function well at 
            angular rates above 
            some deg/s (due to their 
            small field of view)
             ⇒ a coarse sensor is 
            also required for high 
            angular rates
Prof. Dr.‐Ing. Bernd Dachwald            Spacecraft Attitude Determination and Control     FH Aachen / Winter 2009/10 / v1.0      11
Attitude Control     Tasks

Typical Attitude Control Tasks

                Tumbling S/C after separation                                High angular rate
                                                                             Arbitrary orientation

                   Slow‐down angular speed                                   Low angular rate
                                                                             Arbitrary orientation

          Attain safe attitude (power, thermal)                              Low angular rate
                                                                             Sun‐pointing
                                                                             Low accuracy
                                                                             Low accuracy

           Attain operational attitude (payload                              Low angular rate
                       operations)                                           Operational orientation
                                                                              p
                                                                             High accuracy

             S e to suppo t o b t ope at o s
             Slew to support orbit operations                                Low angular rate
                                                                              o a gu a ate
                                                                             Oriented to support orbit maneuver
                                                                             Large disturbances




Prof. Dr.‐Ing. Bernd Dachwald                Spacecraft Attitude Determination and Control           FH Aachen / Winter 2009/10 / v1.0      12
Attitude Control      Reaction Jets

Reaction Jets

                          m˙                       ˙
                                                  m<0
   • By expelling a mass     (for the spacecraft            ) with a velocity c, 
                                F = mc
     a thruster exerts a force          ˙ onto the spacecraft
   • If the thruster has a moment arm r with respect to the 
     spacecraft‘s center of mass (CM), it exerts a torque about CM:
                    T=r×F
   • A single thruster also changes the spacecraft‘s linear momentum
     A single thruster also changes the spacecraft s linear momentum 
     p, because F = p   ˙
                                                            F = mc
                                                                ˙
     (
     (this is typically not desired
               yp     y
     because it also changes                           r
     the orbit of the spacecraft)
                                                                                CM




Prof. Dr.‐Ing. Bernd Dachwald   Spacecraft Attitude Determination and Control        FH Aachen / Winter 2009/10 / v1.0      13
Attitude Control    Reaction Jets

Reaction Jets
   • Therefore, thrusters are used in pairs, so that
          T1 + T2 = 2(r × F)
          F1 + F2 = 0
   • Depending on the actual thruster, one can have a very high
     Depending on the actual thruster, one can have a very high 
     control authority
            – Cold gas: 
                                                                                           F1 = mc1
                                                                                                ˙
              up to 10 N
            – Hydrazine: 
              up to 10 kN
              up to 10 kN                                                        r1
            – Ion thrusters: 
              10 mN down to < 1 mN                                                CM
                                                                                      r2


                                                                     F2 = mc2
                                                                          ˙

Prof. Dr.‐Ing. Bernd Dachwald    Spacecraft Attitude Determination and Control         FH Aachen / Winter 2009/10 / v1.0      14
Attitude Control      Reaction Wheels

Reaction Wheels
   • Rotating the spacecraft does not necessarily 
     require thrusters (conservation of angular 
     momentum!)   )
   • Reaction wheels (RWs) are a common choice for 
     active attitude control
   • RW
     RW provide quick and accurate control
              id     i k d                    l
   • Internal torque only (external torque is still 
     required for de‐saturating the wheels, when they 
       q                        g           ,        y
     have reached their maximum rotation speed)
   • Three RWs are necessary for three‐axis control 
     but four wheels are usually used for redundancy 
     but four wheels are usually used for redundancy
     (tetrahedron mounting)
   • Control logic is simple for three independent 
     axes but can get complicated with redundancy
   • Static and dynamic imbalances can produce 
     vibrations (attitude jitter)
     vibrations (attitude jitter)
   • Typical torque is 0.1 − 1 Nm
Prof. Dr.‐Ing. Bernd Dachwald   Spacecraft Attitude Determination and Control   FH Aachen / Winter 2009/10 / v1.0      15
Attitude Control System Design

Basic Concept of Feedback Control
   • Satellite attitude is measured and compared with a desired value 
     ⇒ Attitude error
   • Attitude error is used to determine corrective torque to be 
     applied by onboard actuators ⇒ New attitude
   • C l
     Cycle continues indefinitely because
                ti     i d fi it l b
            – disturbance torques occur
            – attitude measurement is imperfect
              attitude measurement is imperfect
            – attitude correction is imperfect 




Prof. Dr.‐Ing. Bernd Dachwald               Spacecraft Attitude Determination and Control   FH Aachen / Winter 2009/10 / v1.0      16
References

References
   [Ro08]                   Lucy Rogers:
                            It’s ONLY Rocket Science. An Introduction in Plain English.
                            Springer, 2008
   [Sw08]                   Graham Swinerd:
                            How Spacecraft Fly. Spaceflight Without Formulae.
                            Springer, 2008
                            Springer 2008
   [Se05]                   Jerry Jon Sellers:
                            Understanding Space. An Introduction to Astronautics.
                            Third Edition. McGraw‐Hill, 2005
   [Gr04]                   Michael D. Griffin, James D. French: 
                            Space Vehicle Design.
                             p                  g
                            Second Edition. AIAA Education Series, 2004




Prof. Dr.‐Ing. Bernd Dachwald                   Spacecraft Attitude Determination and Control   FH Aachen / Winter 2009/10 / v1.0      17

Contenu connexe

Tendances

Radar communication 2
Radar communication 2Radar communication 2
Radar communication 2
Ashwani Kumar
 
Design & Implementation of a Cube Satellite
Design & Implementation of a Cube SatelliteDesign & Implementation of a Cube Satellite
Design & Implementation of a Cube Satellite
Md. Saifur Rahman
 

Tendances (20)

Satellite communication
Satellite communicationSatellite communication
Satellite communication
 
Guidance, navigation and control
Guidance, navigation and controlGuidance, navigation and control
Guidance, navigation and control
 
Space segment
Space segmentSpace segment
Space segment
 
MODELLING AND ATMOSPHERIC ERRORS IN GPS SIGNAL PROPAGATION
MODELLING AND ATMOSPHERIC ERRORS IN GPS SIGNAL PROPAGATIONMODELLING AND ATMOSPHERIC ERRORS IN GPS SIGNAL PROPAGATION
MODELLING AND ATMOSPHERIC ERRORS IN GPS SIGNAL PROPAGATION
 
INS-Inertial Navigation System
INS-Inertial Navigation SystemINS-Inertial Navigation System
INS-Inertial Navigation System
 
GNSS
GNSSGNSS
GNSS
 
Radar Basics
Radar BasicsRadar Basics
Radar Basics
 
Radar
RadarRadar
Radar
 
Tracking Radar
Tracking RadarTracking Radar
Tracking Radar
 
Monopulse Radar
Monopulse RadarMonopulse Radar
Monopulse Radar
 
Radar communication 2
Radar communication 2Radar communication 2
Radar communication 2
 
radar-principles
radar-principlesradar-principles
radar-principles
 
Geodetic systems
Geodetic systemsGeodetic systems
Geodetic systems
 
Satellite antennas
Satellite antennasSatellite antennas
Satellite antennas
 
Coordinate systems (Lecture 3)
Coordinate systems (Lecture 3)Coordinate systems (Lecture 3)
Coordinate systems (Lecture 3)
 
Ec6004 unit 2
Ec6004 unit 2Ec6004 unit 2
Ec6004 unit 2
 
RADIOMETER AND BASICS OF SATELLITE COMMUNICATION SYSTEMS
RADIOMETER AND BASICS OF SATELLITE COMMUNICATION SYSTEMSRADIOMETER AND BASICS OF SATELLITE COMMUNICATION SYSTEMS
RADIOMETER AND BASICS OF SATELLITE COMMUNICATION SYSTEMS
 
Radar system
Radar systemRadar system
Radar system
 
Design & Implementation of a Cube Satellite
Design & Implementation of a Cube SatelliteDesign & Implementation of a Cube Satellite
Design & Implementation of a Cube Satellite
 
Tracking
TrackingTracking
Tracking
 

En vedette

Transfusión sanguínea y hemoderivados
Transfusión sanguínea y hemoderivadosTransfusión sanguínea y hemoderivados
Transfusión sanguínea y hemoderivados
AnaLucía Cayao Flores
 
Actitud, control, comportamiento
Actitud, control, comportamientoActitud, control, comportamiento
Actitud, control, comportamiento
Michael Castillo
 
Electric propulsion
Electric propulsionElectric propulsion
Electric propulsion
Shyam Prasad
 

En vedette (20)

Spacecraft attitude magnetic controller
Spacecraft attitude magnetic controllerSpacecraft attitude magnetic controller
Spacecraft attitude magnetic controller
 
Adcs orbit intro
Adcs orbit introAdcs orbit intro
Adcs orbit intro
 
Orbits dynamics
Orbits dynamicsOrbits dynamics
Orbits dynamics
 
Aocs Intro
Aocs IntroAocs Intro
Aocs Intro
 
Transfusión sanguínea y hemoderivados
Transfusión sanguínea y hemoderivadosTransfusión sanguínea y hemoderivados
Transfusión sanguínea y hemoderivados
 
3 Things Every Sales Team Needs to Be Thinking About in 2017
3 Things Every Sales Team Needs to Be Thinking About in 20173 Things Every Sales Team Needs to Be Thinking About in 2017
3 Things Every Sales Team Needs to Be Thinking About in 2017
 
How to Become a Thought Leader in Your Niche
How to Become a Thought Leader in Your NicheHow to Become a Thought Leader in Your Niche
How to Become a Thought Leader in Your Niche
 
ACS (Attitude Control System)
ACS (Attitude Control System) ACS (Attitude Control System)
ACS (Attitude Control System)
 
ÓRBITA
ÓRBITAÓRBITA
ÓRBITA
 
Dsc Presentation (Aocs)
Dsc Presentation (Aocs)Dsc Presentation (Aocs)
Dsc Presentation (Aocs)
 
Actitud, control, comportamiento
Actitud, control, comportamientoActitud, control, comportamiento
Actitud, control, comportamiento
 
how google works
how google workshow google works
how google works
 
ISAC-Projects
ISAC-ProjectsISAC-Projects
ISAC-Projects
 
International Goals in Space, Indian Space Program
International Goals in Space, Indian Space ProgramInternational Goals in Space, Indian Space Program
International Goals in Space, Indian Space Program
 
Cn3 sensors and transducers-12
Cn3 sensors and transducers-12Cn3 sensors and transducers-12
Cn3 sensors and transducers-12
 
Pid controller
Pid controllerPid controller
Pid controller
 
Electric propulsion
Electric propulsionElectric propulsion
Electric propulsion
 
ISRO (By Kalyanam Kiran)
ISRO (By Kalyanam Kiran)ISRO (By Kalyanam Kiran)
ISRO (By Kalyanam Kiran)
 
ISRO Presentation
ISRO Presentation  ISRO Presentation
ISRO Presentation
 
INTRODUCTION TO SATELLITE
INTRODUCTION TO SATELLITEINTRODUCTION TO SATELLITE
INTRODUCTION TO SATELLITE
 

Similaire à Bsf08 Spacecraft Attitude Determination And Control V1 0

Using 3-D Seismic Attributes in Reservoir Characterization
Using 3-D Seismic Attributes in Reservoir CharacterizationUsing 3-D Seismic Attributes in Reservoir Characterization
Using 3-D Seismic Attributes in Reservoir Characterization
guest05b785
 
Emi cathode ray oscilloscope
Emi cathode ray oscilloscopeEmi cathode ray oscilloscope
Emi cathode ray oscilloscope
yssb91
 

Similaire à Bsf08 Spacecraft Attitude Determination And Control V1 0 (11)

Using 3-D Seismic Attributes in Reservoir Characterization
Using 3-D Seismic Attributes in Reservoir CharacterizationUsing 3-D Seismic Attributes in Reservoir Characterization
Using 3-D Seismic Attributes in Reservoir Characterization
 
Radar tech.ppt
Radar tech.pptRadar tech.ppt
Radar tech.ppt
 
Emi cathode ray oscilloscope
Emi cathode ray oscilloscopeEmi cathode ray oscilloscope
Emi cathode ray oscilloscope
 
Radar types.ppt
Radar types.pptRadar types.ppt
Radar types.ppt
 
Oscilloscope:
Oscilloscope:Oscilloscope:
Oscilloscope:
 
Microwave remote sensing
Microwave remote sensingMicrowave remote sensing
Microwave remote sensing
 
Gravity Method | Geophysics | Geology
Gravity Method | Geophysics | GeologyGravity Method | Geophysics | Geology
Gravity Method | Geophysics | Geology
 
Microwave remote sensing
Microwave remote sensingMicrowave remote sensing
Microwave remote sensing
 
SUC Brasil 2012 : Coupled Dynamic Analysis FPSO / Mooring / Risers
SUC Brasil 2012 : Coupled Dynamic Analysis FPSO / Mooring / RisersSUC Brasil 2012 : Coupled Dynamic Analysis FPSO / Mooring / Risers
SUC Brasil 2012 : Coupled Dynamic Analysis FPSO / Mooring / Risers
 
Kps Environment 2 D3 D Wind Profiling
Kps Environment 2 D3 D Wind ProfilingKps Environment 2 D3 D Wind Profiling
Kps Environment 2 D3 D Wind Profiling
 
Radar remote sensing, P K MANI
Radar remote sensing, P K MANIRadar remote sensing, P K MANI
Radar remote sensing, P K MANI
 

Bsf08 Spacecraft Attitude Determination And Control V1 0

  • 1. Basics of Spaceflight Spacecraft Attitude  S f A i d Determination and Control D t i ti dC t l Prof. Dr.‐Ing. Bernd Dachwald dachwald@fh aachen.de dachwald@fh‐aachen de Aerospace Technology Department Hohenstaufenallee 6, 52064 Aachen, Germany FH Aachen University of Applied Sciences Winter 2009 / 2010 / v1.0
  • 2. Overview and Introduction What is Spacecraft Attitude … and Why Do We Have to Control It? • The orientation of the spacecraft in space is called its attitude • Most spacecraft have instruments and/or antennas that must be  pointed into specific directions. Solar arrays must be pointed into the  d f d l b d h sun. The thruster must be pointed into the required direction during  thrust maneuvers thrust maneuvers • To control the attitude, the spacecraft operators (or the spacecraft's  computer, in case of an autonomous system) must have the ability to 1. Determine the current attitude 2. Determine the error between the current and the desired attitude 3. Apply torques to remove the error • Therefore, the spacecraft needs an attitude determination and control  system (ADCS) • Attitude determination requires sensors • Attitude control requires actuators Attitude control requires actuators Prof. Dr.‐Ing. Bernd Dachwald Spacecraft Attitude Determination and Control FH Aachen / Winter 2009/10 / v1.0      2
  • 3. Overview and Introduction Attitude Determination & Control Process Thruster must point  into thrust direction Attitude Requirements: Antenna must point  Antenna must point Actuators into Earth direction Torque Internal Demands Torques External Disturbance  stu ba ce Disturbance Torques Di t b T Torques ‐ Aerodynamic ‐ Gravity‐Gradient ‐ Magnetic On board On‐board ‐ Solar Radiation Pressure Solar Radiation Pressure Computer Measured Solar array Sensor must Attitude must point point into Attitude into sun target direction direction d Control „Real“ Commands Attitude Ground Control Attitude Sensors Measured Attitude Prof. Dr.‐Ing. Bernd Dachwald Spacecraft Attitude Determination and Control FH Aachen / Winter 2009/10 / v1.0      3
  • 4. Disturbing Forces and Torques Overview Disturbing Forces and Torques Acting on Spacecraft • Aerodynamic force / torque  from planetary atmospheres, at Earth: altitude / 500 km • Gravity gradient torque Gravity gradient torque  from planetary gravity fields, ∝ 1/R3, at Earth: altitude ≈ 500‐35000 km • Magnetic torque  g q from planetary magnetic fields, ∝ 1/R3, at Earth: altitude ≈ 500‐35000 km • Solar radiation pressure force / torque  i th i l t 1/r t E th ltit d ' 600 km in the inner solar system, ∝ 1/ 2, at Earth: altitude ' 600 k • Force / torque from micrometeorite and debris impacts at all altitudes • Spacecraft generated forces / torques  e.g. from mass movements (mechanisms, propellant, astronauts), at all altitudes • Their relative importance is a generally a function of spacecraft size, mass, mass distribution, altitude, and design R: Distance from Earth (center) r: Distance from sun Prof. Dr.‐Ing. Bernd Dachwald Spacecraft Attitude Determination and Control FH Aachen / Winter 2009/10 / v1.0      4
  • 5. Disturbing Forces and Torques Aerodynamic Aerodynamic Torque (simplified) Aerodynamic drag (simplified): 1 ³ v´ FA = ρCD A⊥ v 2 − 2 v A⊥ CP F A: Aerodynamic force v FA ρ: Atmospheric density r CD : Aerodynamic (drag) coefficient CM A⊥ : Area normal to the spacecraft velocity vector v: Spacecraft velocity vector Aerodynamic torque: TD = r × FA T D: Aerodynamic torque r: Vector from the center of mass (CM) to the center of pressure (CP) Prof. Dr.‐Ing. Bernd Dachwald Spacecraft Attitude Determination and Control FH Aachen / Winter 2009/10 / v1.0      5
  • 6. Disturbing Forces and Torques Comparison Typical Magnitude of Disturbing Torques Altitude Diagrams like this are strongly  dependent on the shape and  design of the spacecraft 100 000 Radiation P R di ti Pressure 10 000 Gravity Gradient Magnetic Effects 1 000 Aerodynamic Effects 100 Torque Prof. Dr.‐Ing. Bernd Dachwald Spacecraft Attitude Determination and Control FH Aachen / Winter 2009/10 / v1.0      6
  • 7. Attitude Description Description of Spacecraft Attitude Spacecraft attitude is characterized by the orientation of a  spacecraft‐ fixed coordinate system with respect to a reference  coordinate system Example: orbit‐defined coordinate system Roll, Pitch, Yaw: p y – Yaw axis is directed toward nadir (i.e. Earth center) – Pitch axis is directed toward the south orbit normal – Roll axis is perpendicular to yaw and pitch axis Yaw rotation Roll rotation Pitch rotation Prof. Dr.‐Ing. Bernd Dachwald Spacecraft Attitude Determination and Control FH Aachen / Winter 2009/10 / v1.0      7
  • 8. Attitude Determination Attitude Determination Objective and Sensors • Objective: To determine the attitude, or orientation, or pointing direction of a  spacecraft‐fixed reference frame with respect to a known (usually inertial)  reference frame.  reference frame • Attitude determination requires two or more attitude sensors like – M Magnetometers measure the magnitude and direction of the magnetic field – Sun sensors Sun sensors  measure the position of the sun – Earth sensors Earth sensors  measure the position of the Earth or the attitude with respect to the horizon – Star sensors  compare some image of the sky with a build‐in library – Gyroscopes  measure the rotation of spacecraft without external references Prof. Dr.‐Ing. Bernd Dachwald Spacecraft Attitude Determination and Control FH Aachen / Winter 2009/10 / v1.0      8
  • 9. Attitude Sensors Sun Sensors Simple Sun Sensors Sunlight g Sunlight S li ht Sensors Sensors Electronics Signal Prof. Dr.‐Ing. Bernd Dachwald Spacecraft Attitude Determination and Control FH Aachen / Winter 2009/10 / v1.0      9
  • 10. Attitude Sensors Sun Sensors Sun Sensors • Accuracy limit of a sun sensor is about several arcseconds (0.1 – 0.01 deg) for  precise sensors and 0.5 deg for coarse sensors • O One sun sensor measurement does not give the complete attitude but only a  td t i th l t ttit d b t l direction (only two degrees of freedom of the vector are sensitive to the  attitude). • Two measurements are required to determine the attitude: – by a second independent sensor – by the same sensor but separated significantly in time by the same sensor but separated significantly in time. ? Prof. Dr.‐Ing. Bernd Dachwald Spacecraft Attitude Determination and Control FH Aachen / Winter 2009/10 / v1.0      10
  • 11. Attitude Sensors Star Sensors Star Sensors • Starlight strikes the CCD  of a camera • By determining the  y g direction to two Star 1 different stars in the  Star 2 picture, the complete attitude can  be determined • Star sensors are very  accurate (typically 1‐3  arcsec, some up to 0.001 arcsec) … • … but they generally do  not function well at  angular rates above  some deg/s (due to their  small field of view) ⇒ a coarse sensor is  also required for high  angular rates Prof. Dr.‐Ing. Bernd Dachwald Spacecraft Attitude Determination and Control FH Aachen / Winter 2009/10 / v1.0      11
  • 12. Attitude Control Tasks Typical Attitude Control Tasks Tumbling S/C after separation High angular rate Arbitrary orientation Slow‐down angular speed Low angular rate Arbitrary orientation Attain safe attitude (power, thermal) Low angular rate Sun‐pointing Low accuracy Low accuracy Attain operational attitude (payload  Low angular rate operations) Operational orientation p High accuracy S e to suppo t o b t ope at o s Slew to support orbit operations Low angular rate o a gu a ate Oriented to support orbit maneuver Large disturbances Prof. Dr.‐Ing. Bernd Dachwald Spacecraft Attitude Determination and Control FH Aachen / Winter 2009/10 / v1.0      12
  • 13. Attitude Control Reaction Jets Reaction Jets m˙ ˙ m<0 • By expelling a mass     (for the spacecraft            ) with a velocity c,  F = mc a thruster exerts a force          ˙ onto the spacecraft • If the thruster has a moment arm r with respect to the  spacecraft‘s center of mass (CM), it exerts a torque about CM: T=r×F • A single thruster also changes the spacecraft‘s linear momentum A single thruster also changes the spacecraft s linear momentum  p, because F = p ˙ F = mc ˙ ( (this is typically not desired yp y because it also changes r the orbit of the spacecraft) CM Prof. Dr.‐Ing. Bernd Dachwald Spacecraft Attitude Determination and Control FH Aachen / Winter 2009/10 / v1.0      13
  • 14. Attitude Control Reaction Jets Reaction Jets • Therefore, thrusters are used in pairs, so that T1 + T2 = 2(r × F) F1 + F2 = 0 • Depending on the actual thruster, one can have a very high Depending on the actual thruster, one can have a very high  control authority – Cold gas:  F1 = mc1 ˙ up to 10 N – Hydrazine:  up to 10 kN up to 10 kN r1 – Ion thrusters:  10 mN down to < 1 mN CM r2 F2 = mc2 ˙ Prof. Dr.‐Ing. Bernd Dachwald Spacecraft Attitude Determination and Control FH Aachen / Winter 2009/10 / v1.0      14
  • 15. Attitude Control Reaction Wheels Reaction Wheels • Rotating the spacecraft does not necessarily  require thrusters (conservation of angular  momentum!) ) • Reaction wheels (RWs) are a common choice for  active attitude control • RW RW provide quick and accurate control id i k d l • Internal torque only (external torque is still  required for de‐saturating the wheels, when they  q g , y have reached their maximum rotation speed) • Three RWs are necessary for three‐axis control  but four wheels are usually used for redundancy  but four wheels are usually used for redundancy (tetrahedron mounting) • Control logic is simple for three independent  axes but can get complicated with redundancy • Static and dynamic imbalances can produce  vibrations (attitude jitter) vibrations (attitude jitter) • Typical torque is 0.1 − 1 Nm Prof. Dr.‐Ing. Bernd Dachwald Spacecraft Attitude Determination and Control FH Aachen / Winter 2009/10 / v1.0      15
  • 16. Attitude Control System Design Basic Concept of Feedback Control • Satellite attitude is measured and compared with a desired value  ⇒ Attitude error • Attitude error is used to determine corrective torque to be  applied by onboard actuators ⇒ New attitude • C l Cycle continues indefinitely because ti i d fi it l b – disturbance torques occur – attitude measurement is imperfect attitude measurement is imperfect – attitude correction is imperfect  Prof. Dr.‐Ing. Bernd Dachwald Spacecraft Attitude Determination and Control FH Aachen / Winter 2009/10 / v1.0      16
  • 17. References References [Ro08] Lucy Rogers: It’s ONLY Rocket Science. An Introduction in Plain English. Springer, 2008 [Sw08] Graham Swinerd: How Spacecraft Fly. Spaceflight Without Formulae. Springer, 2008 Springer 2008 [Se05] Jerry Jon Sellers: Understanding Space. An Introduction to Astronautics. Third Edition. McGraw‐Hill, 2005 [Gr04] Michael D. Griffin, James D. French:  Space Vehicle Design. p g Second Edition. AIAA Education Series, 2004 Prof. Dr.‐Ing. Bernd Dachwald Spacecraft Attitude Determination and Control FH Aachen / Winter 2009/10 / v1.0      17