SlideShare une entreprise Scribd logo
1  sur  31
量子コンピュータ
Quantum Computer
2020年2月
2つの物理学
2
目に見えるモノの動きや天体など、
マクロな物体の運動を取り扱う学問
目に見えない原子や素粒子など、
ミクロな物体の運動を扱う学問
野球のボール
りんご
天体
波の動き など
素粒子
原子・分子
電子
光子 など
世界はミクロな物体(素粒子、原子、電子など)によって作られている
 マクロな物体の運動はミクロな物体の運動の近似として扱っても実用上の問題がない 古典物理学
 ミクロな物体の運動は近似では誤差が無視できず古典物理学ではうまく記述できない 量子物理学
古典物理学/古典力学 量子物理学/量子力学
Quantum Physics/Quantum MechanicsClassical Physics/Classical Mechanics
古典物理学は
量子物理学の
近似理論
<
物理学とコンピュータ
3
物理学/力学
量子物理学
(量子力学)
原子や電子
素粒子の性質など
古典物理学
(古典力学)
運動の力や作用
電磁気の性質など
近似
量子コンピュータ
(量子計算機)
量子力学の物理現象
を利用して計算
古典コンピュータ
(古典計算機)
古典力学の物理現象
を利用して計算
コンピュータ
近似
 「電圧の高低」や「スイッチのオン/オフ」
といった物理現象を利用
 実用上、近似でも問題ない場合が多く、適用
範囲が広い
 少ない計算量で解を求められる
 「粒子」や「波動」といった物理現象を利用
 量子力学の基礎方程式を計算でき、あらゆる
物理現象を近似ではなく厳密に計算できる
 計算の高速化だけではなく、物理現象の解明
や化学合成(量子化学計算)など、古典コン
ピュータではできなかった計算が可能になる
コンピューターとは何か
抽象的な”数”を物理的な動きを使って演算する道具
蒸気機関や電気の動力 電子の動きモノの動き
データ量と計算需要
の爆発的増大
ムーアの法則
の限界
量子力学によって明らかにされた
量子の動き/現象を利用して演算
微細な世界
の物理現象
量子
コンピュータ
古典物理学を
前提とした
コンピュータの限界
量子コンピュータの必要性
5
計算性能
データ量
経過年
経過年
「ムーアの法則」の終焉
データ量の爆発的増大
処理の並列化により対応
 CPUのマルチコア化
 GPGPUの活用
 スパコンの利用
データ駆動型社会への移行
 IoTの普及
 AI適用範囲の増大
 社会やビジネスのデジタル化
量子コンピュータ
 汎用型(量子ゲート方式)
 特化型(量子意ジングマシン方式)
総当たり計算でなければ解けない問題
(多項式時間で解決できない計算)
 素因数分解
 組み合わせ最適化問題
 検索問題 など
 工場の生産計画・設備計画の最適化
 レコメンデーションの最適化
 カーナビ/自動運転と連動し渋滞解消
 大規模システムのバグの発見と修復
 機械学習計算の高速化 など
科学パラダイムの変化
6
第1パラダイム
実験科学
第2パラダイム
理論科学
第4パラダイム
データ中心科学
第3パラダイム
計算科学
帰納的アプローチ
データ駆動型
演繹的アプローチ
モデル駆動型データ量/計算量
爆発的増大に対処
観察や実験により
現象を解明する
ニュートンの法則や
マックスウェルの方程式など
理論を中心に現象を解明
コンピュータを使い複雑な現象を
シュミレーションによって
予測・再現し現象を解明
大量に収集される電子データを駆使し
機械学習やデータマイニングにより
現象を解明
巡回セールスマン問題(組み合わせ最適化)
セールスマンがいくつかの訪問先を
1度ずつすべて訪問して出発点に戻ってくるときに
移動距離が最小になる経路を求める
8 2,520
20 6京8000兆
実用的には「近似解」で対応
15 435億
25 3.10 x 1023
30 4.42 x 1030
2.25 x 10-13秒
6秒
4.35 x 10-6秒
359日
1401万年
地点数 巡回経路数 計算時間
スパコン「京」・1京回/秒の計算
巡回経路は地点数nに対して
(n-1)!/2通り
既存コンピュータの限界
これまでの古典コンピュータで解けない問題
8
演 算
最大値を求めよ
1
6
7
20
42
8
42
演 算
積が20に最も近い
組合せを求めよ
1
6
7
20
42
8
1
20
入力数=N
計算回数=N回
例えば:
入力数=10 → 10回
入力数=20 → 20回
入力数=30 → 30回
入力=6
出力
入力=6
出力
入力数=N
計算回数=2N回
例えば:
入力数=10 → 1,024回
入力数=20 → 1,048,576回
入力数=30 → 1,073,741,824回
古典コンピュータで解ける問題
古典コンピュータで解けない問題
計算回数=6回
計算回数=26=64回
Bit と Qubit
0 1 01
Bit Qubit
電子回路のBit
「0」か「1」の状態を
別々に保持
量子ビット(Qubit)
「0」と「1」の状態を
同時に保持
 スイッチのON/OFF
 電圧の高/低 など
 量子の「状態の重ね合わせ」
0
量子コンピュータが高速に計算できる理由
10
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1
1 01 01 01 演算演算結果 結果
2n回演算 1回で演算
4ビット(4bits)
4量子ビット(4qubits)
量子の「重ね合わせ」
4ビット=24=16回演算
4量子ビット=1回の計算全
て
の
組
合
せ
を
逐
次
計
算
全ての組合せを1回で計算
量子ビット数が増えるほど指数関数的に計算速度が高速化
量子スプレマシー(量子優越性)= 50量子ビット程度
(既存の古典コンピュータ(スパコン)の能力を超える)
N 量子ビット
= 2N の計算を1回で演算
計算速度を速くする方法と課題
11
1回
検証
16回
検証
鍵が開く組合せを発見
0 1 1 0 01 01 01 01
スイッチのOn/Off 量子の重ね合わせ
微細加工技術で膨大
なトランジスタを半
導体チップに詰め計
算速度速度を高速化
量子重ね合わせと量
子ビット数の増加で
指数関数的に計算速
度を高速化
トランジスタの大き
さが原子のサイズに
近づきこれ以上小さ
くできない状態に近
づきつつある
量子重ね合わせの状
態を安定的に保った
まま量子ビット数を
増やすことができな
い
古典コンピュータ 量子コンピュータ
1Qbitごとに
数千から数万のQbitで
エラー訂正をおこなう
量子コンピュータの課題/デコヒーレンス状態
01
量子状態(重ね合わせ状態など)を思い通り、正確に制御することは難しい。
0
1
量子状態の崩壊
(デコヒーレンス状態)
絶対0度に近づけて、
電子や原子の動きを減少させる
量子状態
(コヒーレンス状態)
量子コンピュータの課題/原子・分子の動きを停止
13
量子計算が終了するまでの間、Qubits を安定させなくてはならない。そのため
には、絶対ゼロ度 (0°Kelvin / -459.67°Fahrenheit / -273.15°Celsius) にし
て熱や動きを完全に押さえ込んだ理想的な状態を提供する必要がある。しかし、
現実には難しく可能な限りそれに近づけるために膨大なコストがかかっている。
量子コンピュータの分類
14
量子コンピュータ
量子力学の物理現象を利用して計算
万能型量子コンピュータ
量子ゲート方式
特化型量子コンピュータ
量子イジングマシン方式
GoogleIBM
AlibabaMicrosoft
RigettiIntel
NECD-wave
NTT
日立製作所富士通
量子アニーリング方式
レーザーネットワーク方式
独自方式方式
量子コンピュータの適用領域
15
「戦略プロポーザル・みんなの量子コンピューター」国立研究開発法人科学技術振興機構 研究開発戦略センター
https://www.jst.go.jp/crds/pdf/2018/SP/CRDS-FY2018-SP-04.pdf
量子コンピュータの適用領域
 量子ゆらぎを導入したアルゴリズムによる汎用化性能の向上
 学習フィードバックのためのデータ分析の短時間化による
ディープニューラルネットワークにおける機械学習能力の効率
的向上など
 分子、タンパク質、化学反応の分析、遺伝子配列解析なども効
率的処理
 組み合わせ最適化によるがん放射線治療の高度化(強度変調型
放射線治療等)など
 巡回セールスマン問題を解くことによる渋滞回避(交通、ネッ
トワークトラフィック、AVGなど)
 サプライチェーンの最適化
 組み合わせ最適化問題としてのポートフォリオ最適化
 第三者の盗聴を確実に防止できる量子鍵配送(QKD)など、量
子暗号を用いた秘匿通信
機械学習
ヘルスケア
交通、物流
ネットワーク
金融
セキュリティ
量子イジングマシンとスパコン
 厳密解または、厳密解に近い近似解を
短時間で得られる。
 高度なアルゴリズムの開発が必要。
 消費電力が、圧倒的に少ない。
 厳密解得るのに膨大な時間がかかり、
現実的には近似解を求めるに留まる。
 近似解をもとめるための高度なアルゴ
リズムの開発が必要。
 消費電力が、膨大。
量子イジングマシン スパコン(古典コンピュータ)
組み合わせ最適化問題 に限定すれば・・・
完全なチューリングマシンである「量
子ゲートマシン」が登場すれば、スパ
コンを凌駕する可能性もある?!
量子コンピュータの限界と可能性
18
量子超越性の壁 有用性の壁 誤り訂正の壁
古典コンピュータに対し
明確な有用性はない
原理や方式の実証研究
特定アルゴリズム
で有用性が発揮
但し実用か否かは別
最適化問題
化学シミュレーション
ニューラルネットワーク
非構造化検索
ニューラルネットワーク
素因数分解/暗号解読
化学シミュレーション
49 5000〜? 数十万〜?
NISQ(Noisy Intermediate-Scale Computer)
ノイズがあってスケールしない量子コンピュータ
汎用量子コンピュータ
万能チューリングマシン
2018〜2019? 2020年代? 2030年代?
Quantum Supremacy
量子超越性という概念を提唱した米カリフォルニア工科大学のJohn Preskill教授
「ノイズがあってエラー訂正ができない50〜100量子ビット規模の量子コンピュータが世界を変えるようなことはない」
組み合わせ最適化問題や
ニューラルネットワークなど
特定用途では実用面で先行
量子アニーリング方式
量子ゲート方式
NISQの適用可能領域
19
 「ハーバー・ボッシュ法」に代わる高効率なアンモ
ニア生成技術
 大規模な光化学反応のシミュレーションによる新し
い有機EL材料や蓄光材料の開発
 高効率なリチューム・イオン電池の開発
補足資料
量子コンピュータが“いま”注目される理由
21
 大量の数を扱うような計算問題を、今までのコンピュータとは比べ
ものにならない高速度で解くことができる。
 エネルギーを消費せずに計算が行える。
 どんな計算でも速くなるという訳ではない。古典コンピュータに比
べて早く計算できる問題は限られている。例えば離散対数問題など、
その問題を解く効率的な「量子アルゴリズム」が発見されている問
題に限る。
 大きな桁数の素因数分解が、実用的な時間で可能になる。
 Excel のグラフ描画が早くなるということは(多分)ない。
 理論的な実用性・可能性は明確
 実現方法が模索されている段階
 実用的なアルゴリズムが未発見
 量子アニーリング方式(D-Wave)の商用化で特定用途(組み合
わせ最適化問題など)で有効であることが示された。
 量子ゲート方式(IBMやGoogleなど)で50量子ビットが実現。
古典コンピュータ(スパコン)を越える可能性(量子超越性)。
現実はどうなっているのか 実用性/可能性が具体的に示された
量子コンピュータの実用化にめどが立った(?かもしれない)
量子力学
 物質を形作っている原子そのもの
 原子を形作っているさらに小さな電子・中
性子・陽子
 光を粒子としてみたときの光子やニュート
リノやクォーク、ミュオンなどといった素
粒子
粒子と波の性質を併せ持つなど
2つの異なる状態を同時に併せ持つ
マクロな物理法則(ニュートン力学など)は通用せず、
「量子力学」に従っている(量子効果)
超伝導 トンネル効果
量子
テレポーテーション
量子もつれ
(重ね合わせ)
量
子
量
子
効
果
状態の
重ね合わせ
量子コンピュータの適用分野
ディープラーニング
素因数分解
(暗号解読)
量子探索(検索)
量子暗号
量子コンピュータの種類
量子アニーリング
量子ゲート
レーザーネットワーク
D-Wave
IBM、Google
Microsoft
NII、NTT(日本発)
D-Waveは2017年1月
2000量子ビット/1万2千結合
の商用機を発表
IBMが20ビット(50ビットを発表)、
Googleは22ビット(49ビットを発
表)のチップをテスト中
2017年11月より無償公開
量子ニューラル・ネットワーク(QNN)
2000量子ビット/400万結合
適用分野が限られる
組合せ最適化、機械学習など
チューリング完全であり
古典コンピュータ同様に
汎用性が高い
(但し現時点ではアルゴリズムが不十分)
アナログデジタル
室温極低温(絶対零度付近)
量子イジングマシン
量子コンピュータの現状
量子ゲート
量子イジングマシン
IBM Q Microsoft Blue Fors D-Wave NTT QNN
D-wave :
2000量子ビット/1
万2千結合
IBM :
2017年12月 20量子
ビット
50量子ビットを試作
2017年11月公開
2000量子ビット
/400万結合
稼働できるものは
未公開
量子アニーリング
レーザー・ネッ
トワーク
デジタル・アニーラGoogle Bristlecone
デジタル・アニーラ:
1024量子ビット/
全結合
Google :
72量子ビットを施策
量子アニーリング方式の製品と結合方法
26
自然現象を借用したアルゴリズム
27
自然現象のメカニズムを
古典コンピューターでシミュレートし
「組合せ最適化問題」などを
効率的に解こうというアプローチ
自然現象を借用したアルゴリズム
生物が遺伝子の交配や
突然変異を重ねて
進化する仕組み
遺伝的アルゴリズム ニューラルネットワーク量子アニーリング
人間の神経回路網
(ニューラルネットワーク)
の仕組み
高温の磁性体
(スピングラス)
を冷やすことで状態が安定す
る「焼きなまし」の仕組み
D-Wave NTT QNN
実験装置で
物理現象として再現し
高速に答えを見つける
(近似解/厳密解)
超伝導体 レーザーネットワーク
 資源配分の最適化
 気象予測の精度向上
 交通渋滞の解消
 その他
 タンパク質の構造分析による新薬の開発
 航空機に搭載されるソフトウェアのバグ発見
 火星探査におけるロボットの行動計画を最適化
 輸送スケジュールの最適化
組み合わせ最適化問題を解くことでできること
量子イジングマシン
コンピューターすなわち
チューリング・マシンではなく
自然現象を借用したアルゴリズムを
物理現象として再現する実験装置
スパコン(古典コンピュータ)で
シミュレーションするよりも
組み合わせ最適化問題については
短時間に近似解/厳密解を求める
(アニーリング)
D-Waveとは
28
D-Wave古典コンピュータ
「量子力学の焼きなまし」をア
ルゴリズムに借用した方が、組
み合わせ最適化問題の厳密解を、
より高い確率で得られる
「古典力学(ニュートン力学)
の焼きなまし」をアルゴリズム
に借用し、組み合わせ最適化問
題を効率よく説く方法を考案
シミュレーテッド
アニーリング
量子アニーリング
量子力学の焼きなまし現象が実
際に発生する実験装置を開発、
組み合わせ最適化問題の厳密解
(または近似解)を高速で得る
S. Kirkpatrick、C. D. Gelatt、M. P. Vecchiが
1983年に考案
東京工業大学の西脇稔秀と門脇正史が
1998年に考案
カナダ・D-Wave SystemsのGeordie Roseが
1998年に製品化
量子アニーリング
シミュレーション 物理実験装置
周波数割り当て
素因数分解
交通流最適化 与信評価
画像認識
強化学習
為替アービトラージ最適化 投資ポートフォリオ最適化
タンパク質折りたたみ問題分子類似性問題
衛星画像解析
クラスタリング
検討されているアプリケーション
D-Waveの計算原理
29
電流左回り=0
電流右回り=1
「0」と「1」が同時に(各50%の確率)で存在
D-Wave で用いられている超電導回路内の電流の向きの重ね合わせ状態
電流左回り=0
電流右回り=1
超電導回路
&
 磁場を与える
 解くべき問題に合わ
せて相互作用を設定
する
 磁場を弱くしてゆく
 相互作用を徐々強く
してゆく
 磁場を無くす
 重ね合わせ状態が
崩れ一通りの状態
になる=計算結果
逆方向に向かわせる(反強磁性)
相互
作用
同方向に向かわせる(強磁性) 電流の向き
を観測
磁場を無くすと
相互作用に従って
電流の向きが決まる
超伝導回路はエネルギーが高い状態では
電流は左右両方の重ね合わせ状態になる
エネルギーを下げてゆくことで電流の向きが
ひとつに定まる安定状態になる =計算結果
D-Waveの計算原理
30
電流左回り=0
電流右回り=1
「0」と「1」が同時に(各50%の確率)で存在
D-Wave で用いられている超電導回路内の電流の向きの重ね合わせ状態
電流左回り=0
電流右回り=1
超電導回路
&
 磁場を与える
 解くべき問題に合わ
せて相互作用を設定
する
 磁場を弱くしてゆく
 相互作用を徐々強く
してゆく
 磁場を無くす
 重ね合わせ状態が
崩れ一通りの状態
になる=計算結果
逆方向に向かわせる(反強磁性)
相互
作用
同方向に向かわせる(強磁性) 電流の向き
を観測
磁場を無くすと
相互作用に従って
電流の向きが決まる
超伝導回路はエネルギーが高い状態では
電流は左右両方の重ね合わせ状態になる
エネルギーを下げてゆくことで電流の向きが
ひとつに定まる安定状態になる =計算結果
31
ネットコマース株式会社
180-0004 東京都武蔵野市吉祥寺本町2-4-17
エスト・グランデール・カーロ 1201
http://www.netcommerce.co.jp/

Contenu connexe

Plus de Masanori Saito

LiBRA 10.2021 /クラウドコンピューティング
LiBRA 10.2021 /クラウドコンピューティングLiBRA 10.2021 /クラウドコンピューティング
LiBRA 10.2021 /クラウドコンピューティングMasanori Saito
 
LiBRA 10.2021 / インフラとプラットフォーム
LiBRA 10.2021 / インフラとプラットフォームLiBRA 10.2021 / インフラとプラットフォーム
LiBRA 10.2021 / インフラとプラットフォームMasanori Saito
 
LiBRA 10.2021 / 開発と運用
LiBRA 10.2021 / 開発と運用LiBRA 10.2021 / 開発と運用
LiBRA 10.2021 / 開発と運用Masanori Saito
 
LiBRA 10.2021 / DX以外
LiBRA 10.2021 / DX以外LiBRA 10.2021 / DX以外
LiBRA 10.2021 / DX以外Masanori Saito
 
LiBRA 10.2021 / DXとこれからのビジネス
LiBRA 10.2021 / DXとこれからのビジネスLiBRA 10.2021 / DXとこれからのビジネス
LiBRA 10.2021 / DXとこれからのビジネスMasanori Saito
 
LiBRA 10.2021 / DXの基本
LiBRA 10.2021 / DXの基本LiBRA 10.2021 / DXの基本
LiBRA 10.2021 / DXの基本Masanori Saito
 
LiBRA 10.2021 / 総集編#02
LiBRA 10.2021 / 総集編#02LiBRA 10.2021 / 総集編#02
LiBRA 10.2021 / 総集編#02Masanori Saito
 
LiBRA 10.2021 / 総集編#01
LiBRA 10.2021 / 総集編#01LiBRA 10.2021 / 総集編#01
LiBRA 10.2021 / 総集編#01Masanori Saito
 
LiBRA 09.2021 / 新入社員のための最新ITトレンド研修
LiBRA 09.2021 / 新入社員のための最新ITトレンド研修LiBRA 09.2021 / 新入社員のための最新ITトレンド研修
LiBRA 09.2021 / 新入社員のための最新ITトレンド研修Masanori Saito
 
LiBRA 09.2021 / DXの本質とビジネス戦略 SI事業者向け
LiBRA 09.2021 / DXの本質とビジネス戦略 SI事業者向けLiBRA 09.2021 / DXの本質とビジネス戦略 SI事業者向け
LiBRA 09.2021 / DXの本質とビジネス戦略 SI事業者向けMasanori Saito
 
LiBRA 09.2021 / 総集編 1/2
LiBRA 09.2021 / 総集編 1/2LiBRA 09.2021 / 総集編 1/2
LiBRA 09.2021 / 総集編 1/2Masanori Saito
 
LiBRA 09.2021 / 開発と運用
LiBRA 09.2021 / 開発と運用LiBRA 09.2021 / 開発と運用
LiBRA 09.2021 / 開発と運用Masanori Saito
 
LiBRA 09.2021 / 総集編 2/2
LiBRA 09.2021 / 総集編 2/2LiBRA 09.2021 / 総集編 2/2
LiBRA 09.2021 / 総集編 2/2Masanori Saito
 

Plus de Masanori Saito (20)

211101_LiBRA_AI
211101_LiBRA_AI211101_LiBRA_AI
211101_LiBRA_AI
 
211101_LiBRA_DX以外
211101_LiBRA_DX以外211101_LiBRA_DX以外
211101_LiBRA_DX以外
 
LiBRA 10.2021 / ERP
LiBRA 10.2021 / ERPLiBRA 10.2021 / ERP
LiBRA 10.2021 / ERP
 
LiBRA 10.2021 / DX
LiBRA 10.2021 / DXLiBRA 10.2021 / DX
LiBRA 10.2021 / DX
 
LiBRA 10.2021 /クラウドコンピューティング
LiBRA 10.2021 /クラウドコンピューティングLiBRA 10.2021 /クラウドコンピューティング
LiBRA 10.2021 /クラウドコンピューティング
 
LiBRA 10.2021 / インフラとプラットフォーム
LiBRA 10.2021 / インフラとプラットフォームLiBRA 10.2021 / インフラとプラットフォーム
LiBRA 10.2021 / インフラとプラットフォーム
 
LiBRA 10.2021 / AI
LiBRA 10.2021 / AILiBRA 10.2021 / AI
LiBRA 10.2021 / AI
 
LiBRA 10.2021 / 開発と運用
LiBRA 10.2021 / 開発と運用LiBRA 10.2021 / 開発と運用
LiBRA 10.2021 / 開発と運用
 
LiBRA 10.2021 / DX以外
LiBRA 10.2021 / DX以外LiBRA 10.2021 / DX以外
LiBRA 10.2021 / DX以外
 
LiBRA 10.2021 / ERP
LiBRA 10.2021 / ERPLiBRA 10.2021 / ERP
LiBRA 10.2021 / ERP
 
LiBRA 10.2021 / IoT
LiBRA 10.2021 / IoTLiBRA 10.2021 / IoT
LiBRA 10.2021 / IoT
 
LiBRA 10.2021 / DXとこれからのビジネス
LiBRA 10.2021 / DXとこれからのビジネスLiBRA 10.2021 / DXとこれからのビジネス
LiBRA 10.2021 / DXとこれからのビジネス
 
LiBRA 10.2021 / DXの基本
LiBRA 10.2021 / DXの基本LiBRA 10.2021 / DXの基本
LiBRA 10.2021 / DXの基本
 
LiBRA 10.2021 / 総集編#02
LiBRA 10.2021 / 総集編#02LiBRA 10.2021 / 総集編#02
LiBRA 10.2021 / 総集編#02
 
LiBRA 10.2021 / 総集編#01
LiBRA 10.2021 / 総集編#01LiBRA 10.2021 / 総集編#01
LiBRA 10.2021 / 総集編#01
 
LiBRA 09.2021 / 新入社員のための最新ITトレンド研修
LiBRA 09.2021 / 新入社員のための最新ITトレンド研修LiBRA 09.2021 / 新入社員のための最新ITトレンド研修
LiBRA 09.2021 / 新入社員のための最新ITトレンド研修
 
LiBRA 09.2021 / DXの本質とビジネス戦略 SI事業者向け
LiBRA 09.2021 / DXの本質とビジネス戦略 SI事業者向けLiBRA 09.2021 / DXの本質とビジネス戦略 SI事業者向け
LiBRA 09.2021 / DXの本質とビジネス戦略 SI事業者向け
 
LiBRA 09.2021 / 総集編 1/2
LiBRA 09.2021 / 総集編 1/2LiBRA 09.2021 / 総集編 1/2
LiBRA 09.2021 / 総集編 1/2
 
LiBRA 09.2021 / 開発と運用
LiBRA 09.2021 / 開発と運用LiBRA 09.2021 / 開発と運用
LiBRA 09.2021 / 開発と運用
 
LiBRA 09.2021 / 総集編 2/2
LiBRA 09.2021 / 総集編 2/2LiBRA 09.2021 / 総集編 2/2
LiBRA 09.2021 / 総集編 2/2
 

Dernier

LoRaWANスマート距離検出センサー DS20L カタログ LiDARデバイス
LoRaWANスマート距離検出センサー  DS20L  カタログ  LiDARデバイスLoRaWANスマート距離検出センサー  DS20L  カタログ  LiDARデバイス
LoRaWANスマート距離検出センサー DS20L カタログ LiDARデバイスCRI Japan, Inc.
 
論文紹介:Selective Structured State-Spaces for Long-Form Video Understanding
論文紹介:Selective Structured State-Spaces for Long-Form Video Understanding論文紹介:Selective Structured State-Spaces for Long-Form Video Understanding
論文紹介:Selective Structured State-Spaces for Long-Form Video UnderstandingToru Tamaki
 
論文紹介: The Surprising Effectiveness of PPO in Cooperative Multi-Agent Games
論文紹介: The Surprising Effectiveness of PPO in Cooperative Multi-Agent Games論文紹介: The Surprising Effectiveness of PPO in Cooperative Multi-Agent Games
論文紹介: The Surprising Effectiveness of PPO in Cooperative Multi-Agent Gamesatsushi061452
 
新人研修 後半 2024/04/26の勉強会で発表されたものです。
新人研修 後半        2024/04/26の勉強会で発表されたものです。新人研修 後半        2024/04/26の勉強会で発表されたものです。
新人研修 後半 2024/04/26の勉強会で発表されたものです。iPride Co., Ltd.
 
Amazon SES を勉強してみる その32024/04/26の勉強会で発表されたものです。
Amazon SES を勉強してみる その32024/04/26の勉強会で発表されたものです。Amazon SES を勉強してみる その32024/04/26の勉強会で発表されたものです。
Amazon SES を勉強してみる その32024/04/26の勉強会で発表されたものです。iPride Co., Ltd.
 
論文紹介:Video-GroundingDINO: Towards Open-Vocabulary Spatio-Temporal Video Groun...
論文紹介:Video-GroundingDINO: Towards Open-Vocabulary Spatio-Temporal Video Groun...論文紹介:Video-GroundingDINO: Towards Open-Vocabulary Spatio-Temporal Video Groun...
論文紹介:Video-GroundingDINO: Towards Open-Vocabulary Spatio-Temporal Video Groun...Toru Tamaki
 
LoRaWAN スマート距離検出デバイスDS20L日本語マニュアル
LoRaWAN スマート距離検出デバイスDS20L日本語マニュアルLoRaWAN スマート距離検出デバイスDS20L日本語マニュアル
LoRaWAN スマート距離検出デバイスDS20L日本語マニュアルCRI Japan, Inc.
 
知識ゼロの営業マンでもできた!超速で初心者を脱する、悪魔的学習ステップ3選.pptx
知識ゼロの営業マンでもできた!超速で初心者を脱する、悪魔的学習ステップ3選.pptx知識ゼロの営業マンでもできた!超速で初心者を脱する、悪魔的学習ステップ3選.pptx
知識ゼロの営業マンでもできた!超速で初心者を脱する、悪魔的学習ステップ3選.pptxsn679259
 
Utilizing Ballerina for Cloud Native Integrations
Utilizing Ballerina for Cloud Native IntegrationsUtilizing Ballerina for Cloud Native Integrations
Utilizing Ballerina for Cloud Native IntegrationsWSO2
 
Amazon SES を勉強してみる その22024/04/26の勉強会で発表されたものです。
Amazon SES を勉強してみる その22024/04/26の勉強会で発表されたものです。Amazon SES を勉強してみる その22024/04/26の勉強会で発表されたものです。
Amazon SES を勉強してみる その22024/04/26の勉強会で発表されたものです。iPride Co., Ltd.
 

Dernier (10)

LoRaWANスマート距離検出センサー DS20L カタログ LiDARデバイス
LoRaWANスマート距離検出センサー  DS20L  カタログ  LiDARデバイスLoRaWANスマート距離検出センサー  DS20L  カタログ  LiDARデバイス
LoRaWANスマート距離検出センサー DS20L カタログ LiDARデバイス
 
論文紹介:Selective Structured State-Spaces for Long-Form Video Understanding
論文紹介:Selective Structured State-Spaces for Long-Form Video Understanding論文紹介:Selective Structured State-Spaces for Long-Form Video Understanding
論文紹介:Selective Structured State-Spaces for Long-Form Video Understanding
 
論文紹介: The Surprising Effectiveness of PPO in Cooperative Multi-Agent Games
論文紹介: The Surprising Effectiveness of PPO in Cooperative Multi-Agent Games論文紹介: The Surprising Effectiveness of PPO in Cooperative Multi-Agent Games
論文紹介: The Surprising Effectiveness of PPO in Cooperative Multi-Agent Games
 
新人研修 後半 2024/04/26の勉強会で発表されたものです。
新人研修 後半        2024/04/26の勉強会で発表されたものです。新人研修 後半        2024/04/26の勉強会で発表されたものです。
新人研修 後半 2024/04/26の勉強会で発表されたものです。
 
Amazon SES を勉強してみる その32024/04/26の勉強会で発表されたものです。
Amazon SES を勉強してみる その32024/04/26の勉強会で発表されたものです。Amazon SES を勉強してみる その32024/04/26の勉強会で発表されたものです。
Amazon SES を勉強してみる その32024/04/26の勉強会で発表されたものです。
 
論文紹介:Video-GroundingDINO: Towards Open-Vocabulary Spatio-Temporal Video Groun...
論文紹介:Video-GroundingDINO: Towards Open-Vocabulary Spatio-Temporal Video Groun...論文紹介:Video-GroundingDINO: Towards Open-Vocabulary Spatio-Temporal Video Groun...
論文紹介:Video-GroundingDINO: Towards Open-Vocabulary Spatio-Temporal Video Groun...
 
LoRaWAN スマート距離検出デバイスDS20L日本語マニュアル
LoRaWAN スマート距離検出デバイスDS20L日本語マニュアルLoRaWAN スマート距離検出デバイスDS20L日本語マニュアル
LoRaWAN スマート距離検出デバイスDS20L日本語マニュアル
 
知識ゼロの営業マンでもできた!超速で初心者を脱する、悪魔的学習ステップ3選.pptx
知識ゼロの営業マンでもできた!超速で初心者を脱する、悪魔的学習ステップ3選.pptx知識ゼロの営業マンでもできた!超速で初心者を脱する、悪魔的学習ステップ3選.pptx
知識ゼロの営業マンでもできた!超速で初心者を脱する、悪魔的学習ステップ3選.pptx
 
Utilizing Ballerina for Cloud Native Integrations
Utilizing Ballerina for Cloud Native IntegrationsUtilizing Ballerina for Cloud Native Integrations
Utilizing Ballerina for Cloud Native Integrations
 
Amazon SES を勉強してみる その22024/04/26の勉強会で発表されたものです。
Amazon SES を勉強してみる その22024/04/26の勉強会で発表されたものです。Amazon SES を勉強してみる その22024/04/26の勉強会で発表されたものです。
Amazon SES を勉強してみる その22024/04/26の勉強会で発表されたものです。
 

LiBRA 12.2020 / 量子コンピュータ