SlideShare une entreprise Scribd logo
1  sur  14
Télécharger pour lire hors ligne
Unitat 41: Polinomis
1. Recordatori conceptes
2. Operacions bàsiques
3. Regla de Ruffini
4. Factorització de polinomis
5. Simplificació de fraccions algebraiques
6. Binomi de Newton
1. Recordatori conceptes
a) Nomenclatura Polinomi de grau 4
11x3
y−7xy2
+5x−13
Terme
b) Grau d'un polinomi: el més alt dels termes que el formen.
p56 E1, 3
Un polinomi és la suma indicada de diversos monomis no
semblants. ("poli"="molts", "mono"="un de sol")
Terme Terme Terme
Grau 4 Grau 3 Grau 1 Grau 0
c) Oposat d'un polinomi: s'obté canviant els signes de cada terme
d) Valor numèric d'un polinomi: valor que pren el polinomi quan en
coneixem les variables
2. Operacions bàsiques
2.1 Suma:
A=5x3
−1
Per sumar o restar polinomis, només ens caldrà sumar o restar els
termes semblants. Els disposarem en columnes, de grau major a menor.
Exemple: B=7x3
−5x2
+3
A+B
5x
3
7x
3
−5x
2
+3+
−1
12x
3
−5x
2
+2
2.2 Resta:
A=5x3
−1
Restar és el mateix que sumar l'oposat. Així, procedirem de la mateixa
manera però sumant l'oposat del polinomi que actua de subtrahend.
Exemple: B=7x3
−5x2
+3
A−B=A+(−B)
5x3
−7x3
+5x2
−3+
−1
−2x
3
+5x
2
−4
P(x)=3x2
−2x+7
E2, 1, 2, 26, 27, 28
Exemple: Q(x)=3x−5
P(x)·Q(x)
x
−15x
2
+10x−35
3x2
−2x+7
3x−5
9x3
−6x2
+21x
9x3
−21x2
+31x−35
2.3 Multiplicació:
p57 E3, 5, 34
P(x) Q(x)
C(x)
R(x)
4x3
+2x2
−4x+3
2.4 Divisió de polinomis
Dividend Divisor
Quocient
Residu
-Dividir 1r terme de P(x) entre el 1r terme de Q(x) per obtenir 1r de C(x)
-Multiplicar resultat per Q(x) i restar-lo a P(x) per obtenir nou dividend.
-Repetir operació fins que R(x) sigui de menys grau que Q(x).
2x2
−x+1
2x−4x3
+2x2
−2x
4x2
−6x+3
+2
−4x2
+2x−2
−4x+1
3. Regla de Ruffini
La regla de Ruffini ens permet fer divisions ràpidament quan el divisor
és un binomi del tipus “x – a”, essent “a” un nombre enter.
Paolo Ruffini (1765-1822)
Metge, filòsof i matemàtic.
Primer fer (x3
+1):(x-2) com fins ara.
1 0 0 1
2
1
2
2
4
4
8
9
El quocient és x2
+ 2x + 4 i el residu és 9.
8, 9, 10, 37, 38, 40
4. Factorització de polinomis
Un nombre “a” és arrel d'un polinomi P(x) si es compleix que P(x) és
divisible per “x – a”. La divisió ha de tenir un residu igual a 0.
Recordatori factorització de nombres naturals.
4.1 Arrels d'un polinomi
-Quines són les arrels del polinomi P(x) = x2
+ 2x – 3 ?
Propietats:
-L'arrel (nombre “a”) ha de ser divisor del terme independent.
-El nombre d'arrels mai serà superior al grau del polinomi.
p59 E5
1r: Poden ser: Div (-3) = {+1,-1,3,-3}
1 2 -3
+1
1
1
3
3
0
-Quines són les arrels del polinomi P(x) = x2
+ 2x – 3 ?
1r: Poden ser: Div (-3) = {+1,-1,3,-3}
2n: Anar comprovant per Ruffini
1 2 -3
- 3
1
-3
-1
3
0
3r: Les arrels són 1 i -3
p59 11, 12, 49, 50, 51
1 2 -3
+1
1
1
3
3
0
-Quines són les arrels del polinomi P(x) = x2
+ 2x – 3 ?
1r: Poden ser: Div (-3) = {+1,-1,3,-3}
2n: Anar comprovant per Ruffini
1 2 -3
- 3
1
-3
-1
3
0
3r: Les arrels són 1 i -3
p59 11, 12, 49, 50, 51
Factoritzar un polinomi consisteix en anar trobant binomis divisors de
tipus “x – a” fins a arribar a un polinomi irreductible, essent “a” una arrel del
polinomi.
4.2 La factorització d'un polinomi
-Exemple: factoritzar el polinomi P(x) = x4
– 2x3
+ 3x2
+ 2x – 4 ?
1r: Les arrels poden ser: Div (-4) = {+1,-1, 2, -2, 4,-4}
2n: Anar encadenant Ruffini's, començant de nou cada vegada:
1 -2 3 2 -4
1
1
1
-1
-1
2
2
4
4
0
-1 -1 2 -4
1 -2 4 0
-Exemple: factoritzar el polinomi P(x) = x4
– 2x3
+ 3x2
+ 2x – 4 ?
p61 fact. els del 17, E9b, 20 extret, 63, 64
1r: Les arrels poden ser: Div (-3) = {+1,-1, 2, -2, 4,-4}
2n: Anar encadenant Ruffini's, començant de nou cada vegada:
1 -2 3 2 -4
1
1
1
-1
-1
2
2
4
4
0
-1 -1 2 -4
1 -2 4 0
3r: Interpretar el resultat:
P(x) = x4
– 2x3
+ 3x2
+ 2x – 4 = (x – 1)·(x + 1)·(x2
– 2x + 4)
5. Simplificació de fraccions algebraiques
-Una fracció algebraica és aquella formada pel numerador i
denominador en forma de polinomis.
-Per simplificar-les factoritzarem els dos polinomis i n'eliminarem els
factors comuns.
Exemple:
p63 23,24,69,72,73
x2
+x
x
2
+2x+1
x2
+x=x·(x+1)
El numerador:
(no puc fer Ruffini,
extrec factor comú)
Exemple:
x2
+2x+1=(x+1)·(x+1)
El denominador:
(faig Ruffini) 1 2 1
- 1
1
-1
1
-1
0
=
x·(x+1)
(x+1)·(x+1)
=
x
x+1
6. El binomi de Newton
p60 E7, 14, 16, 55, 57
(x+ y)0
=
(x+ y)1
=
(x+ y)2
=
(x+ y)3
=
(x+ y)4
=
1
x+ y
(x+ y)(x+ y)=
x4
+4x3
y+6x2
y2
+4xy3
+y4
x2
+xy+ yx+ y2
= x2
+2xy+y2
(x+ y)(x2
+2xy+y2
)=(x3
+2x2
y+xy2
+yx2
+2xy2
+ y3
)
=x3
+3x2
y+3xy2
+y3
1
11
2
33
1
1
1
1
1
51
6
1010
1
15
4 4
Triangle de
Tartaglia:
(a+b)n
=A·an
+B·an−1
b+C · an−2
b2
+...+X ·bn

Contenu connexe

Tendances

Nombres romans
Nombres romansNombres romans
Nombres romans
Mprof
 
Iniciació a l’algebra
Iniciació a l’algebraIniciació a l’algebra
Iniciació a l’algebra
mbalag27
 
Arrel quadrada
Arrel quadradaArrel quadrada
Arrel quadrada
ther
 
Nombres fraccionaris
Nombres fraccionarisNombres fraccionaris
Nombres fraccionaris
mbalag27
 

Tendances (20)

Matemàtiques 3r i 4t eso
Matemàtiques 3r i 4t esoMatemàtiques 3r i 4t eso
Matemàtiques 3r i 4t eso
 
Nombres romans
Nombres romansNombres romans
Nombres romans
 
Nombres enters 2n ESO
Nombres enters 2n ESONombres enters 2n ESO
Nombres enters 2n ESO
 
04 Monomis i Polinomis 3r ESO
04 Monomis i Polinomis 3r ESO04 Monomis i Polinomis 3r ESO
04 Monomis i Polinomis 3r ESO
 
Teorema del residu
Teorema del residuTeorema del residu
Teorema del residu
 
Iniciació a l’algebra
Iniciació a l’algebraIniciació a l’algebra
Iniciació a l’algebra
 
Funcions
Funcions Funcions
Funcions
 
4 potències i arrels 2n eso
4 potències i arrels 2n eso4 potències i arrels 2n eso
4 potències i arrels 2n eso
 
Matemàtiques 2n de batxillerat Científic
Matemàtiques 2n de batxillerat CientíficMatemàtiques 2n de batxillerat Científic
Matemàtiques 2n de batxillerat Científic
 
Treure el factor comú
Treure el factor comú Treure el factor comú
Treure el factor comú
 
Ma fraccions 1_i_2
Ma fraccions 1_i_2Ma fraccions 1_i_2
Ma fraccions 1_i_2
 
Nombres Reals
Nombres RealsNombres Reals
Nombres Reals
 
Arrel quadrada
Arrel quadradaArrel quadrada
Arrel quadrada
 
Expressions algebraiques
Expressions algebraiquesExpressions algebraiques
Expressions algebraiques
 
Dossier equacions de segon grau i repàs d'equacions de primer grau
Dossier equacions de segon grau i repàs d'equacions de primer grauDossier equacions de segon grau i repàs d'equacions de primer grau
Dossier equacions de segon grau i repàs d'equacions de primer grau
 
Els nombres Irracionals
Els nombres IrracionalsEls nombres Irracionals
Els nombres Irracionals
 
1 Funcions domini i recorregut
1 Funcions domini i recorregut1 Funcions domini i recorregut
1 Funcions domini i recorregut
 
3eso successions
3eso successions3eso successions
3eso successions
 
Nombres racionals 2n ESO
Nombres racionals 2n ESONombres racionals 2n ESO
Nombres racionals 2n ESO
 
Nombres fraccionaris
Nombres fraccionarisNombres fraccionaris
Nombres fraccionaris
 

Similaire à Polinomis 4t ESO

Document Php Document Name Mates 20polinomis
Document Php Document Name Mates 20polinomisDocument Php Document Name Mates 20polinomis
Document Php Document Name Mates 20polinomis
lauragaby
 
Polinomi[1]
Polinomi[1]Polinomi[1]
Polinomi[1]
ther
 
Tasca 3.1.d.polinomi reduït. polinomi ordenat de forma creixent o decreixent
Tasca 3.1.d.polinomi reduït. polinomi ordenat de forma creixent o decreixent Tasca 3.1.d.polinomi reduït. polinomi ordenat de forma creixent o decreixent
Tasca 3.1.d.polinomi reduït. polinomi ordenat de forma creixent o decreixent
Rafael Alvarez Alonso
 
Àlgebra i Equacions de 1r Grau 2n ESO
Àlgebra i Equacions de 1r Grau 2n ESOÀlgebra i Equacions de 1r Grau 2n ESO
Àlgebra i Equacions de 1r Grau 2n ESO
Albert Sola
 

Similaire à Polinomis 4t ESO (17)

Document Php Document Name Mates 20polinomis
Document Php Document Name Mates 20polinomisDocument Php Document Name Mates 20polinomis
Document Php Document Name Mates 20polinomis
 
Treball Mates
Treball MatesTreball Mates
Treball Mates
 
PolinomiS
PolinomiSPolinomiS
PolinomiS
 
Polinomi[1]
Polinomi[1]Polinomi[1]
Polinomi[1]
 
Polinomis grau i ordenació català
Polinomis grau i ordenació catalàPolinomis grau i ordenació català
Polinomis grau i ordenació català
 
Polinomis
Polinomis Polinomis
Polinomis
 
1 Límits i continuïtat de funcions
1 Límits i continuïtat de funcions1 Límits i continuïtat de funcions
1 Límits i continuïtat de funcions
 
Integrals indefinides ampliat Mònica Orpí
Integrals indefinides ampliat Mònica OrpíIntegrals indefinides ampliat Mònica Orpí
Integrals indefinides ampliat Mònica Orpí
 
Integrals indefinides Mònica Orpí
Integrals indefinides  Mònica OrpíIntegrals indefinides  Mònica Orpí
Integrals indefinides Mònica Orpí
 
Anàlisi 1
Anàlisi 1Anàlisi 1
Anàlisi 1
 
Aplicacions de la derivada : Gràfiques de Funcions, Hôpital i el Polinomi de ...
Aplicacions de la derivada : Gràfiques de Funcions, Hôpital i el Polinomi de ...Aplicacions de la derivada : Gràfiques de Funcions, Hôpital i el Polinomi de ...
Aplicacions de la derivada : Gràfiques de Funcions, Hôpital i el Polinomi de ...
 
BC1_02_Algebra_catala.pdf
BC1_02_Algebra_catala.pdfBC1_02_Algebra_catala.pdf
BC1_02_Algebra_catala.pdf
 
wikimates 2
wikimates 2wikimates 2
wikimates 2
 
Derivades 2n de Batxillerat CCSS
Derivades 2n de Batxillerat CCSSDerivades 2n de Batxillerat CCSS
Derivades 2n de Batxillerat CCSS
 
Tasca 3.1.d.polinomi reduït. polinomi ordenat de forma creixent o decreixent
Tasca 3.1.d.polinomi reduït. polinomi ordenat de forma creixent o decreixent Tasca 3.1.d.polinomi reduït. polinomi ordenat de forma creixent o decreixent
Tasca 3.1.d.polinomi reduït. polinomi ordenat de forma creixent o decreixent
 
Àlgebra i Equacions de 1r Grau 2n ESO
Àlgebra i Equacions de 1r Grau 2n ESOÀlgebra i Equacions de 1r Grau 2n ESO
Àlgebra i Equacions de 1r Grau 2n ESO
 
Wiki Mates
Wiki MatesWiki Mates
Wiki Mates
 

Plus de Albert Sola

Els cossos geomètrics. Àrees i volums. 2n d'ESO
Els cossos geomètrics. Àrees i volums. 2n d'ESOEls cossos geomètrics. Àrees i volums. 2n d'ESO
Els cossos geomètrics. Àrees i volums. 2n d'ESO
Albert Sola
 
3 Proporcionalitat i percentatges 2n ESO
3 Proporcionalitat i percentatges 2n ESO3 Proporcionalitat i percentatges 2n ESO
3 Proporcionalitat i percentatges 2n ESO
Albert Sola
 

Plus de Albert Sola (20)

05 Equacions de 2n grau
05 Equacions de 2n grau05 Equacions de 2n grau
05 Equacions de 2n grau
 
03 Sistemes d'equacions
03 Sistemes d'equacions03 Sistemes d'equacions
03 Sistemes d'equacions
 
01 i 02 Matrius i determinants
01 i 02 Matrius i determinants01 i 02 Matrius i determinants
01 i 02 Matrius i determinants
 
01 Geometria a l'espai 3r ESO
01 Geometria a l'espai 3r ESO01 Geometria a l'espai 3r ESO
01 Geometria a l'espai 3r ESO
 
6 Matrius 2n Batxillerat
6 Matrius 2n Batxillerat6 Matrius 2n Batxillerat
6 Matrius 2n Batxillerat
 
Integrals definides
Integrals definidesIntegrals definides
Integrals definides
 
Integrals indefinides
Integrals indefinidesIntegrals indefinides
Integrals indefinides
 
Geometria analítica 4t ESO
Geometria analítica 4t ESOGeometria analítica 4t ESO
Geometria analítica 4t ESO
 
2n Batxi Tema 3: Aplicacions de la derivada
2n Batxi Tema 3: Aplicacions de la derivada2n Batxi Tema 3: Aplicacions de la derivada
2n Batxi Tema 3: Aplicacions de la derivada
 
Trigonometria 4t ESO
Trigonometria 4t ESOTrigonometria 4t ESO
Trigonometria 4t ESO
 
Càlcul de derivades 2n Batxillerat
Càlcul de derivades 2n BatxilleratCàlcul de derivades 2n Batxillerat
Càlcul de derivades 2n Batxillerat
 
Funcions
FuncionsFuncions
Funcions
 
Estadística
EstadísticaEstadística
Estadística
 
Els cossos geomètrics. Àrees i volums. 2n d'ESO
Els cossos geomètrics. Àrees i volums. 2n d'ESOEls cossos geomètrics. Àrees i volums. 2n d'ESO
Els cossos geomètrics. Àrees i volums. 2n d'ESO
 
Tema 6: Geometria plana. Pitàgores i Tales. 2n ESO
Tema 6: Geometria plana. Pitàgores i Tales. 2n ESOTema 6: Geometria plana. Pitàgores i Tales. 2n ESO
Tema 6: Geometria plana. Pitàgores i Tales. 2n ESO
 
3 Proporcionalitat i percentatges 2n ESO
3 Proporcionalitat i percentatges 2n ESO3 Proporcionalitat i percentatges 2n ESO
3 Proporcionalitat i percentatges 2n ESO
 
Construïm la República Catalana
Construïm la República CatalanaConstruïm la República Catalana
Construïm la República Catalana
 
Equacions de 2n grau 3r ESO
Equacions de 2n grau 3r ESOEquacions de 2n grau 3r ESO
Equacions de 2n grau 3r ESO
 
Sistemes d'equacions 3r ESO
Sistemes d'equacions 3r ESOSistemes d'equacions 3r ESO
Sistemes d'equacions 3r ESO
 
Introducció a les funcions 2n ESO
Introducció a les funcions 2n ESOIntroducció a les funcions 2n ESO
Introducció a les funcions 2n ESO
 

Polinomis 4t ESO

  • 1. Unitat 41: Polinomis 1. Recordatori conceptes 2. Operacions bàsiques 3. Regla de Ruffini 4. Factorització de polinomis 5. Simplificació de fraccions algebraiques 6. Binomi de Newton
  • 2. 1. Recordatori conceptes a) Nomenclatura Polinomi de grau 4 11x3 y−7xy2 +5x−13 Terme b) Grau d'un polinomi: el més alt dels termes que el formen. p56 E1, 3 Un polinomi és la suma indicada de diversos monomis no semblants. ("poli"="molts", "mono"="un de sol") Terme Terme Terme Grau 4 Grau 3 Grau 1 Grau 0 c) Oposat d'un polinomi: s'obté canviant els signes de cada terme d) Valor numèric d'un polinomi: valor que pren el polinomi quan en coneixem les variables
  • 3. 2. Operacions bàsiques 2.1 Suma: A=5x3 −1 Per sumar o restar polinomis, només ens caldrà sumar o restar els termes semblants. Els disposarem en columnes, de grau major a menor. Exemple: B=7x3 −5x2 +3 A+B 5x 3 7x 3 −5x 2 +3+ −1 12x 3 −5x 2 +2
  • 4. 2.2 Resta: A=5x3 −1 Restar és el mateix que sumar l'oposat. Així, procedirem de la mateixa manera però sumant l'oposat del polinomi que actua de subtrahend. Exemple: B=7x3 −5x2 +3 A−B=A+(−B) 5x3 −7x3 +5x2 −3+ −1 −2x 3 +5x 2 −4
  • 5. P(x)=3x2 −2x+7 E2, 1, 2, 26, 27, 28 Exemple: Q(x)=3x−5 P(x)·Q(x) x −15x 2 +10x−35 3x2 −2x+7 3x−5 9x3 −6x2 +21x 9x3 −21x2 +31x−35 2.3 Multiplicació:
  • 6. p57 E3, 5, 34 P(x) Q(x) C(x) R(x) 4x3 +2x2 −4x+3 2.4 Divisió de polinomis Dividend Divisor Quocient Residu -Dividir 1r terme de P(x) entre el 1r terme de Q(x) per obtenir 1r de C(x) -Multiplicar resultat per Q(x) i restar-lo a P(x) per obtenir nou dividend. -Repetir operació fins que R(x) sigui de menys grau que Q(x). 2x2 −x+1 2x−4x3 +2x2 −2x 4x2 −6x+3 +2 −4x2 +2x−2 −4x+1
  • 7. 3. Regla de Ruffini La regla de Ruffini ens permet fer divisions ràpidament quan el divisor és un binomi del tipus “x – a”, essent “a” un nombre enter. Paolo Ruffini (1765-1822) Metge, filòsof i matemàtic. Primer fer (x3 +1):(x-2) com fins ara. 1 0 0 1 2 1 2 2 4 4 8 9 El quocient és x2 + 2x + 4 i el residu és 9. 8, 9, 10, 37, 38, 40
  • 8. 4. Factorització de polinomis Un nombre “a” és arrel d'un polinomi P(x) si es compleix que P(x) és divisible per “x – a”. La divisió ha de tenir un residu igual a 0. Recordatori factorització de nombres naturals. 4.1 Arrels d'un polinomi -Quines són les arrels del polinomi P(x) = x2 + 2x – 3 ? Propietats: -L'arrel (nombre “a”) ha de ser divisor del terme independent. -El nombre d'arrels mai serà superior al grau del polinomi. p59 E5 1r: Poden ser: Div (-3) = {+1,-1,3,-3}
  • 9. 1 2 -3 +1 1 1 3 3 0 -Quines són les arrels del polinomi P(x) = x2 + 2x – 3 ? 1r: Poden ser: Div (-3) = {+1,-1,3,-3} 2n: Anar comprovant per Ruffini 1 2 -3 - 3 1 -3 -1 3 0 3r: Les arrels són 1 i -3 p59 11, 12, 49, 50, 51
  • 10. 1 2 -3 +1 1 1 3 3 0 -Quines són les arrels del polinomi P(x) = x2 + 2x – 3 ? 1r: Poden ser: Div (-3) = {+1,-1,3,-3} 2n: Anar comprovant per Ruffini 1 2 -3 - 3 1 -3 -1 3 0 3r: Les arrels són 1 i -3 p59 11, 12, 49, 50, 51
  • 11. Factoritzar un polinomi consisteix en anar trobant binomis divisors de tipus “x – a” fins a arribar a un polinomi irreductible, essent “a” una arrel del polinomi. 4.2 La factorització d'un polinomi -Exemple: factoritzar el polinomi P(x) = x4 – 2x3 + 3x2 + 2x – 4 ? 1r: Les arrels poden ser: Div (-4) = {+1,-1, 2, -2, 4,-4} 2n: Anar encadenant Ruffini's, començant de nou cada vegada: 1 -2 3 2 -4 1 1 1 -1 -1 2 2 4 4 0 -1 -1 2 -4 1 -2 4 0
  • 12. -Exemple: factoritzar el polinomi P(x) = x4 – 2x3 + 3x2 + 2x – 4 ? p61 fact. els del 17, E9b, 20 extret, 63, 64 1r: Les arrels poden ser: Div (-3) = {+1,-1, 2, -2, 4,-4} 2n: Anar encadenant Ruffini's, començant de nou cada vegada: 1 -2 3 2 -4 1 1 1 -1 -1 2 2 4 4 0 -1 -1 2 -4 1 -2 4 0 3r: Interpretar el resultat: P(x) = x4 – 2x3 + 3x2 + 2x – 4 = (x – 1)·(x + 1)·(x2 – 2x + 4)
  • 13. 5. Simplificació de fraccions algebraiques -Una fracció algebraica és aquella formada pel numerador i denominador en forma de polinomis. -Per simplificar-les factoritzarem els dos polinomis i n'eliminarem els factors comuns. Exemple: p63 23,24,69,72,73 x2 +x x 2 +2x+1 x2 +x=x·(x+1) El numerador: (no puc fer Ruffini, extrec factor comú) Exemple: x2 +2x+1=(x+1)·(x+1) El denominador: (faig Ruffini) 1 2 1 - 1 1 -1 1 -1 0 = x·(x+1) (x+1)·(x+1) = x x+1
  • 14. 6. El binomi de Newton p60 E7, 14, 16, 55, 57 (x+ y)0 = (x+ y)1 = (x+ y)2 = (x+ y)3 = (x+ y)4 = 1 x+ y (x+ y)(x+ y)= x4 +4x3 y+6x2 y2 +4xy3 +y4 x2 +xy+ yx+ y2 = x2 +2xy+y2 (x+ y)(x2 +2xy+y2 )=(x3 +2x2 y+xy2 +yx2 +2xy2 + y3 ) =x3 +3x2 y+3xy2 +y3 1 11 2 33 1 1 1 1 1 51 6 1010 1 15 4 4 Triangle de Tartaglia: (a+b)n =A·an +B·an−1 b+C · an−2 b2 +...+X ·bn