SlideShare une entreprise Scribd logo
1  sur  53
Télécharger pour lire hors ligne
‫ر‬َ‫ـد‬ْ‫ق‬‫ِـ‬‫ن‬،،،‫لما‬‫اننا‬ ‫نصدق‬ْْ‫ق‬ِ‫ن‬‫ر‬َ‫د‬
LECTURE (4)
The Z-Transform
Amr E. Mohamed
Faculty of Engineering - Helwan University
Agenda
 Introduction
 The z-Transform
 Properties of the z-Transform
 Inverse z-Transform
 Direct Division Method
 Partial Fraction-expansion Method
 Inversion Integral Method (Residue Theorem)
 System Representation in the z-Domain
 The Transfer Function of a Discrete-Time System
 The Frequency Response of a Discrete-Time System
 System Properties in the z-Domain
 Causality
 Stability
 Relationships Between System Representations
2
Introduction
 A LTI discrete system, as discussed in Chapter 2, represented in time domain
using the impulse response, h(n), frequency domain using frequency response,
H(ej) or in the Z domain using transfer function, H(z) as shown in Fig. 3.1.
 Advantages of using frequency response:
1) The computation of steady state response is greatly facilitated.
2) The response to any arbitrary signal x(n) can be easily computed.
 Disadvantages of using frequency response:
1) There are some useful signals for which DTFT does not exist.
2) The transient response of a system due to initial conditions can not be
computed.
3Fig. 3.1 LTI discrete system representation.
 nh
 j
eH
 nx
 j
eX
  )(*)( nhnxny 
      jjj
eHeXeY 
 zX  zH      zHzXzY 
The z-Transform
 Counterpart of the Laplace transform for discrete-time signals
 Generalization of the Fourier Transform
 Fourier Transform does not exist for all signals
 The z-Transform is often time more convenient to use
 Definition:
 Compare to DTFT definition:
 z is a complex variable that can be represented as z=r ej
 Substituting z=ej will reduce the z-transform to DTFT
4
   




n
n
znxzX
    nj
n
j
enxeX 




z-transform of the Unit impulse
 Let x[n] = δ(n)
 Then
 And the region of convergence is all z, where z is a complex number.
5


 

otherwise0
0nfor1
(n)
    1(n)  






n
n
n
n
zznxzX 
z-transform of the a Shifted Unit impulse
 Let x[n] = δ(n-q)
 Then
 And the region of convergence is all z except for z=0.
6


 

otherwise0
qnfor1
q)-(n
    q
n
n
n
n
zzznxzX 






  q)-(n
z-transform of a Unit-Step Function
 Let x[n] = u[n]
 Then
 And the region of convergence will be |z|>1.
7


 

0nfor0
0nfor1
(n)

u
   
11
1
(n) 1
0 


 









 z
z
z
zzuznxzX
n
n
n
n
n
n
z-transform of anu[n]
 Let x[n] = anu[n]
 Then
 With the region of convergence |z|>|a| and a is any real or complex
number.
8


 

0nfor0
0nfor
(n)

n
n a
ua
    










0
(n)
n
nn
n
nn
n
n
zazuaznxzX
 
az
z
az
azzX
n
n



 



 1
0
1
1
1
)(
z-transform of nanu[n]
 Let x[n] = nanu[n]
 Then
 With the region of convergence |z|>|a| and a is any real or complex
number.
9


 

0nfor0
0nfor
(n)

n
n na
una
    










0
n(n)
n
nn
n
nn
n
n
zazunaznxzX
  221
0
1
)()1(
1
)(n
az
z
az
azzX
n
n



 




z-transform of Sinusoids
 Let x[n] = (cos Ωn) u[n]
 Then
 Similarly it can be shown:
10


 

0nfor0
0nfor)cos(
(n))cos(

n
un
2
n)(cos
njnj
ee 


)}()({
2
1
u(n)}n)({cos nuenueZ njnj 








  jj
ez
z
ez
z
2
1
u(n)}n)({cos
1)(cos2
)(cos
)(cos21
)(cos1
u(n)}n)({cos 2
2
21
1





 

zz
zz
zz
z
1)(cos2
)(s
)(cos21
)(s
u(n)}n)({sin 221
1





 

zz
inz
zz
inz
The z-transform and the DTFT
 The z-transform is a function of the complex z variable
 Convenient to describe on the complex z-plane
 If we plot z=ej for =0 to 2 we get the unit circle
11
Re
Im
Unit Circle

r=1
0
2 0 2

 j
eX
Right-Sided Exponential Sequence Example
 For Convergence we require
 Hence the ROC is defined as
 Inside the ROC series converges to
12
         







0
1
n
n
n
nnn
azznuazXnuanx





0n
n
1
az
az1az
n
1

    az
z
az
azzX
n
n



 




0
1
1
1
1
Re
Im
a 1
o x
• Region outside the circle of
radius a is the ROC
• Right-sided sequence ROCs
extend outside a circle
Left-Sided Exponential Sequence Example
 Hence the ROC is defined as
• Region inside the circle of radius a is the ROC
• Left-sided sequence ROCs extend inside a circle
13
          





1
1
11
n
n
n
nnn
azznuazXnuanx
azza 
11
Re
Im
a 1
o x
  ...]1[... 33221133221
 
zazazazazazazazX
 
az
z
za
zazX



 

1
1
1
1
Two-Sided Exponential Sequence Example
14
     1-n-u
2
1
-nu
3
1
nx
nn













11
1
0
1
0n
n
1
z
3
1
1
1
z
3
1
1
z
3
1
z
3
1
z
3
1





























11
0
11
1
n
n
1
z
2
1
1
1
z
2
1
1
z
2
1
z
2
1
z
2
1






























z
3
1
1z
3
1
:ROC 1

 
z
2
1
1z
2
1
:ROC 1


 


























2
1
z
3
1
z
12
1
zz2
z
2
1
1
1
z
3
1
1
1
zX
11
Re
Im
2
1
oo
12
1
xx3
1

15
Finite Length Sequence
 


 

otherwise0
1Nn0a
nx
n
     
az
az
z
1
az1
az1
azzazX
NN
1N1
N11N
0n
n1
1N
0n
nn





 







 Geometric series formula:





2
1
21N
Nn
1NN
n
a1
aa
a
Stability, Causality, and the ROC
 Consider a system with impulse response h[n]
 The z-transform H(z) and the pole-zero plot
shown
 Without any other information h[n] is not
uniquely determined
 |z|>2 or |z|<½ or ½<|z|<2
 If system stable ROC must include unit-circle:
½<|z|<2
 If system is causal must be right sided: |z|>2
16
17
Signal, 𝐱(𝐧) Z-Transform, 𝐗(𝐳) ROC
1 𝛅(𝐧) 1 all Z
2 𝛅(𝐧 − 𝐧 𝟎) 𝐳−𝐧 𝟎 𝐳 ≠ 𝟎
3 𝐮(𝐧)
𝐳
𝐳 − 𝟏
𝐳 > 𝟏
4 −𝐮(−𝐧 − 𝟏)
𝐳
𝐳 − 𝟏
𝐳 < 𝟏
5 𝐚 𝐧
𝐮(𝐧)
𝐳
𝐳 − 𝐚
𝐳 > 𝐚
6 −𝐚 𝐧
𝐮(−𝐧 − 𝟏)
𝐳
𝐳 − 𝐚
𝐳 < 𝐚
7 𝐧 𝐮(𝐧)
𝐳
(𝐳 − 𝟏) 𝟐
𝐳 > 𝟏
8 𝐧 𝐚 𝐧
𝐮(𝐧)
𝐚𝐳
(𝐳 − 𝐚) 𝟐
𝐳 > 𝐚
9 𝐜𝐨𝐬(𝛚 𝟎 𝐧)
𝐳 𝟐
− 𝐳𝐜𝐨𝐬(𝛚 𝟎)
𝐳 𝟐 − 𝟐𝐳 𝐜𝐨𝐬 𝛚 𝟎 + 𝟏
𝐳 > 𝟏
10 𝐬𝐢𝐧(𝛚 𝟎 𝐧)
𝐳 𝐬𝐢𝐧(𝛚 𝟎)
𝐳 𝟐 − 𝟐𝐳 𝐜𝐨𝐬 𝛚 𝟎 + 𝟏
𝐳 > 𝟏
11 𝐫 𝐧
𝐜𝐨𝐬(𝛚 𝟎 𝐧)
𝐳 𝟐
− 𝐳 𝐫 𝐜𝐨𝐬(𝛚 𝟎)
𝐳 𝟐 − 𝟐𝐳 𝐫 𝐜𝐨𝐬 𝛚 𝟎 + 𝐫 𝟐
𝐳 > 𝐫
12 𝐫 𝐧
𝐬𝐢𝐧(𝛚 𝟎 𝐧)
𝐳 𝐫 𝐬𝐢𝐧(𝛚 𝟎)
𝐳 𝟐 − 𝟐𝐳 𝐫 𝐜𝐨𝐬 𝛚 𝟎 + 𝐫 𝟐
𝐳 > 𝐫
Z-Transform Properties
18
19
Z-Transform Properties: Linearity
 Notation
 Linearity
 Note that the ROC of combined sequence may be larger than either ROC
 This would happen if some pole/zero cancellation occurs
 Example:
• Both sequences are right-sided
• Both sequences have a pole z=a
• Both have a ROC defined as |z|>|a|
• In the combined sequence the pole at z=a cancels with a zero at z=a
• The combined ROC is the entire z plane except z=0
 We did make use of this property already, where?
    x
Z
RROCzXnx  
        21 xx21
Z
21 RRROCzbXzaXnbxnax  
     N-nua-nuanx nn

Z-Transform Properties: Time Shifting
 Here no is an integer
 If positive the sequence is shifted right
 If negative the sequence is shifted left
 Add or remove poles at z=0 or z=
 Example:
20
    x
nZ
o RROCzXznnx o
 
 
4
1
z
z
4
1
1
1
zzX
1
1

















   1-nu
4
1
nx
1-n







    x
n
nnZ
o RROCzzXznnx
o
o






 

x(n)-
0n
Z-Transform Properties: Multiplication by Exponential
 ROC is scaled by |zo|
 All pole/zero locations are scaled
 If zo is a positive real number: z-plane shrinks or expands
 If zo is a complex number with unit magnitude it rotates
 Example: We know the z-transform pair
 Let’s find the z-transform of
21
    x
Zn
RROCzXnx   /
  1z:ROC
z-1
1
nu 1-
Z
 
             nurenurenunrnx
njnj
o
n oo 
 

2
1
2
1
cos
  rz
zre1
2/1
zre1
2/1
zX 1j1j oo




 
Z-Transform Properties: Differentiation
 Example: We want the inverse z-transform of
 Let’s differentiate to obtain rational expression
 Making use of z-transform properties and ROC
22
   
x
Z
RROC
dz
zdX
znnx  
    azaz1logzX 1
 
   
1
1
1
2
az1
1
az
dz
zdX
z
az1
az
dz
zdX









     1nuaannx
1n


     1nu
n
a
1nx
n
1n


Z-Transform Properties: Time Reversal
 ROC is inverted
 Example:
 Time reversed version of
23
   
x
Z
R
1
ROCz/1Xnx  
   nuanx n
 
 nuan
  1
11-
1-1
az
za-1
za-
az1
1
zX 





Z-Transform Properties: Convolution
 Convolution in time domain is multiplication in z-domain
 Example: Let’s calculate the convolution of
 Multiplications of z-transforms is
 ROC: if |a|<1 ROC is |z|>1 if |a|>1 ROC is |z|>|a|
 Partial fractional expansion of Y(z)
24
        2x1x21
Z
21 RR:ROCzXzXnxnx  
       nunxandnuanx 2
n
1 
  az:ROC
az1
1
zX 11 

 
  1z:ROC
z1
1
zX 12 

 
     
  1121
z1az1
1
zXzXzY 


  1z:ROCassume
1
1
1
1
1
1
11









 
azza
zY
      nuanu
a1
1
ny 1n



Z-Transform Properties: Initial and Final Value Theorems
 Initial Value Theorem:
 The value of x(n) as n → 0 is given by:
 Final Value Theorem:
 The value of x(n) as n →  is given by:
25
)(lim)(lim)0(
0
zXnxx
zn 

)]()1[(lim)(lim)(
1
zXznxx
zn


Z-Transform Properties: Complex Conjugation
 If X(z) = Z[x(n)], then:
26
XRzzXnx  *)(*)](*[Z
27
The inverse Z-Transform
28
29
The Inverse Z-Transform
 Formal inverse z-transform is based on a Cauchy integral
 Less formal ways sufficient most of the time
1) Direct or Long Division Method
2) Partial fraction expansion
3) Inversion Integral Method (Residue-theorem)
       dzzzX
j
zXZnx n
C
11
2
1 


30
Inverse Z-Transform: Power Series Expansion
 The z-transform is power series
 In expanded form
 Z-transforms of this form can generally be inversed easily
 Especially useful for finite-length series
 Example
   




n
n
znxzX
            ...21012... 2112
 
zxzxxzxzxzX
    
12
1112
2
1
1
2
1
z
11
2
1
1










zz
zzzzzX
         1n
2
1
n1n
2
1
2nnx 
 














Otherwise
n
n
n
n
nx
0
1
2
1
01
1
2
1
21
Inverse Z-Transform: Power Series Expansion
 Example: Find x(n) for n = 0, 1, 2, 3, 4, when X(z) is given by:
 Solution:
 First, rewrite X(z) as a ratio of polynomial in 𝑧−1
, as follows:
 Dividing the numerator by the denominator, we have:
31
 
  2.01
510



zz
z
zX
  21
21
2.02.11
510





zz
zz
zX
4321
68.184.181710 
 zzzz
21
2.02.11 
 zz 21
510 
 zz
32
217 
 zz
432
4.34.2017 
 zzz
43
4.34.18 
 zz
543
68.308.224.18 
 zzz
54
68.368.18 
 zz
654
736.3416.2268.18 
 zzz
321
21210 
 zzz Therefore,
• x(0) = 0,
• x(1) = 10,
• x(2) = 17,
• x(3) = 18.4
• x(4) = 18.68
Inverse Z-Transform: Partial Fraction Expansion
 Assume that a given z-transform can be expressed as
 Apply partial fractional expansion
 First term exist only if M>N
 Br is obtained by long division
 Second term represents all first order poles
 Third term represents an order s pole
 There will be a similar term for every high-order pole
 Each term can be inverse transformed by inspection
32
 






 N
0k
k
k
M
0k
k
k
za
zb
zX
 
  










s
1m
m1
i
m
N
ik,1k
1
k
k
NM
0r
r
r
zd1
C
zd1
A
zBzX
Inverse Z-Transform: Partial Fraction Expansion
 Coefficients are given as
 Easier to understand with examples
33
 
  










s
1m
m1
i
m
N
ik,1k
1
k
k
NM
0r
r
r
zd1
C
zd1
A
zBzX
    kdzkk zXzdA 

 1
1
   
     1
1
1
!
1















idw
s
ims
ms
ms
i
m wXwd
dw
d
dms
C
Example:
 Find x(n) if X(z) is given by:
 Solution: We first expand X(z)/z into partial fractions as follows :
 Then we obtain
 then
34
 
  2.01
10


zz
z
zX
 
      2.0
5.12
1
5.12
2.01
10






zzzzz
zX
  









2.01
5.12
z
z
z
z
zX
  )()2.0(5.12)(5.12 nununx n

  )(11
nZ 
 nu
z
z
Z 







1
1
 nua
az
z
Z n







1
Another Solution
 In this example, if X(z), rather than X(z)/z, is expanded into partial
fractions, then we obtain:
 However, by use of the shifting theorem we find :
 Then
35
 
   2.0
5.2
1
5.12
2.01
10






zzzz
z
zX
  








 
2.0
5.2
1
5.12 11
z
z
z
z
z
zzX
  )1(2.015.12)1()2.0(
2.0
5.2
)1(5.12)(
)1()2.0(5.2)1(5.12)( 1

 
nunununx
nununx
nn
n
 
 
 
 
 
..
..
48.124
4.123
122
101
00





x
x
x
x
x
     o
n
nnxzXzZ o
1
Example:
 Find x(n) if X(z) is given by:
 Solution: Expand X(z)/z into partial fraction as follows:
 Then:
 By referring to tables we find that x(n) is given by:
 and therefore,
 x(0) = 0 -1 +3 = 2
 x(1) = 18 – 2 + 3= 19
36
 
   12
2
2
3



zz
zz
zX
 
      1
3
2
1
2
9
12
12
22
2









zzzzz
z
z
zX
 
     1
3
22
9
2






z
z
z
z
z
z
zX
  )(3)()2()()2(5.4 nununrnx nn

 nnu
n
nn
nr 


 

00
0
)(

 
 nr
z
z
Z 







2
1
1
 
 nra
az
az
Z n








2
1
Solution of Difference Equations
37
Transfer Function Representation
 First – Order Case
 Let y[n] + ay[n-1] = bx[n]
 Then take the z-transform to get:
• Y(z) + a z-1Y(z) = b X(z)
 Simplifying:
• Y(z) (1 + az-1) = b X(z)
• Y(z) = (b X(z))/ (1 + az-1)
 And we have the transfer function H(z):
• Y(z) = H(z) X(z)
• so  H(z) = b z /(z + a)
38
Step Response of a First Order System
 If a discrete-Time system has the following difference equation y[n] + ay[n-1]
= bx[n]
 Find the impulse response
 Solution:
 In time Domain:
 y[n] = bx[n] - ay[n-1]
 For n<0  y[n] = 0
 at n=0  y[0] = b δ[0] – ay[-1] = b
 at n=1  y[1] = b δ[1] – ay[0] = -ab
 at n=2  y[2] = b δ[2] – ay[1] = a2b
 at n=3  y[3] = b δ[3] – ay[2] = -a3b
 For n>0  y[n] = (-a)n b
39
Step Response of a First Order System
 If a discrete-Time system has the following difference equation
y[n] + ay[n-1] = bx[n]
 Find the impulse response
 Solution:
 In z-Domain:
 By z-transform  Y[z] + az-1 y[z] = bX[z]
Y[z][1 + az-1] = bX[z]
Y[z] = b X[z] /[1 + az-1]
 Since, x[n] = δ[n]  X[z] = 1
Y[z] = b /[1 + az-1]
 By inverse z-transform
y[n] = (-a)nb u(n)
40
Second-Order Case
 Consider the following difference equation:
 Y[n] +a1y[n-1] +a2y[n-2] = b0x[n] + b1x[n-1]
• H(z) = (b0z2 + b1z)/(z2 + a1z + a2)
41
Nth-Order System
 y[n] +a1y[n-1] +…+aNy[n-N] =b0x[n]+…+bMx[n-M]
 And H(z) = B(z)/A(z)
 Where H(z) =(b0+…+bMz-M)/(1 + a1z-1+ …+aNz-N)
 Now multiply by (zN/zN)
 H(z) = (b0zN +…+bMzN-M)/ (zN + a1zN-1 + …+ aN)
 So we have
 B(z) = (b0zN +…+bMzN-M)
 A(z) = (zN + a1zN-1 + …+ aN)
42
System Representation in the z-
Domain
43
The Transfer Function of a Discrete-Time System
 The transfer function of a discrete-time system is defined as the ratio of the z
transform of the response to the z transform of the excitation as shown in Fig. 3.6.
 Consider a linear, time-invariant, discrete-time system, and let x(n), y(n), and h(n)
be the excitation, response, and impulse response, respectively. From the
convolution summation in Eq. (2.7), we have:
 and, therefore, from the real-convolution theorem, we get:
 or
44
     



k
knhkxny
      





 

k
knhkxZnyZ
Fig. 3.6 The transfer function of a discrete-time system.
H(z)
X(z) Y(z)
Input
Excitation
Output
Response
System Function
Transfer Function         
 zX
zY
zHzHzXzY 
Derivation of the Transfer Function from Difference Equation
 A causal, linear, time-invariant, recursive discrete-time system can be
represented by the difference equation Eq. (2.10) as:
 Apply the z transform for both sides, we get:
45
      





  
 
N
i
M
i
ii inybinxaZnyZ
0 1
 
 


N
i
M
i
i
i
i
i zbzYzazXzY
0 1
)()()(
   
 
 
 zD
zN
zb
za
zX
zY
zH M
i
i
i
N
i
i
i









1
0
1
      
 

N
i
M
i
ii inyainxany
0 1
Derivation of the Transfer Function from the System Network
 The z-domain characterizations of the unit delay, the adder, and the multiplier
are obtained from Fig. 2.9 and shown in Fig. 3.7.
46Fig. 3.7 Elements of discrete-time systems (a) Unit delay, (b) Adder, (c) Multiplier.
The Transfer Function of a Discrete-Time System
 Example 3.14 Find the transfer function of the system shown in Fig. 3.8.
 Solution From Fig. 3.8, we can write:
 Therefore,
47Fig. 3.8 Second-order recursive system.
  )(
4
1
)(
2
1
)( 21
zWzzWzzXzW 

    )()1()()( 11
zWzzYzWzzWzY 

 
21
4
1
2
1
1
)(



zz
zX
zW
 
4
1
2
1
)1(
)(
)(
2



zz
zz
zX
zY
zH
The Frequency Response of a Discrete-Time System
 If x(n) is absolutely sumable, that is:
 Then the discrete-time Fourier transform is given by:
 The operator [.] transforms a discrete time signal x(n) into a complex valued
continuous function X(ej) of real variable  = 𝟐𝝅𝒇 .
 X(ej) is a complex valued continuous function.
  = 𝟐𝝅𝒇 [rad/sec] and f is the digital frequency measured in [C/S or Hz].
 To find the frequency response 𝑯(𝒆𝒋) from the transfer function, H(z), replace z
by 𝒆𝒋 as follow:
48
  

0n
nx
      




0n
njj
enxnxeX 
   


j
ezn
njj
zHenheH




  )(
 nx      nhnxny 
 j
eX  j
eH
 nh
      jjj
eHeXeY 
    j
eYny 1

Example
 For the system described by its impulse response do:
a) Derive the frequency response, 𝐻(𝑒𝑗) .
b) Evaluate and draw its magnitude and phase at 𝜔 = 0, 0.25𝜋, 0.5𝜋, 0.75𝜋 𝑎𝑛𝑑 𝜋.
 Solution
a) Using DTFT Eq.(3.17 and 3.18), we find :
Hence:
Or
and
49
     nunh
n
9.0
     
         

sin9.0cos9.01
1
9.01
1
9.0
0 je
eenheH j
n n
njnnjj



 





 
 
                  22222
sincos9.0cos9.021
1
sin9.0cos9.01
1





j
eH
   

cos8.181.1
1

j
eH
   
 









cos9.01
sin9.0
arctanj
eH
Example (Cont.)
b) The magnitude and phase plots are shown in Fig. 3.9.
50
Fig. 3.9 The frequency response of a discrete-time system:
(a) The magnitude plot and (b) The phase plot.
(a) (b)
Causality
 H(z) is described as:
 H(z) is causal If the order of the denominator, D(z) ≥ the order of numerator N(z).
 Example 3.16: Check the system causality if its transfer function, H(z) is:
a) b)
 Solution
a) The system is not causal as the O[N(z)] > O[D(z)].
b) H(z) can be rewritten as:
Therefore, he system is causal as the O[N(z)] = O[D(z)].
51
   
 zD
zN
zH 
 
8
1
4
1
2
2
23



zz
zzz
zH   1
1 21
1
3
1
1
1

 



zz
zH
 
1)3/5(
)3/5(2
21
1
)3/1(1
1
2
2
11






 
zz
zz
zz
zH
Stability
 A LTI system is said to be stable If the poles of H(z) lies inside the unit
circle (z=1)
 Example 3.16 Check the system stability if its transfer function, H(z) is:
a) b)
 Solution
a) H(z) can be rewritten as:
This system is unstable as it has one pole at z = 4.
a) H(z) can be rewritten as:
This system is stable as it has one pole at z = 0.5.
52
  1
41
1



z
zH   


 

1
1
)2/1(1
)2/1(1
z
z
zH
 
)2/1(
)2/1(
)2/1(1
)2/1(1
1
1





 

z
z
z
z
zH
 
441
1
1



 
z
z
z
zH
53

Contenu connexe

Tendances

Fir filter design (windowing technique)
Fir filter design (windowing technique)Fir filter design (windowing technique)
Fir filter design (windowing technique)
Bin Biny Bino
 

Tendances (20)

Z TRRANSFORM
Z  TRRANSFORMZ  TRRANSFORM
Z TRRANSFORM
 
Reference for z and inverse z transform
Reference for z and inverse z transformReference for z and inverse z transform
Reference for z and inverse z transform
 
Dcs lec02 - z-transform
Dcs   lec02 - z-transformDcs   lec02 - z-transform
Dcs lec02 - z-transform
 
Z transform
 Z transform Z transform
Z transform
 
Chapter2 - Linear Time-Invariant System
Chapter2 - Linear Time-Invariant SystemChapter2 - Linear Time-Invariant System
Chapter2 - Linear Time-Invariant System
 
Laplace transform & fourier series
Laplace transform & fourier seriesLaplace transform & fourier series
Laplace transform & fourier series
 
Time response of discrete systems 4th lecture
Time response of discrete systems 4th lectureTime response of discrete systems 4th lecture
Time response of discrete systems 4th lecture
 
Dcs lec03 - z-analysis of discrete time control systems
Dcs   lec03 - z-analysis of discrete time control systemsDcs   lec03 - z-analysis of discrete time control systems
Dcs lec03 - z-analysis of discrete time control systems
 
Radix-2 DIT FFT
Radix-2 DIT FFT Radix-2 DIT FFT
Radix-2 DIT FFT
 
Signals and Systems Formula Sheet
Signals and Systems Formula SheetSignals and Systems Formula Sheet
Signals and Systems Formula Sheet
 
Z transforms and their applications
Z transforms and their applicationsZ transforms and their applications
Z transforms and their applications
 
Dsp U Lec05 The Z Transform
Dsp U   Lec05 The Z TransformDsp U   Lec05 The Z Transform
Dsp U Lec05 The Z Transform
 
Z Transform
Z TransformZ Transform
Z Transform
 
Fourier Transform ,LAPLACE TRANSFORM,ROC and its Properties
Fourier Transform ,LAPLACE TRANSFORM,ROC and its Properties Fourier Transform ,LAPLACE TRANSFORM,ROC and its Properties
Fourier Transform ,LAPLACE TRANSFORM,ROC and its Properties
 
STate Space Analysis
STate Space AnalysisSTate Space Analysis
STate Space Analysis
 
DSP_FOEHU - MATLAB 01 - Discrete Time Signals and Systems
DSP_FOEHU - MATLAB 01 - Discrete Time Signals and SystemsDSP_FOEHU - MATLAB 01 - Discrete Time Signals and Systems
DSP_FOEHU - MATLAB 01 - Discrete Time Signals and Systems
 
Z Transform And Inverse Z Transform - Signal And Systems
Z Transform And Inverse Z Transform - Signal And SystemsZ Transform And Inverse Z Transform - Signal And Systems
Z Transform And Inverse Z Transform - Signal And Systems
 
Z TRANSFORM PROPERTIES AND INVERSE Z TRANSFORM
Z TRANSFORM PROPERTIES AND INVERSE Z TRANSFORMZ TRANSFORM PROPERTIES AND INVERSE Z TRANSFORM
Z TRANSFORM PROPERTIES AND INVERSE Z TRANSFORM
 
Fir filter design (windowing technique)
Fir filter design (windowing technique)Fir filter design (windowing technique)
Fir filter design (windowing technique)
 
Sampling Theorem
Sampling TheoremSampling Theorem
Sampling Theorem
 

Similaire à DSP_2018_FOEHU - Lec 04 - The z-Transform

dsp dsp by Dr. k Udaya kumar power point
dsp dsp by Dr. k Udaya kumar power pointdsp dsp by Dr. k Udaya kumar power point
dsp dsp by Dr. k Udaya kumar power point
AnujKumar734472
 
Discreate time system and z transform
Discreate time system and z transformDiscreate time system and z transform
Discreate time system and z transform
VIKAS KUMAR MANJHI
 

Similaire à DSP_2018_FOEHU - Lec 04 - The z-Transform (20)

dsp dsp by Dr. k Udaya kumar power point
dsp dsp by Dr. k Udaya kumar power pointdsp dsp by Dr. k Udaya kumar power point
dsp dsp by Dr. k Udaya kumar power point
 
Digital Signal Processing and the z-transform
Digital Signal Processing and the  z-transformDigital Signal Processing and the  z-transform
Digital Signal Processing and the z-transform
 
Signals and systems3 ppt
Signals and systems3 pptSignals and systems3 ppt
Signals and systems3 ppt
 
z transform.pptx
z transform.pptxz transform.pptx
z transform.pptx
 
Chapter 6 frequency domain transformation.pptx
Chapter 6 frequency domain transformation.pptxChapter 6 frequency domain transformation.pptx
Chapter 6 frequency domain transformation.pptx
 
ADSP (17 Nov)week8.ppt
ADSP (17 Nov)week8.pptADSP (17 Nov)week8.ppt
ADSP (17 Nov)week8.ppt
 
ADSP (17 Nov).ppt
ADSP (17 Nov).pptADSP (17 Nov).ppt
ADSP (17 Nov).ppt
 
Ch3_Z-transform.pdf
Ch3_Z-transform.pdfCh3_Z-transform.pdf
Ch3_Z-transform.pdf
 
5.pdf
5.pdf5.pdf
5.pdf
 
Best to be presented z-transform
Best to be presented   z-transformBest to be presented   z-transform
Best to be presented z-transform
 
Digital signal processing part2
Digital signal processing part2Digital signal processing part2
Digital signal processing part2
 
"Z" TRANSFORM TOPIC REVIEW
"Z" TRANSFORM  TOPIC REVIEW"Z" TRANSFORM  TOPIC REVIEW
"Z" TRANSFORM TOPIC REVIEW
 
ch3-4
ch3-4ch3-4
ch3-4
 
Signal3
Signal3Signal3
Signal3
 
Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...
Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...
Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...
 
lecture8.ppt
lecture8.pptlecture8.ppt
lecture8.ppt
 
Z trasnform & Inverse Z-transform in matlab
Z trasnform & Inverse Z-transform in matlabZ trasnform & Inverse Z-transform in matlab
Z trasnform & Inverse Z-transform in matlab
 
Lecture8
Lecture8Lecture8
Lecture8
 
Z transform
Z transformZ transform
Z transform
 
Discreate time system and z transform
Discreate time system and z transformDiscreate time system and z transform
Discreate time system and z transform
 

Plus de Amr E. Mohamed

Plus de Amr E. Mohamed (20)

Dsp 2018 foehu - lec 10 - multi-rate digital signal processing
Dsp 2018 foehu - lec 10 - multi-rate digital signal processingDsp 2018 foehu - lec 10 - multi-rate digital signal processing
Dsp 2018 foehu - lec 10 - multi-rate digital signal processing
 
Dcs lec01 - introduction to discrete-time control systems
Dcs   lec01 - introduction to discrete-time control systemsDcs   lec01 - introduction to discrete-time control systems
Dcs lec01 - introduction to discrete-time control systems
 
DDSP_2018_FOEHU - Lec 10 - Digital Signal Processing Applications
DDSP_2018_FOEHU - Lec 10 - Digital Signal Processing ApplicationsDDSP_2018_FOEHU - Lec 10 - Digital Signal Processing Applications
DDSP_2018_FOEHU - Lec 10 - Digital Signal Processing Applications
 
DSP_2018_FOEHU - Lec 07 - IIR Filter Design
DSP_2018_FOEHU - Lec 07 - IIR Filter DesignDSP_2018_FOEHU - Lec 07 - IIR Filter Design
DSP_2018_FOEHU - Lec 07 - IIR Filter Design
 
DSP_2018_FOEHU - Lec 06 - FIR Filter Design
DSP_2018_FOEHU - Lec 06 - FIR Filter DesignDSP_2018_FOEHU - Lec 06 - FIR Filter Design
DSP_2018_FOEHU - Lec 06 - FIR Filter Design
 
SE2018_Lec 17_ Coding
SE2018_Lec 17_ CodingSE2018_Lec 17_ Coding
SE2018_Lec 17_ Coding
 
SE2018_Lec-22_-Continuous-Integration-Tools
SE2018_Lec-22_-Continuous-Integration-ToolsSE2018_Lec-22_-Continuous-Integration-Tools
SE2018_Lec-22_-Continuous-Integration-Tools
 
SE2018_Lec 21_ Software Configuration Management (SCM)
SE2018_Lec 21_ Software Configuration Management (SCM)SE2018_Lec 21_ Software Configuration Management (SCM)
SE2018_Lec 21_ Software Configuration Management (SCM)
 
SE2018_Lec 18_ Design Principles and Design Patterns
SE2018_Lec 18_ Design Principles and Design PatternsSE2018_Lec 18_ Design Principles and Design Patterns
SE2018_Lec 18_ Design Principles and Design Patterns
 
Selenium - Introduction
Selenium - IntroductionSelenium - Introduction
Selenium - Introduction
 
SE2018_Lec 20_ Test-Driven Development (TDD)
SE2018_Lec 20_ Test-Driven Development (TDD)SE2018_Lec 20_ Test-Driven Development (TDD)
SE2018_Lec 20_ Test-Driven Development (TDD)
 
SE2018_Lec 19_ Software Testing
SE2018_Lec 19_ Software TestingSE2018_Lec 19_ Software Testing
SE2018_Lec 19_ Software Testing
 
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier TransformDSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
 
DSP_2018_FOEHU - Lec 05 - Digital Filters
DSP_2018_FOEHU - Lec 05 - Digital FiltersDSP_2018_FOEHU - Lec 05 - Digital Filters
DSP_2018_FOEHU - Lec 05 - Digital Filters
 
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and SystemsDSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
 
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time SignalsDSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
 
SE2018_Lec 15_ Software Design
SE2018_Lec 15_ Software DesignSE2018_Lec 15_ Software Design
SE2018_Lec 15_ Software Design
 
DSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal Processing
DSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal ProcessingDSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal Processing
DSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal Processing
 
DSP_2018_FOEHU - Lec 0 - Course Outlines
DSP_2018_FOEHU - Lec 0 - Course OutlinesDSP_2018_FOEHU - Lec 0 - Course Outlines
DSP_2018_FOEHU - Lec 0 - Course Outlines
 
SE2018_Lec 14_ Process Modeling and Data Flow Diagram.pptx
SE2018_Lec 14_ Process Modeling and Data Flow Diagram.pptxSE2018_Lec 14_ Process Modeling and Data Flow Diagram.pptx
SE2018_Lec 14_ Process Modeling and Data Flow Diagram.pptx
 

Dernier

VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
ankushspencer015
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ssuser89054b
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
dollysharma2066
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
amitlee9823
 

Dernier (20)

VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdf
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
NFPA 5000 2024 standard .
NFPA 5000 2024 standard                                  .NFPA 5000 2024 standard                                  .
NFPA 5000 2024 standard .
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank  Design by Working Stress - IS Method.pdfIntze Overhead Water Tank  Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
 
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
 
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
 

DSP_2018_FOEHU - Lec 04 - The z-Transform

  • 2. Agenda  Introduction  The z-Transform  Properties of the z-Transform  Inverse z-Transform  Direct Division Method  Partial Fraction-expansion Method  Inversion Integral Method (Residue Theorem)  System Representation in the z-Domain  The Transfer Function of a Discrete-Time System  The Frequency Response of a Discrete-Time System  System Properties in the z-Domain  Causality  Stability  Relationships Between System Representations 2
  • 3. Introduction  A LTI discrete system, as discussed in Chapter 2, represented in time domain using the impulse response, h(n), frequency domain using frequency response, H(ej) or in the Z domain using transfer function, H(z) as shown in Fig. 3.1.  Advantages of using frequency response: 1) The computation of steady state response is greatly facilitated. 2) The response to any arbitrary signal x(n) can be easily computed.  Disadvantages of using frequency response: 1) There are some useful signals for which DTFT does not exist. 2) The transient response of a system due to initial conditions can not be computed. 3Fig. 3.1 LTI discrete system representation.  nh  j eH  nx  j eX   )(*)( nhnxny        jjj eHeXeY   zX  zH      zHzXzY 
  • 4. The z-Transform  Counterpart of the Laplace transform for discrete-time signals  Generalization of the Fourier Transform  Fourier Transform does not exist for all signals  The z-Transform is often time more convenient to use  Definition:  Compare to DTFT definition:  z is a complex variable that can be represented as z=r ej  Substituting z=ej will reduce the z-transform to DTFT 4         n n znxzX     nj n j enxeX     
  • 5. z-transform of the Unit impulse  Let x[n] = δ(n)  Then  And the region of convergence is all z, where z is a complex number. 5      otherwise0 0nfor1 (n)     1(n)         n n n n zznxzX 
  • 6. z-transform of the a Shifted Unit impulse  Let x[n] = δ(n-q)  Then  And the region of convergence is all z except for z=0. 6      otherwise0 qnfor1 q)-(n     q n n n n zzznxzX          q)-(n
  • 7. z-transform of a Unit-Step Function  Let x[n] = u[n]  Then  And the region of convergence will be |z|>1. 7      0nfor0 0nfor1 (n)  u     11 1 (n) 1 0                z z z zzuznxzX n n n n n n
  • 8. z-transform of anu[n]  Let x[n] = anu[n]  Then  With the region of convergence |z|>|a| and a is any real or complex number. 8      0nfor0 0nfor (n)  n n a ua                0 (n) n nn n nn n n zazuaznxzX   az z az azzX n n          1 0 1 1 1 )(
  • 9. z-transform of nanu[n]  Let x[n] = nanu[n]  Then  With the region of convergence |z|>|a| and a is any real or complex number. 9      0nfor0 0nfor (n)  n n na una                0 n(n) n nn n nn n n zazunaznxzX   221 0 1 )()1( 1 )(n az z az azzX n n         
  • 10. z-transform of Sinusoids  Let x[n] = (cos Ωn) u[n]  Then  Similarly it can be shown: 10      0nfor0 0nfor)cos( (n))cos(  n un 2 n)(cos njnj ee    )}()({ 2 1 u(n)}n)({cos nuenueZ njnj            jj ez z ez z 2 1 u(n)}n)({cos 1)(cos2 )(cos )(cos21 )(cos1 u(n)}n)({cos 2 2 21 1         zz zz zz z 1)(cos2 )(s )(cos21 )(s u(n)}n)({sin 221 1         zz inz zz inz
  • 11. The z-transform and the DTFT  The z-transform is a function of the complex z variable  Convenient to describe on the complex z-plane  If we plot z=ej for =0 to 2 we get the unit circle 11 Re Im Unit Circle  r=1 0 2 0 2   j eX
  • 12. Right-Sided Exponential Sequence Example  For Convergence we require  Hence the ROC is defined as  Inside the ROC series converges to 12                  0 1 n n n nnn azznuazXnuanx      0n n 1 az az1az n 1      az z az azzX n n          0 1 1 1 1 Re Im a 1 o x • Region outside the circle of radius a is the ROC • Right-sided sequence ROCs extend outside a circle
  • 13. Left-Sided Exponential Sequence Example  Hence the ROC is defined as • Region inside the circle of radius a is the ROC • Left-sided sequence ROCs extend inside a circle 13                 1 1 11 n n n nnn azznuazXnuanx azza  11 Re Im a 1 o x   ...]1[... 33221133221   zazazazazazazazX   az z za zazX       1 1 1 1
  • 14. Two-Sided Exponential Sequence Example 14      1-n-u 2 1 -nu 3 1 nx nn              11 1 0 1 0n n 1 z 3 1 1 1 z 3 1 1 z 3 1 z 3 1 z 3 1                              11 0 11 1 n n 1 z 2 1 1 1 z 2 1 1 z 2 1 z 2 1 z 2 1                               z 3 1 1z 3 1 :ROC 1    z 2 1 1z 2 1 :ROC 1                               2 1 z 3 1 z 12 1 zz2 z 2 1 1 1 z 3 1 1 1 zX 11 Re Im 2 1 oo 12 1 xx3 1 
  • 15. 15 Finite Length Sequence        otherwise0 1Nn0a nx n       az az z 1 az1 az1 azzazX NN 1N1 N11N 0n n1 1N 0n nn                Geometric series formula:      2 1 21N Nn 1NN n a1 aa a
  • 16. Stability, Causality, and the ROC  Consider a system with impulse response h[n]  The z-transform H(z) and the pole-zero plot shown  Without any other information h[n] is not uniquely determined  |z|>2 or |z|<½ or ½<|z|<2  If system stable ROC must include unit-circle: ½<|z|<2  If system is causal must be right sided: |z|>2 16
  • 17. 17 Signal, 𝐱(𝐧) Z-Transform, 𝐗(𝐳) ROC 1 𝛅(𝐧) 1 all Z 2 𝛅(𝐧 − 𝐧 𝟎) 𝐳−𝐧 𝟎 𝐳 ≠ 𝟎 3 𝐮(𝐧) 𝐳 𝐳 − 𝟏 𝐳 > 𝟏 4 −𝐮(−𝐧 − 𝟏) 𝐳 𝐳 − 𝟏 𝐳 < 𝟏 5 𝐚 𝐧 𝐮(𝐧) 𝐳 𝐳 − 𝐚 𝐳 > 𝐚 6 −𝐚 𝐧 𝐮(−𝐧 − 𝟏) 𝐳 𝐳 − 𝐚 𝐳 < 𝐚 7 𝐧 𝐮(𝐧) 𝐳 (𝐳 − 𝟏) 𝟐 𝐳 > 𝟏 8 𝐧 𝐚 𝐧 𝐮(𝐧) 𝐚𝐳 (𝐳 − 𝐚) 𝟐 𝐳 > 𝐚 9 𝐜𝐨𝐬(𝛚 𝟎 𝐧) 𝐳 𝟐 − 𝐳𝐜𝐨𝐬(𝛚 𝟎) 𝐳 𝟐 − 𝟐𝐳 𝐜𝐨𝐬 𝛚 𝟎 + 𝟏 𝐳 > 𝟏 10 𝐬𝐢𝐧(𝛚 𝟎 𝐧) 𝐳 𝐬𝐢𝐧(𝛚 𝟎) 𝐳 𝟐 − 𝟐𝐳 𝐜𝐨𝐬 𝛚 𝟎 + 𝟏 𝐳 > 𝟏 11 𝐫 𝐧 𝐜𝐨𝐬(𝛚 𝟎 𝐧) 𝐳 𝟐 − 𝐳 𝐫 𝐜𝐨𝐬(𝛚 𝟎) 𝐳 𝟐 − 𝟐𝐳 𝐫 𝐜𝐨𝐬 𝛚 𝟎 + 𝐫 𝟐 𝐳 > 𝐫 12 𝐫 𝐧 𝐬𝐢𝐧(𝛚 𝟎 𝐧) 𝐳 𝐫 𝐬𝐢𝐧(𝛚 𝟎) 𝐳 𝟐 − 𝟐𝐳 𝐫 𝐜𝐨𝐬 𝛚 𝟎 + 𝐫 𝟐 𝐳 > 𝐫
  • 19. 19 Z-Transform Properties: Linearity  Notation  Linearity  Note that the ROC of combined sequence may be larger than either ROC  This would happen if some pole/zero cancellation occurs  Example: • Both sequences are right-sided • Both sequences have a pole z=a • Both have a ROC defined as |z|>|a| • In the combined sequence the pole at z=a cancels with a zero at z=a • The combined ROC is the entire z plane except z=0  We did make use of this property already, where?     x Z RROCzXnx           21 xx21 Z 21 RRROCzbXzaXnbxnax        N-nua-nuanx nn 
  • 20. Z-Transform Properties: Time Shifting  Here no is an integer  If positive the sequence is shifted right  If negative the sequence is shifted left  Add or remove poles at z=0 or z=  Example: 20     x nZ o RROCzXznnx o     4 1 z z 4 1 1 1 zzX 1 1                     1-nu 4 1 nx 1-n            x n nnZ o RROCzzXznnx o o          x(n)- 0n
  • 21. Z-Transform Properties: Multiplication by Exponential  ROC is scaled by |zo|  All pole/zero locations are scaled  If zo is a positive real number: z-plane shrinks or expands  If zo is a complex number with unit magnitude it rotates  Example: We know the z-transform pair  Let’s find the z-transform of 21     x Zn RROCzXnx   /   1z:ROC z-1 1 nu 1- Z                nurenurenunrnx njnj o n oo     2 1 2 1 cos   rz zre1 2/1 zre1 2/1 zX 1j1j oo      
  • 22. Z-Transform Properties: Differentiation  Example: We want the inverse z-transform of  Let’s differentiate to obtain rational expression  Making use of z-transform properties and ROC 22     x Z RROC dz zdX znnx       azaz1logzX 1       1 1 1 2 az1 1 az dz zdX z az1 az dz zdX               1nuaannx 1n        1nu n a 1nx n 1n  
  • 23. Z-Transform Properties: Time Reversal  ROC is inverted  Example:  Time reversed version of 23     x Z R 1 ROCz/1Xnx      nuanx n    nuan   1 11- 1-1 az za-1 za- az1 1 zX      
  • 24. Z-Transform Properties: Convolution  Convolution in time domain is multiplication in z-domain  Example: Let’s calculate the convolution of  Multiplications of z-transforms is  ROC: if |a|<1 ROC is |z|>1 if |a|>1 ROC is |z|>|a|  Partial fractional expansion of Y(z) 24         2x1x21 Z 21 RR:ROCzXzXnxnx          nunxandnuanx 2 n 1    az:ROC az1 1 zX 11       1z:ROC z1 1 zX 12             1121 z1az1 1 zXzXzY      1z:ROCassume 1 1 1 1 1 1 11            azza zY       nuanu a1 1 ny 1n   
  • 25. Z-Transform Properties: Initial and Final Value Theorems  Initial Value Theorem:  The value of x(n) as n → 0 is given by:  Final Value Theorem:  The value of x(n) as n →  is given by: 25 )(lim)(lim)0( 0 zXnxx zn   )]()1[(lim)(lim)( 1 zXznxx zn  
  • 26. Z-Transform Properties: Complex Conjugation  If X(z) = Z[x(n)], then: 26 XRzzXnx  *)(*)](*[Z
  • 27. 27
  • 29. 29 The Inverse Z-Transform  Formal inverse z-transform is based on a Cauchy integral  Less formal ways sufficient most of the time 1) Direct or Long Division Method 2) Partial fraction expansion 3) Inversion Integral Method (Residue-theorem)        dzzzX j zXZnx n C 11 2 1   
  • 30. 30 Inverse Z-Transform: Power Series Expansion  The z-transform is power series  In expanded form  Z-transforms of this form can generally be inversed easily  Especially useful for finite-length series  Example         n n znxzX             ...21012... 2112   zxzxxzxzxzX      12 1112 2 1 1 2 1 z 11 2 1 1           zz zzzzzX          1n 2 1 n1n 2 1 2nnx                  Otherwise n n n n nx 0 1 2 1 01 1 2 1 21
  • 31. Inverse Z-Transform: Power Series Expansion  Example: Find x(n) for n = 0, 1, 2, 3, 4, when X(z) is given by:  Solution:  First, rewrite X(z) as a ratio of polynomial in 𝑧−1 , as follows:  Dividing the numerator by the denominator, we have: 31     2.01 510    zz z zX   21 21 2.02.11 510      zz zz zX 4321 68.184.181710   zzzz 21 2.02.11   zz 21 510   zz 32 217   zz 432 4.34.2017   zzz 43 4.34.18   zz 543 68.308.224.18   zzz 54 68.368.18   zz 654 736.3416.2268.18   zzz 321 21210   zzz Therefore, • x(0) = 0, • x(1) = 10, • x(2) = 17, • x(3) = 18.4 • x(4) = 18.68
  • 32. Inverse Z-Transform: Partial Fraction Expansion  Assume that a given z-transform can be expressed as  Apply partial fractional expansion  First term exist only if M>N  Br is obtained by long division  Second term represents all first order poles  Third term represents an order s pole  There will be a similar term for every high-order pole  Each term can be inverse transformed by inspection 32          N 0k k k M 0k k k za zb zX                s 1m m1 i m N ik,1k 1 k k NM 0r r r zd1 C zd1 A zBzX
  • 33. Inverse Z-Transform: Partial Fraction Expansion  Coefficients are given as  Easier to understand with examples 33                s 1m m1 i m N ik,1k 1 k k NM 0r r r zd1 C zd1 A zBzX     kdzkk zXzdA    1 1          1 1 1 ! 1                idw s ims ms ms i m wXwd dw d dms C
  • 34. Example:  Find x(n) if X(z) is given by:  Solution: We first expand X(z)/z into partial fractions as follows :  Then we obtain  then 34     2.01 10   zz z zX         2.0 5.12 1 5.12 2.01 10       zzzzz zX             2.01 5.12 z z z z zX   )()2.0(5.12)(5.12 nununx n    )(11 nZ   nu z z Z         1 1  nua az z Z n        1
  • 35. Another Solution  In this example, if X(z), rather than X(z)/z, is expanded into partial fractions, then we obtain:  However, by use of the shifting theorem we find :  Then 35      2.0 5.2 1 5.12 2.01 10       zzzz z zX              2.0 5.2 1 5.12 11 z z z z z zzX   )1(2.015.12)1()2.0( 2.0 5.2 )1(5.12)( )1()2.0(5.2)1(5.12)( 1    nunununx nununx nn n           .. .. 48.124 4.123 122 101 00      x x x x x      o n nnxzXzZ o 1
  • 36. Example:  Find x(n) if X(z) is given by:  Solution: Expand X(z)/z into partial fraction as follows:  Then:  By referring to tables we find that x(n) is given by:  and therefore,  x(0) = 0 -1 +3 = 2  x(1) = 18 – 2 + 3= 19 36      12 2 2 3    zz zz zX         1 3 2 1 2 9 12 12 22 2          zzzzz z z zX        1 3 22 9 2       z z z z z z zX   )(3)()2()()2(5.4 nununrnx nn   nnu n nn nr       00 0 )(     nr z z Z         2 1 1    nra az az Z n         2 1
  • 37. Solution of Difference Equations 37
  • 38. Transfer Function Representation  First – Order Case  Let y[n] + ay[n-1] = bx[n]  Then take the z-transform to get: • Y(z) + a z-1Y(z) = b X(z)  Simplifying: • Y(z) (1 + az-1) = b X(z) • Y(z) = (b X(z))/ (1 + az-1)  And we have the transfer function H(z): • Y(z) = H(z) X(z) • so  H(z) = b z /(z + a) 38
  • 39. Step Response of a First Order System  If a discrete-Time system has the following difference equation y[n] + ay[n-1] = bx[n]  Find the impulse response  Solution:  In time Domain:  y[n] = bx[n] - ay[n-1]  For n<0  y[n] = 0  at n=0  y[0] = b δ[0] – ay[-1] = b  at n=1  y[1] = b δ[1] – ay[0] = -ab  at n=2  y[2] = b δ[2] – ay[1] = a2b  at n=3  y[3] = b δ[3] – ay[2] = -a3b  For n>0  y[n] = (-a)n b 39
  • 40. Step Response of a First Order System  If a discrete-Time system has the following difference equation y[n] + ay[n-1] = bx[n]  Find the impulse response  Solution:  In z-Domain:  By z-transform  Y[z] + az-1 y[z] = bX[z] Y[z][1 + az-1] = bX[z] Y[z] = b X[z] /[1 + az-1]  Since, x[n] = δ[n]  X[z] = 1 Y[z] = b /[1 + az-1]  By inverse z-transform y[n] = (-a)nb u(n) 40
  • 41. Second-Order Case  Consider the following difference equation:  Y[n] +a1y[n-1] +a2y[n-2] = b0x[n] + b1x[n-1] • H(z) = (b0z2 + b1z)/(z2 + a1z + a2) 41
  • 42. Nth-Order System  y[n] +a1y[n-1] +…+aNy[n-N] =b0x[n]+…+bMx[n-M]  And H(z) = B(z)/A(z)  Where H(z) =(b0+…+bMz-M)/(1 + a1z-1+ …+aNz-N)  Now multiply by (zN/zN)  H(z) = (b0zN +…+bMzN-M)/ (zN + a1zN-1 + …+ aN)  So we have  B(z) = (b0zN +…+bMzN-M)  A(z) = (zN + a1zN-1 + …+ aN) 42
  • 43. System Representation in the z- Domain 43
  • 44. The Transfer Function of a Discrete-Time System  The transfer function of a discrete-time system is defined as the ratio of the z transform of the response to the z transform of the excitation as shown in Fig. 3.6.  Consider a linear, time-invariant, discrete-time system, and let x(n), y(n), and h(n) be the excitation, response, and impulse response, respectively. From the convolution summation in Eq. (2.7), we have:  and, therefore, from the real-convolution theorem, we get:  or 44          k knhkxny                k knhkxZnyZ Fig. 3.6 The transfer function of a discrete-time system. H(z) X(z) Y(z) Input Excitation Output Response System Function Transfer Function           zX zY zHzHzXzY 
  • 45. Derivation of the Transfer Function from Difference Equation  A causal, linear, time-invariant, recursive discrete-time system can be represented by the difference equation Eq. (2.10) as:  Apply the z transform for both sides, we get: 45                  N i M i ii inybinxaZnyZ 0 1       N i M i i i i i zbzYzazXzY 0 1 )()()(          zD zN zb za zX zY zH M i i i N i i i          1 0 1           N i M i ii inyainxany 0 1
  • 46. Derivation of the Transfer Function from the System Network  The z-domain characterizations of the unit delay, the adder, and the multiplier are obtained from Fig. 2.9 and shown in Fig. 3.7. 46Fig. 3.7 Elements of discrete-time systems (a) Unit delay, (b) Adder, (c) Multiplier.
  • 47. The Transfer Function of a Discrete-Time System  Example 3.14 Find the transfer function of the system shown in Fig. 3.8.  Solution From Fig. 3.8, we can write:  Therefore, 47Fig. 3.8 Second-order recursive system.   )( 4 1 )( 2 1 )( 21 zWzzWzzXzW       )()1()()( 11 zWzzYzWzzWzY     21 4 1 2 1 1 )(    zz zX zW   4 1 2 1 )1( )( )( 2    zz zz zX zY zH
  • 48. The Frequency Response of a Discrete-Time System  If x(n) is absolutely sumable, that is:  Then the discrete-time Fourier transform is given by:  The operator [.] transforms a discrete time signal x(n) into a complex valued continuous function X(ej) of real variable  = 𝟐𝝅𝒇 .  X(ej) is a complex valued continuous function.   = 𝟐𝝅𝒇 [rad/sec] and f is the digital frequency measured in [C/S or Hz].  To find the frequency response 𝑯(𝒆𝒋) from the transfer function, H(z), replace z by 𝒆𝒋 as follow: 48     0n nx            0n njj enxnxeX        j ezn njj zHenheH       )(  nx      nhnxny   j eX  j eH  nh       jjj eHeXeY      j eYny 1 
  • 49. Example  For the system described by its impulse response do: a) Derive the frequency response, 𝐻(𝑒𝑗) . b) Evaluate and draw its magnitude and phase at 𝜔 = 0, 0.25𝜋, 0.5𝜋, 0.75𝜋 𝑎𝑛𝑑 𝜋.  Solution a) Using DTFT Eq.(3.17 and 3.18), we find : Hence: Or and 49      nunh n 9.0                  sin9.0cos9.01 1 9.01 1 9.0 0 je eenheH j n n njnnjj                                 22222 sincos9.0cos9.021 1 sin9.0cos9.01 1      j eH      cos8.181.1 1  j eH                cos9.01 sin9.0 arctanj eH
  • 50. Example (Cont.) b) The magnitude and phase plots are shown in Fig. 3.9. 50 Fig. 3.9 The frequency response of a discrete-time system: (a) The magnitude plot and (b) The phase plot. (a) (b)
  • 51. Causality  H(z) is described as:  H(z) is causal If the order of the denominator, D(z) ≥ the order of numerator N(z).  Example 3.16: Check the system causality if its transfer function, H(z) is: a) b)  Solution a) The system is not causal as the O[N(z)] > O[D(z)]. b) H(z) can be rewritten as: Therefore, he system is causal as the O[N(z)] = O[D(z)]. 51      zD zN zH    8 1 4 1 2 2 23    zz zzz zH   1 1 21 1 3 1 1 1       zz zH   1)3/5( )3/5(2 21 1 )3/1(1 1 2 2 11         zz zz zz zH
  • 52. Stability  A LTI system is said to be stable If the poles of H(z) lies inside the unit circle (z=1)  Example 3.16 Check the system stability if its transfer function, H(z) is: a) b)  Solution a) H(z) can be rewritten as: This system is unstable as it has one pole at z = 4. a) H(z) can be rewritten as: This system is stable as it has one pole at z = 0.5. 52   1 41 1    z zH         1 1 )2/1(1 )2/1(1 z z zH   )2/1( )2/1( )2/1(1 )2/1(1 1 1         z z z z zH   441 1 1      z z z zH
  • 53. 53