SlideShare une entreprise Scribd logo
1  sur  19
MANUFACTURING SYSTEMS
- Abilash.S
JH - 2
Manufacturing is the process of converting raw materials, components, or parts into finished goods that
meet a customers expectations or specifications. It commonly employs a man-machine setup with division
of labor in a large scale production.
What is Manufacturing?
History & Development :
• During early times manufacturing was usually carried out by a single skilled artisan with assistants.
Training was by apprenticeship.
• Before the Industrial Revolution, most manufacturing occurred in rural areas, where household-based
manufacturing served as a supplemental subsistence strategy to agriculture. Entrepreneurs organized a
number of manufacturing households into a single enterprise through the Putting-out system (In putting-out,
work is contracted by a central agent to subcontractors who complete the work in off-site facilities, either in
their own homes or in workshops with multiple craftsmen).
The Industrial Revolution:
The Industrial Revolution was the transition to new manufacturing processes in the period from about 1760 -1840.
The transition includes hand production methods to Machines, new chemical manufacturing and iron production
processes, the increasing use of steam power and the development of machine tools and change over from usage of
wood and other bio fuels to Coal.
The Major Technological Developments:
The Major technological developments during the industrial revolution took place in the sectors of :
•Textile Manufacturing
•Metallurgy
•Mining
•Steam Power
•Chemicals
•Machine Tools
•Glass making
•Paper machine &
•Agriculture
Manufacturing Cycle
•Clint Order – The phase where the requirement is
placed by the customer to the supplier.
•Design – Road map or a strategic approach to achieve
the unique expectations by defining the various
parameters such as Specification, plan, Cost,
processes, Safety etc.,.
•Fabricate – The process in which all the ideas that
have been designed are put into practical implication
and fabricated.
•Test – The fabricated final product needs to be tested
to ensure it works properly and that they perform as
designed.
• Warehousing – The finished goods is finally packed
and stocked at a warehouse before being dispatched
• Distribute – The Finished goods needs to be shipped
to the customer through dispatching.
TESTING
Manufacturing Methods
Manufacturing methods can be classified into the below categories,
• Mass Production
• Discreet Manufacturing.
 Continuous Production – High Volume / Low complexity
 Batch production / Assemble to order manufacturing – Low volume / High Complexity
• Process Manufacturing.
 Continuous production
• Repetitive Manufacturing.
 Batch Production
 Continuous production
• Assemble to order Manufacturing.
• Job Production or One off Production .
Manufacturing Methods Production Techniques
Manufacturing Methods are the various ways of producing
finished goods depending on the intensity of market demand
& customer requirement.
Production Techniques are the methods used in
manufacturing process to produce finished goods
depending on the type of manufacturing
Difference Between
Discrete Manufacturing
• Discrete manufacturing is the process of producing distinct items. Automobiles, Furniture's, Toys,
Mobiles & Aircraft manufacturing sectors are good examples of discrete manufacturing.
• The resulting products are easily identifiable and differ greatly from process-manufacturing where the
products are undifferentiated for example oil, natural gas and salt.
• This kind of manufacturing is often characterized by
individual or separate unit production.
• Units can be produced in low volume with very
high complexity or high volumes of low complexity.
Low volume/high complexity
Low volume/high complexity production results in the
need for an extremely flexible manufacturing system that
can improve quality and time-to-market speed while
cutting costs.
Low volume/high complexity
High volume/low complexity
High volume/low complexity production puts high
premiums on inventory control, lead times and reducing
or limiting materials costs and waste.
The processes deployed in discrete manufacturing
are not continuous in nature. Each process can be
individually started or stopped and can be run at
varying production rates. The final product may be
produced out of single or multiple inputs.
High volume/low complexity
Producing a STEEL structure will need only one type of raw material - steel. Producing a mobile phone requires
many different inputs, The plastic case, LCD display, the mother board, PVC keypad, sockets, cables are made
from different materials, at different places.
Process Manufacturing
Process manufacturing is the branch of manufacturing that is associated with formulas and manufacturing
recipes, and can be contrasted with Discrete Manufacturing, which is concerned with bills of material and routing.
Process manufacturing like production of paper or petroleum refining, where the end product is obtained by a
continuous process or a set of continuous processes.
Simpler definition of Process manufacturing is once
an output is produced by this process, it cannot be
distilled back to its basic components.
For instance consider a can of soda cannot be returned to
its basic components such as carbonated water, citric
acid, Potassium benzoate, aspartame and other
ingredients. A plastic card manufactured cannot be
returned to its basic components like PVR sheets,
transparent sheets.
Where as a car or computer, on the other hand, can be
disassembled and its components, to a large extent can be
returned to stock.
Difference Between
Discrete Manufacturing process manufacturing
It is the process of producing distinctive items through group
or batch production
The end product is obtained by continuous process or a
series of continuous processes
Discrete manufacturing process allows for temporary
stoppage of work in one area without affecting the entire unit
continuous process manufacturing requires that entire
production process be stopped.
In discrete manufacturing the manufactured component can
be dissembled to a large extant and returned to stock.
Where as in process manufacturing once when the output is
produced it cant be distilled back to its basic component or
condition.
Examples of Discrete manufacturing are Automobile,
Mobile, etc.,
Examples of Process manufacturing are Oil, Natural gas,
Beverage, pharmaceuticals etc.,
Batch methods can result in the build up of significant
“work in progress” or stocks (i.e. completed batches waiting
for their turn to be worked on in the next operation). This
increases costs as it takes up space and raises the chance of
damage to stock.
The main disadvantage is that with so much machinery it is
very difficult to alter the production process. This makes
production inflexible and means that all products have to be
very similar or standardised and cannot be tailored to
individual tastes.
Repetitive Manufacturing
Repetitive manufacturing is period based planning and not based on orders. Normally same products will be manufactured
over longer periods of time. Products will not change frequently. A total quantity is produced according to a certain
production rate over a certain period of time. Costs are collected periodically at a product cost collector.
It involves a steady flow and simplified routing through production lines. The routing of the individual products are very
similar, and also the components are often staged at the production lines without reference to a particular order. The
confirmations (back flushes) are usually executed periodically with no reference to an order (for example, all the quantities
produced in one shift).
Back flushing in Repetitive Manufacturing is used to record the
work progress on the production line in the system.
Back Flushing
For this purpose, a final back flush is usually carried out at the end of the production line
whereby the following processes can be carried out separately:
• Posting goods receipts for finished parts
• Posting goods issues for components
• Reducing planned orders or production quantities
• Posting production costs to the product cost collector
• Updating statistics in the Logistics Information System (LIS).
• such as, the goods receipt statistics or the statistics on material consumption, for example.
Difference Between
Discrete Manufacturing Repetitive Manufacturing
Order-based production (Production in individual production orders Period-based production (Production with certain quantities per
period)
Products change frequently Products produced remain unchanged over a long periods of time
Varying sequence of work centers (complex routing) Steady flow through production (simplified routing)
Semi finished products often put into interim storage Semi finished products often directly processed without interim
storage
Components are staged with reference to order Components are staged at lines periodically and anonymously
Status processing Reduced control effort (no status procedures)
Completion confirmation (Back flush) for individual operations or
orders.
The confirmations (back flushes) are usually executed periodically
with no reference to an order
Order based cost controlling Period based cost controlling
Back flushing ?
Back-flushing means deduction( reducing) of required quantity from Inventory on hand quantity.
In case of push supply type you have to deliver materials to shop floor and deduct quantity yourself .In case of pull system
back-flushing you have to delivery materials to shop floor and need not deduct quantity yourself but system automatically
deducts quantity from sub-inventory-locator on hand quantity when any assembly or an operation is completed in WIP
module manufacturing process.
Once any assembly is completed in WIP, please go to inventory
module and check the sub inventory and locator quantity for the
item for which assembly is completed. You will observe that on
hand quantity has reduced .
Example : If total was 100 numbers and 10 numbers are pulled,
by WIP assembly or operation pull, balance will be 90 numbers
in the sub inventory which will be updated by system when the
assembled component moves on to next stage automatically.
Assemble to Order Manufacturing
Assemble to Order is a production approach where products are not built until a confirmed order for products is received.
It is one of the oldest styles of manufacturing and is the most appropriate approach used for highly customized or low
volume products.
A customized YATCH made on the basis of Assemble to Order
This approach is considered good for highly
configured products, e.g. Automobiles, Air-crafts,
Computer servers or for products where holding
inventories is very expensive, e.g. Shipbuilding
(YATCH Manufacturing), and is a demand driven
production approach where a product is scheduled
and built in response to a confirmed order received
for it from a final customer.
The main advantages of the BTO approach in
environments of high product variety is the ability
to supply the customer with the exact product
specification required, the reduction in sales
discounts and finished good inventory, as well a
reduction in stock obsolescence risk.
Types of Production
Continuous
production. Batch Production.
Job Or One off
production
Continuous production is a flow production method used to manufacture, produce, or process materials without
interruption. Continuous production is called a continuous process or a continuous flow process because the
materials, either dry bulk or fluids that are being processed are continuously in motion, undergoing chemical
reactions or subject to mechanical or heat treatment.
Continuous Production
Continuous usually means operating 24 hours per day, seven days per week with infrequent maintenance shutdowns, such as
semi-annual or annual. Some chemical plants can operate for more than one or two years without a shutdown. Blast furnaces
can run eight to ten years without stopping.
Some common continuous processes are the following:
• Oil refining.
• Chemicals.
• Synthetic Fibres.
• Fertilizers.
• Pulp & Paper.
• Blast Furnace (iron).
• Metal smelting.
• Power Stations.
• Natural gas processing
Batch Production
Batch production is a technique used in manufacturing, in which the object in question is created stage by stage over a
series of workstations.
Batch production is most common in bakeries and in the manufacture of sports shoes, pharmaceutical ingredients, purifying
water (APIs), inks, paints and adhesives.
It can reduce initial capital outlay (the cost of setting up the
machines) because a single production line can be used to
produce several products. As shown in the example, batch
production can be useful for small businesses who cannot afford
to run continuous production lines. If a retailer buys a batch of a
product that does not sell, then the producer can cease
production without having to sustain huge losses. Batch
production is also useful for a factory that makes seasonal
items, products for which it is difficult to forecast demand, a
trial run for production, or products that have a high profit
margin.
Job Production or One off Production
Job production, sometimes called jobbing or one-off production, involves producing custom work, such as a one-off
product for a specific customer or a small batch of work in quantities usually less than those of mass-market products.
Job production is most often associated with classical Craft production, small firms (making railings for a specific house,
building/repairing a computer for a specific customer, making flower arrangements for a specific wedding etc.) but large
firms use job production too. Examples include:
• Construction of bridges
• Building a new factory
• Designing and implementing an advertising campaign
• Auditing the accounts of a large Public limited company
• Installing machinery in a factory
• Machining a batch of parts per a CAD drawing supplied by a
customer
Fabrication Shops and machine shops whose work is primarily
of the job production type are often called job shops
Key benefits
• Can provide emergency parts or services, such as quickly making a machine part that would take a long time to
acquire otherwise.
• Can provide parts or services for machinery or systems that are otherwise not available, as when the original
supplier no longer supports the product or goes out of business (orphaned).
• Work is generally of a high quality.
• A high level of customisation is possible to meet the customer's exact requirements.
• Significant flexibility is possible, especially when compared to mass production workers can be easily motivated
due to the skilled nature of the work they are performing
Disadvantages
• Higher cost of production.
• Re-engineering: sometimes engineering drawings or an engineering assessment, including calculations or
specifications, needs to be made before the work can be done.
• Requires the use of specialist labour (compare with the repetitive, low-skilled jobs in mass production)
• slow compared to other methods (batch production and mass production)
Thank you

Contenu connexe

Tendances

Just In Time (JIT)
Just In Time (JIT)Just In Time (JIT)
Just In Time (JIT)Manoj Subedi
 
Production Planning and Control
Production Planning and ControlProduction Planning and Control
Production Planning and ControlNishant Agrawal
 
different techniques to productivity improvement
different techniques to productivity improvementdifferent techniques to productivity improvement
different techniques to productivity improvementHemant Patil
 
Methods of Production : Job, Batch & Mass Productiion
Methods of Production : Job, Batch & Mass ProductiionMethods of Production : Job, Batch & Mass Productiion
Methods of Production : Job, Batch & Mass ProductiionHarinadh Karimikonda
 
Product:- Design, Objectives, Importance, Product Life Cycle.
Product:- Design, Objectives, Importance, Product Life Cycle.Product:- Design, Objectives, Importance, Product Life Cycle.
Product:- Design, Objectives, Importance, Product Life Cycle.Sagar Ajagaonkar
 
SMED Setup & Lead Time Reduction
SMED Setup & Lead Time ReductionSMED Setup & Lead Time Reduction
SMED Setup & Lead Time ReductionAnand Subramaniam
 
Introduction to production planning and control
Introduction to production planning and controlIntroduction to production planning and control
Introduction to production planning and controlMohanKirthik
 
Process flow and process chart
Process flow and process chartProcess flow and process chart
Process flow and process chartParvesh Mittal
 
Production planning & control(ppc)
Production planning & control(ppc)Production planning & control(ppc)
Production planning & control(ppc)Abu Bashar
 
Forward scheduling vs. backward scheduling in production planning
Forward scheduling vs. backward scheduling in production planningForward scheduling vs. backward scheduling in production planning
Forward scheduling vs. backward scheduling in production planningMRPeasy
 
SMED - Quick Change Over
SMED - Quick Change OverSMED - Quick Change Over
SMED - Quick Change OverOskar Olofsson
 
Manufacturing+process+selection+and+design.ppt
Manufacturing+process+selection+and+design.pptManufacturing+process+selection+and+design.ppt
Manufacturing+process+selection+and+design.pptvideoaakash15
 

Tendances (20)

Lean production
Lean production Lean production
Lean production
 
Just In Time (JIT)
Just In Time (JIT)Just In Time (JIT)
Just In Time (JIT)
 
Just In Time (JIT)
Just In Time (JIT)Just In Time (JIT)
Just In Time (JIT)
 
value added manufacturing
value added manufacturing value added manufacturing
value added manufacturing
 
Kanban system presentation
Kanban system presentationKanban system presentation
Kanban system presentation
 
Production Planning and Control
Production Planning and ControlProduction Planning and Control
Production Planning and Control
 
different techniques to productivity improvement
different techniques to productivity improvementdifferent techniques to productivity improvement
different techniques to productivity improvement
 
Methods of Production : Job, Batch & Mass Productiion
Methods of Production : Job, Batch & Mass ProductiionMethods of Production : Job, Batch & Mass Productiion
Methods of Production : Job, Batch & Mass Productiion
 
Kanban system
Kanban systemKanban system
Kanban system
 
Product:- Design, Objectives, Importance, Product Life Cycle.
Product:- Design, Objectives, Importance, Product Life Cycle.Product:- Design, Objectives, Importance, Product Life Cycle.
Product:- Design, Objectives, Importance, Product Life Cycle.
 
SMED Setup & Lead Time Reduction
SMED Setup & Lead Time ReductionSMED Setup & Lead Time Reduction
SMED Setup & Lead Time Reduction
 
Introduction to production planning and control
Introduction to production planning and controlIntroduction to production planning and control
Introduction to production planning and control
 
Process flow and process chart
Process flow and process chartProcess flow and process chart
Process flow and process chart
 
Time study
Time studyTime study
Time study
 
Jit
JitJit
Jit
 
Production planning & control(ppc)
Production planning & control(ppc)Production planning & control(ppc)
Production planning & control(ppc)
 
Forward scheduling vs. backward scheduling in production planning
Forward scheduling vs. backward scheduling in production planningForward scheduling vs. backward scheduling in production planning
Forward scheduling vs. backward scheduling in production planning
 
SMED - Quick Change Over
SMED - Quick Change OverSMED - Quick Change Over
SMED - Quick Change Over
 
Line balancing
Line balancingLine balancing
Line balancing
 
Manufacturing+process+selection+and+design.ppt
Manufacturing+process+selection+and+design.pptManufacturing+process+selection+and+design.ppt
Manufacturing+process+selection+and+design.ppt
 

Similaire à Manufacturing Methods / Production Techniques

Om lect 03_a(r0-aug08)_process selection_process design_mms_sies
Om lect 03_a(r0-aug08)_process selection_process design_mms_siesOm lect 03_a(r0-aug08)_process selection_process design_mms_sies
Om lect 03_a(r0-aug08)_process selection_process design_mms_siesvideoaakash15
 
BBA UNIT -1 INTRODUCTION ABOUT PRODUCTION.ppt
BBA UNIT -1 INTRODUCTION ABOUT PRODUCTION.pptBBA UNIT -1 INTRODUCTION ABOUT PRODUCTION.ppt
BBA UNIT -1 INTRODUCTION ABOUT PRODUCTION.pptChandramouli Seetharaman
 
Product and process design
Product and process designProduct and process design
Product and process designRajThakuri
 
Session 01 - Introduction to Industrial Automation
Session 01 - Introduction to Industrial AutomationSession 01 - Introduction to Industrial Automation
Session 01 - Introduction to Industrial AutomationVidyaIA
 
Introduction to Industrial Automation
Introduction to Industrial AutomationIntroduction to Industrial Automation
Introduction to Industrial AutomationPranavAutomation
 
Concept of production
Concept of productionConcept of production
Concept of productionKeshav Bhatia
 
Process selection & facility layout.pptx
Process selection & facility layout.pptxProcess selection & facility layout.pptx
Process selection & facility layout.pptxShiab Hossen Gaddafe
 
production-170629054926 (1) production system
production-170629054926 (1) production systemproduction-170629054926 (1) production system
production-170629054926 (1) production systemJayeshGadhave1
 
Planning for high volume standardised product
Planning for high volume standardised productPlanning for high volume standardised product
Planning for high volume standardised productNidhi Vats
 
1ST MODULE PRODUCTION MANAGEMENT AND OPERATION RESEARCH
1ST MODULE PRODUCTION MANAGEMENT AND OPERATION RESEARCH1ST MODULE PRODUCTION MANAGEMENT AND OPERATION RESEARCH
1ST MODULE PRODUCTION MANAGEMENT AND OPERATION RESEARCHDr. Rajesha Shivaramegowda
 
Jv 501 computer integrated manufacturing
Jv 501 computer integrated manufacturingJv 501 computer integrated manufacturing
Jv 501 computer integrated manufacturingAdib Ezio
 
Process design layout ppt bec doms
Process design layout ppt bec domsProcess design layout ppt bec doms
Process design layout ppt bec domsBabasab Patil
 
Topic 5 Product Development
Topic 5 Product DevelopmentTopic 5 Product Development
Topic 5 Product Developmentguest5dc00b
 
Production planning and control - PPC
Production planning and control - PPCProduction planning and control - PPC
Production planning and control - PPCThe Learning Hub
 
Typesofproductionprocesses 130108024851-phpapp01 (2)
Typesofproductionprocesses 130108024851-phpapp01 (2)Typesofproductionprocesses 130108024851-phpapp01 (2)
Typesofproductionprocesses 130108024851-phpapp01 (2)Pravin David
 
Coordinated Product And Supply Chain Design
Coordinated Product And Supply Chain DesignCoordinated Product And Supply Chain Design
Coordinated Product And Supply Chain Designpirama2000
 

Similaire à Manufacturing Methods / Production Techniques (20)

Om lect 03_a(r0-aug08)_process selection_process design_mms_sies
Om lect 03_a(r0-aug08)_process selection_process design_mms_siesOm lect 03_a(r0-aug08)_process selection_process design_mms_sies
Om lect 03_a(r0-aug08)_process selection_process design_mms_sies
 
BBA UNIT -1 INTRODUCTION ABOUT PRODUCTION.ppt
BBA UNIT -1 INTRODUCTION ABOUT PRODUCTION.pptBBA UNIT -1 INTRODUCTION ABOUT PRODUCTION.ppt
BBA UNIT -1 INTRODUCTION ABOUT PRODUCTION.ppt
 
Product and process design
Product and process designProduct and process design
Product and process design
 
Session 01 - Introduction to Industrial Automation
Session 01 - Introduction to Industrial AutomationSession 01 - Introduction to Industrial Automation
Session 01 - Introduction to Industrial Automation
 
Introduction to Industrial Automation
Introduction to Industrial AutomationIntroduction to Industrial Automation
Introduction to Industrial Automation
 
Concept of production
Concept of productionConcept of production
Concept of production
 
Process selection & facility layout.pptx
Process selection & facility layout.pptxProcess selection & facility layout.pptx
Process selection & facility layout.pptx
 
production-170629054926 (1) production system
production-170629054926 (1) production systemproduction-170629054926 (1) production system
production-170629054926 (1) production system
 
Production Process
Production ProcessProduction Process
Production Process
 
Dr. rajesha. pom 1st module-buc
Dr. rajesha. pom 1st module-bucDr. rajesha. pom 1st module-buc
Dr. rajesha. pom 1st module-buc
 
Planning for high volume standardised product
Planning for high volume standardised productPlanning for high volume standardised product
Planning for high volume standardised product
 
1ST MODULE PRODUCTION MANAGEMENT AND OPERATION RESEARCH
1ST MODULE PRODUCTION MANAGEMENT AND OPERATION RESEARCH1ST MODULE PRODUCTION MANAGEMENT AND OPERATION RESEARCH
1ST MODULE PRODUCTION MANAGEMENT AND OPERATION RESEARCH
 
Jv 501 computer integrated manufacturing
Jv 501 computer integrated manufacturingJv 501 computer integrated manufacturing
Jv 501 computer integrated manufacturing
 
Process design layout ppt bec doms
Process design layout ppt bec domsProcess design layout ppt bec doms
Process design layout ppt bec doms
 
Topic 5 Product Development
Topic 5 Product DevelopmentTopic 5 Product Development
Topic 5 Product Development
 
Production planning and control - PPC
Production planning and control - PPCProduction planning and control - PPC
Production planning and control - PPC
 
Chapter 1 pom
Chapter 1 pomChapter 1 pom
Chapter 1 pom
 
Typesofproductionprocesses 130108024851-phpapp01 (2)
Typesofproductionprocesses 130108024851-phpapp01 (2)Typesofproductionprocesses 130108024851-phpapp01 (2)
Typesofproductionprocesses 130108024851-phpapp01 (2)
 
plant layout
plant layoutplant layout
plant layout
 
Coordinated Product And Supply Chain Design
Coordinated Product And Supply Chain DesignCoordinated Product And Supply Chain Design
Coordinated Product And Supply Chain Design
 

Dernier

8447779800, Low rate Call girls in Shivaji Enclave Delhi NCR
8447779800, Low rate Call girls in Shivaji Enclave Delhi NCR8447779800, Low rate Call girls in Shivaji Enclave Delhi NCR
8447779800, Low rate Call girls in Shivaji Enclave Delhi NCRashishs7044
 
Intro to BCG's Carbon Emissions Benchmark_vF.pdf
Intro to BCG's Carbon Emissions Benchmark_vF.pdfIntro to BCG's Carbon Emissions Benchmark_vF.pdf
Intro to BCG's Carbon Emissions Benchmark_vF.pdfpollardmorgan
 
IoT Insurance Observatory: summary 2024
IoT Insurance Observatory:  summary 2024IoT Insurance Observatory:  summary 2024
IoT Insurance Observatory: summary 2024Matteo Carbone
 
MAHA Global and IPR: Do Actions Speak Louder Than Words?
MAHA Global and IPR: Do Actions Speak Louder Than Words?MAHA Global and IPR: Do Actions Speak Louder Than Words?
MAHA Global and IPR: Do Actions Speak Louder Than Words?Olivia Kresic
 
Youth Involvement in an Innovative Coconut Value Chain by Mwalimu Menza
Youth Involvement in an Innovative Coconut Value Chain by Mwalimu MenzaYouth Involvement in an Innovative Coconut Value Chain by Mwalimu Menza
Youth Involvement in an Innovative Coconut Value Chain by Mwalimu Menzaictsugar
 
Flow Your Strategy at Flight Levels Day 2024
Flow Your Strategy at Flight Levels Day 2024Flow Your Strategy at Flight Levels Day 2024
Flow Your Strategy at Flight Levels Day 2024Kirill Klimov
 
Ten Organizational Design Models to align structure and operations to busines...
Ten Organizational Design Models to align structure and operations to busines...Ten Organizational Design Models to align structure and operations to busines...
Ten Organizational Design Models to align structure and operations to busines...Seta Wicaksana
 
Digital Transformation in the PLM domain - distrib.pdf
Digital Transformation in the PLM domain - distrib.pdfDigital Transformation in the PLM domain - distrib.pdf
Digital Transformation in the PLM domain - distrib.pdfJos Voskuil
 
NewBase 19 April 2024 Energy News issue - 1717 by Khaled Al Awadi.pdf
NewBase  19 April  2024  Energy News issue - 1717 by Khaled Al Awadi.pdfNewBase  19 April  2024  Energy News issue - 1717 by Khaled Al Awadi.pdf
NewBase 19 April 2024 Energy News issue - 1717 by Khaled Al Awadi.pdfKhaled Al Awadi
 
8447779800, Low rate Call girls in Uttam Nagar Delhi NCR
8447779800, Low rate Call girls in Uttam Nagar Delhi NCR8447779800, Low rate Call girls in Uttam Nagar Delhi NCR
8447779800, Low rate Call girls in Uttam Nagar Delhi NCRashishs7044
 
8447779800, Low rate Call girls in Kotla Mubarakpur Delhi NCR
8447779800, Low rate Call girls in Kotla Mubarakpur Delhi NCR8447779800, Low rate Call girls in Kotla Mubarakpur Delhi NCR
8447779800, Low rate Call girls in Kotla Mubarakpur Delhi NCRashishs7044
 
Future Of Sample Report 2024 | Redacted Version
Future Of Sample Report 2024 | Redacted VersionFuture Of Sample Report 2024 | Redacted Version
Future Of Sample Report 2024 | Redacted VersionMintel Group
 
Contemporary Economic Issues Facing the Filipino Entrepreneur (1).pptx
Contemporary Economic Issues Facing the Filipino Entrepreneur (1).pptxContemporary Economic Issues Facing the Filipino Entrepreneur (1).pptx
Contemporary Economic Issues Facing the Filipino Entrepreneur (1).pptxMarkAnthonyAurellano
 
Annual General Meeting Presentation Slides
Annual General Meeting Presentation SlidesAnnual General Meeting Presentation Slides
Annual General Meeting Presentation SlidesKeppelCorporation
 
2024 Numerator Consumer Study of Cannabis Usage
2024 Numerator Consumer Study of Cannabis Usage2024 Numerator Consumer Study of Cannabis Usage
2024 Numerator Consumer Study of Cannabis UsageNeil Kimberley
 
APRIL2024_UKRAINE_xml_0000000000000 .pdf
APRIL2024_UKRAINE_xml_0000000000000 .pdfAPRIL2024_UKRAINE_xml_0000000000000 .pdf
APRIL2024_UKRAINE_xml_0000000000000 .pdfRbc Rbcua
 
Marketplace and Quality Assurance Presentation - Vincent Chirchir
Marketplace and Quality Assurance Presentation - Vincent ChirchirMarketplace and Quality Assurance Presentation - Vincent Chirchir
Marketplace and Quality Assurance Presentation - Vincent Chirchirictsugar
 
Kenya’s Coconut Value Chain by Gatsby Africa
Kenya’s Coconut Value Chain by Gatsby AfricaKenya’s Coconut Value Chain by Gatsby Africa
Kenya’s Coconut Value Chain by Gatsby Africaictsugar
 

Dernier (20)

8447779800, Low rate Call girls in Shivaji Enclave Delhi NCR
8447779800, Low rate Call girls in Shivaji Enclave Delhi NCR8447779800, Low rate Call girls in Shivaji Enclave Delhi NCR
8447779800, Low rate Call girls in Shivaji Enclave Delhi NCR
 
Intro to BCG's Carbon Emissions Benchmark_vF.pdf
Intro to BCG's Carbon Emissions Benchmark_vF.pdfIntro to BCG's Carbon Emissions Benchmark_vF.pdf
Intro to BCG's Carbon Emissions Benchmark_vF.pdf
 
IoT Insurance Observatory: summary 2024
IoT Insurance Observatory:  summary 2024IoT Insurance Observatory:  summary 2024
IoT Insurance Observatory: summary 2024
 
MAHA Global and IPR: Do Actions Speak Louder Than Words?
MAHA Global and IPR: Do Actions Speak Louder Than Words?MAHA Global and IPR: Do Actions Speak Louder Than Words?
MAHA Global and IPR: Do Actions Speak Louder Than Words?
 
Youth Involvement in an Innovative Coconut Value Chain by Mwalimu Menza
Youth Involvement in an Innovative Coconut Value Chain by Mwalimu MenzaYouth Involvement in an Innovative Coconut Value Chain by Mwalimu Menza
Youth Involvement in an Innovative Coconut Value Chain by Mwalimu Menza
 
Flow Your Strategy at Flight Levels Day 2024
Flow Your Strategy at Flight Levels Day 2024Flow Your Strategy at Flight Levels Day 2024
Flow Your Strategy at Flight Levels Day 2024
 
Ten Organizational Design Models to align structure and operations to busines...
Ten Organizational Design Models to align structure and operations to busines...Ten Organizational Design Models to align structure and operations to busines...
Ten Organizational Design Models to align structure and operations to busines...
 
Digital Transformation in the PLM domain - distrib.pdf
Digital Transformation in the PLM domain - distrib.pdfDigital Transformation in the PLM domain - distrib.pdf
Digital Transformation in the PLM domain - distrib.pdf
 
No-1 Call Girls In Goa 93193 VIP 73153 Escort service In North Goa Panaji, Ca...
No-1 Call Girls In Goa 93193 VIP 73153 Escort service In North Goa Panaji, Ca...No-1 Call Girls In Goa 93193 VIP 73153 Escort service In North Goa Panaji, Ca...
No-1 Call Girls In Goa 93193 VIP 73153 Escort service In North Goa Panaji, Ca...
 
NewBase 19 April 2024 Energy News issue - 1717 by Khaled Al Awadi.pdf
NewBase  19 April  2024  Energy News issue - 1717 by Khaled Al Awadi.pdfNewBase  19 April  2024  Energy News issue - 1717 by Khaled Al Awadi.pdf
NewBase 19 April 2024 Energy News issue - 1717 by Khaled Al Awadi.pdf
 
8447779800, Low rate Call girls in Uttam Nagar Delhi NCR
8447779800, Low rate Call girls in Uttam Nagar Delhi NCR8447779800, Low rate Call girls in Uttam Nagar Delhi NCR
8447779800, Low rate Call girls in Uttam Nagar Delhi NCR
 
8447779800, Low rate Call girls in Kotla Mubarakpur Delhi NCR
8447779800, Low rate Call girls in Kotla Mubarakpur Delhi NCR8447779800, Low rate Call girls in Kotla Mubarakpur Delhi NCR
8447779800, Low rate Call girls in Kotla Mubarakpur Delhi NCR
 
Future Of Sample Report 2024 | Redacted Version
Future Of Sample Report 2024 | Redacted VersionFuture Of Sample Report 2024 | Redacted Version
Future Of Sample Report 2024 | Redacted Version
 
Contemporary Economic Issues Facing the Filipino Entrepreneur (1).pptx
Contemporary Economic Issues Facing the Filipino Entrepreneur (1).pptxContemporary Economic Issues Facing the Filipino Entrepreneur (1).pptx
Contemporary Economic Issues Facing the Filipino Entrepreneur (1).pptx
 
Annual General Meeting Presentation Slides
Annual General Meeting Presentation SlidesAnnual General Meeting Presentation Slides
Annual General Meeting Presentation Slides
 
2024 Numerator Consumer Study of Cannabis Usage
2024 Numerator Consumer Study of Cannabis Usage2024 Numerator Consumer Study of Cannabis Usage
2024 Numerator Consumer Study of Cannabis Usage
 
Enjoy ➥8448380779▻ Call Girls In Sector 18 Noida Escorts Delhi NCR
Enjoy ➥8448380779▻ Call Girls In Sector 18 Noida Escorts Delhi NCREnjoy ➥8448380779▻ Call Girls In Sector 18 Noida Escorts Delhi NCR
Enjoy ➥8448380779▻ Call Girls In Sector 18 Noida Escorts Delhi NCR
 
APRIL2024_UKRAINE_xml_0000000000000 .pdf
APRIL2024_UKRAINE_xml_0000000000000 .pdfAPRIL2024_UKRAINE_xml_0000000000000 .pdf
APRIL2024_UKRAINE_xml_0000000000000 .pdf
 
Marketplace and Quality Assurance Presentation - Vincent Chirchir
Marketplace and Quality Assurance Presentation - Vincent ChirchirMarketplace and Quality Assurance Presentation - Vincent Chirchir
Marketplace and Quality Assurance Presentation - Vincent Chirchir
 
Kenya’s Coconut Value Chain by Gatsby Africa
Kenya’s Coconut Value Chain by Gatsby AfricaKenya’s Coconut Value Chain by Gatsby Africa
Kenya’s Coconut Value Chain by Gatsby Africa
 

Manufacturing Methods / Production Techniques

  • 2. JH - 2 Manufacturing is the process of converting raw materials, components, or parts into finished goods that meet a customers expectations or specifications. It commonly employs a man-machine setup with division of labor in a large scale production. What is Manufacturing? History & Development : • During early times manufacturing was usually carried out by a single skilled artisan with assistants. Training was by apprenticeship. • Before the Industrial Revolution, most manufacturing occurred in rural areas, where household-based manufacturing served as a supplemental subsistence strategy to agriculture. Entrepreneurs organized a number of manufacturing households into a single enterprise through the Putting-out system (In putting-out, work is contracted by a central agent to subcontractors who complete the work in off-site facilities, either in their own homes or in workshops with multiple craftsmen).
  • 3. The Industrial Revolution: The Industrial Revolution was the transition to new manufacturing processes in the period from about 1760 -1840. The transition includes hand production methods to Machines, new chemical manufacturing and iron production processes, the increasing use of steam power and the development of machine tools and change over from usage of wood and other bio fuels to Coal. The Major Technological Developments: The Major technological developments during the industrial revolution took place in the sectors of : •Textile Manufacturing •Metallurgy •Mining •Steam Power •Chemicals •Machine Tools •Glass making •Paper machine & •Agriculture
  • 4. Manufacturing Cycle •Clint Order – The phase where the requirement is placed by the customer to the supplier. •Design – Road map or a strategic approach to achieve the unique expectations by defining the various parameters such as Specification, plan, Cost, processes, Safety etc.,. •Fabricate – The process in which all the ideas that have been designed are put into practical implication and fabricated. •Test – The fabricated final product needs to be tested to ensure it works properly and that they perform as designed. • Warehousing – The finished goods is finally packed and stocked at a warehouse before being dispatched • Distribute – The Finished goods needs to be shipped to the customer through dispatching. TESTING
  • 5. Manufacturing Methods Manufacturing methods can be classified into the below categories, • Mass Production • Discreet Manufacturing.  Continuous Production – High Volume / Low complexity  Batch production / Assemble to order manufacturing – Low volume / High Complexity • Process Manufacturing.  Continuous production • Repetitive Manufacturing.  Batch Production  Continuous production • Assemble to order Manufacturing. • Job Production or One off Production . Manufacturing Methods Production Techniques Manufacturing Methods are the various ways of producing finished goods depending on the intensity of market demand & customer requirement. Production Techniques are the methods used in manufacturing process to produce finished goods depending on the type of manufacturing Difference Between
  • 6. Discrete Manufacturing • Discrete manufacturing is the process of producing distinct items. Automobiles, Furniture's, Toys, Mobiles & Aircraft manufacturing sectors are good examples of discrete manufacturing. • The resulting products are easily identifiable and differ greatly from process-manufacturing where the products are undifferentiated for example oil, natural gas and salt. • This kind of manufacturing is often characterized by individual or separate unit production. • Units can be produced in low volume with very high complexity or high volumes of low complexity. Low volume/high complexity Low volume/high complexity production results in the need for an extremely flexible manufacturing system that can improve quality and time-to-market speed while cutting costs. Low volume/high complexity
  • 7. High volume/low complexity High volume/low complexity production puts high premiums on inventory control, lead times and reducing or limiting materials costs and waste. The processes deployed in discrete manufacturing are not continuous in nature. Each process can be individually started or stopped and can be run at varying production rates. The final product may be produced out of single or multiple inputs. High volume/low complexity Producing a STEEL structure will need only one type of raw material - steel. Producing a mobile phone requires many different inputs, The plastic case, LCD display, the mother board, PVC keypad, sockets, cables are made from different materials, at different places.
  • 8. Process Manufacturing Process manufacturing is the branch of manufacturing that is associated with formulas and manufacturing recipes, and can be contrasted with Discrete Manufacturing, which is concerned with bills of material and routing. Process manufacturing like production of paper or petroleum refining, where the end product is obtained by a continuous process or a set of continuous processes. Simpler definition of Process manufacturing is once an output is produced by this process, it cannot be distilled back to its basic components. For instance consider a can of soda cannot be returned to its basic components such as carbonated water, citric acid, Potassium benzoate, aspartame and other ingredients. A plastic card manufactured cannot be returned to its basic components like PVR sheets, transparent sheets. Where as a car or computer, on the other hand, can be disassembled and its components, to a large extent can be returned to stock.
  • 9. Difference Between Discrete Manufacturing process manufacturing It is the process of producing distinctive items through group or batch production The end product is obtained by continuous process or a series of continuous processes Discrete manufacturing process allows for temporary stoppage of work in one area without affecting the entire unit continuous process manufacturing requires that entire production process be stopped. In discrete manufacturing the manufactured component can be dissembled to a large extant and returned to stock. Where as in process manufacturing once when the output is produced it cant be distilled back to its basic component or condition. Examples of Discrete manufacturing are Automobile, Mobile, etc., Examples of Process manufacturing are Oil, Natural gas, Beverage, pharmaceuticals etc., Batch methods can result in the build up of significant “work in progress” or stocks (i.e. completed batches waiting for their turn to be worked on in the next operation). This increases costs as it takes up space and raises the chance of damage to stock. The main disadvantage is that with so much machinery it is very difficult to alter the production process. This makes production inflexible and means that all products have to be very similar or standardised and cannot be tailored to individual tastes.
  • 10. Repetitive Manufacturing Repetitive manufacturing is period based planning and not based on orders. Normally same products will be manufactured over longer periods of time. Products will not change frequently. A total quantity is produced according to a certain production rate over a certain period of time. Costs are collected periodically at a product cost collector. It involves a steady flow and simplified routing through production lines. The routing of the individual products are very similar, and also the components are often staged at the production lines without reference to a particular order. The confirmations (back flushes) are usually executed periodically with no reference to an order (for example, all the quantities produced in one shift). Back flushing in Repetitive Manufacturing is used to record the work progress on the production line in the system. Back Flushing For this purpose, a final back flush is usually carried out at the end of the production line whereby the following processes can be carried out separately: • Posting goods receipts for finished parts • Posting goods issues for components • Reducing planned orders or production quantities • Posting production costs to the product cost collector • Updating statistics in the Logistics Information System (LIS). • such as, the goods receipt statistics or the statistics on material consumption, for example.
  • 11. Difference Between Discrete Manufacturing Repetitive Manufacturing Order-based production (Production in individual production orders Period-based production (Production with certain quantities per period) Products change frequently Products produced remain unchanged over a long periods of time Varying sequence of work centers (complex routing) Steady flow through production (simplified routing) Semi finished products often put into interim storage Semi finished products often directly processed without interim storage Components are staged with reference to order Components are staged at lines periodically and anonymously Status processing Reduced control effort (no status procedures) Completion confirmation (Back flush) for individual operations or orders. The confirmations (back flushes) are usually executed periodically with no reference to an order Order based cost controlling Period based cost controlling
  • 12. Back flushing ? Back-flushing means deduction( reducing) of required quantity from Inventory on hand quantity. In case of push supply type you have to deliver materials to shop floor and deduct quantity yourself .In case of pull system back-flushing you have to delivery materials to shop floor and need not deduct quantity yourself but system automatically deducts quantity from sub-inventory-locator on hand quantity when any assembly or an operation is completed in WIP module manufacturing process. Once any assembly is completed in WIP, please go to inventory module and check the sub inventory and locator quantity for the item for which assembly is completed. You will observe that on hand quantity has reduced . Example : If total was 100 numbers and 10 numbers are pulled, by WIP assembly or operation pull, balance will be 90 numbers in the sub inventory which will be updated by system when the assembled component moves on to next stage automatically.
  • 13. Assemble to Order Manufacturing Assemble to Order is a production approach where products are not built until a confirmed order for products is received. It is one of the oldest styles of manufacturing and is the most appropriate approach used for highly customized or low volume products. A customized YATCH made on the basis of Assemble to Order This approach is considered good for highly configured products, e.g. Automobiles, Air-crafts, Computer servers or for products where holding inventories is very expensive, e.g. Shipbuilding (YATCH Manufacturing), and is a demand driven production approach where a product is scheduled and built in response to a confirmed order received for it from a final customer. The main advantages of the BTO approach in environments of high product variety is the ability to supply the customer with the exact product specification required, the reduction in sales discounts and finished good inventory, as well a reduction in stock obsolescence risk.
  • 14. Types of Production Continuous production. Batch Production. Job Or One off production
  • 15. Continuous production is a flow production method used to manufacture, produce, or process materials without interruption. Continuous production is called a continuous process or a continuous flow process because the materials, either dry bulk or fluids that are being processed are continuously in motion, undergoing chemical reactions or subject to mechanical or heat treatment. Continuous Production Continuous usually means operating 24 hours per day, seven days per week with infrequent maintenance shutdowns, such as semi-annual or annual. Some chemical plants can operate for more than one or two years without a shutdown. Blast furnaces can run eight to ten years without stopping. Some common continuous processes are the following: • Oil refining. • Chemicals. • Synthetic Fibres. • Fertilizers. • Pulp & Paper. • Blast Furnace (iron). • Metal smelting. • Power Stations. • Natural gas processing
  • 16. Batch Production Batch production is a technique used in manufacturing, in which the object in question is created stage by stage over a series of workstations. Batch production is most common in bakeries and in the manufacture of sports shoes, pharmaceutical ingredients, purifying water (APIs), inks, paints and adhesives. It can reduce initial capital outlay (the cost of setting up the machines) because a single production line can be used to produce several products. As shown in the example, batch production can be useful for small businesses who cannot afford to run continuous production lines. If a retailer buys a batch of a product that does not sell, then the producer can cease production without having to sustain huge losses. Batch production is also useful for a factory that makes seasonal items, products for which it is difficult to forecast demand, a trial run for production, or products that have a high profit margin.
  • 17. Job Production or One off Production Job production, sometimes called jobbing or one-off production, involves producing custom work, such as a one-off product for a specific customer or a small batch of work in quantities usually less than those of mass-market products. Job production is most often associated with classical Craft production, small firms (making railings for a specific house, building/repairing a computer for a specific customer, making flower arrangements for a specific wedding etc.) but large firms use job production too. Examples include: • Construction of bridges • Building a new factory • Designing and implementing an advertising campaign • Auditing the accounts of a large Public limited company • Installing machinery in a factory • Machining a batch of parts per a CAD drawing supplied by a customer Fabrication Shops and machine shops whose work is primarily of the job production type are often called job shops
  • 18. Key benefits • Can provide emergency parts or services, such as quickly making a machine part that would take a long time to acquire otherwise. • Can provide parts or services for machinery or systems that are otherwise not available, as when the original supplier no longer supports the product or goes out of business (orphaned). • Work is generally of a high quality. • A high level of customisation is possible to meet the customer's exact requirements. • Significant flexibility is possible, especially when compared to mass production workers can be easily motivated due to the skilled nature of the work they are performing Disadvantages • Higher cost of production. • Re-engineering: sometimes engineering drawings or an engineering assessment, including calculations or specifications, needs to be made before the work can be done. • Requires the use of specialist labour (compare with the repetitive, low-skilled jobs in mass production) • slow compared to other methods (batch production and mass production)