SlideShare une entreprise Scribd logo
1  sur  46
Bioavailability
By : Aditya Arya
• Bioavailability is the fraction of administered drug
that reaches the systemic circulation.
• Bioavailability is expressed as the fraction of
administered drug that gains access to the systemic
circulation in a chemically unchanged form.
• For example, if 100 mg of a drug are administered
orally and 70 mg of this drug are absorbed
unchanged, the bioavailability is 0.7 or seventy
percent.
Bioavailability:
Determination of bioavailability:
Bioavailability is determined by comparing
plasma levels of a drug after a particular route of
administration (for example, oral administration)
with plasma drug levels achieved by IV
injection in which all of the agent rapidly enters
the circulation.
When the drug is given orally, only part of the
administered dose appears in the plasma.
By plotting plasma concentrations of the drug
versus time, we can measure the area under the
curve (AUC).
This curve reflects the extent of absorption of the
drug. [Note: By definition, this is 100 percent for
drugs delivered IV.]
Bioavailability of a drug administered orally is
the ratio of the area calculated for oral
administration compared with the area calculated
for IV injection
Pharmacokinetic Studies
Key Measurements
• AUC
– Area under the concentration-
time curve
• Cmax
– Maximum concentration
– A difference of greater than
20% in Cmax or the AUC
represents a significant
difference between the study
and reference compounds
• Tmax
– Time to maximum
concentration
Study Compound
Reference Compound
Time
Concentration
Cmax
Tmax
AUC
FDA Requirements for
Bioequivalence
125%
100%
80%
Product A
Bioequivalent
Reference
Drug
Product B
Not Bioequivalent
• Product A is bioequivalent to
the reference drug; its 90%
confidence interval of the
AUC falls within 80% to
125% of the reference drug
• Product B is not bioequivalent
to the reference drug; its 90%
confidence interval of the
AUC falls outside of 80% to
125% of the reference drug
Pharmacokinetic
ReferenceRange
Factors that influence bioavailability:
First-pass hepatic metabolism:
When a drug is absorbed across the GI tract, it
enters the portal circulation before entering the
systemic circulation.
If the drug is rapidly metabolized by the liver, the
amount of unchanged drug that gains access to the
systemic circulation is decreased.
Many drugs, such as propranolol or lidocaine,
undergo significant biotransformation during a
single passage through the liver.
Solubility of the drug:
Very hydrophilic drugs are poorly absorbed
because of their inability to cross the lipid-rich
cell membranes.
For a drug to be readily absorbed, it must be
largely hydrophobic, yet have some solubility in
aqueous solutions.
This is one reason why many drugs are weak
acids or weak bases. There are some drugs that
are highly lipid-soluble, and they are transported
in the aqueous solutions of the body on carrier
proteins such as albumin.
Chemical instability:
Some drugs, such as penicillin G, are unstable in the
pH of the gastric contents. Others, such as insulin, are
destroyed in the GI tract by degradative enzymes.
Nature of the drug formulation:
Drug absorption may be altered by factors unrelated to
the chemistry of the drug. For example, particle size,
salt form, crystal polymorphism, enteric coatings
and the presence of excipients (such as binders and
dispersing agents) can influence the ease of dissolution
and, therefore, alter the rate of absorption.
Bioequivalence:
Two related drugs are bioequivalent if they show
comparable bioavailability and similar times to
achieve peak blood concentrations. Two related
drugs with a significant difference in
bioavailability are said to be bioinequivalent.
Therapeutic equivalence :
Two similar drugs are therapeutically equivalent if
they have comparable efficacy and safety.
Clinical effectiveness often depends on both the
maximum serum drug concentrations and on the
time required (after administration) to reach peak
concentration. Therefore, two drugs that are
bioequivalent may not be therapeutically
equivalent.
Volume of Distribution :
The volume of distribution (VD) , also known 
as apparent volume of distribution, is 
a pharmacological term used to quantify the 
distribution of a medication between plasma and the rest 
of the body after oral or parenteral dosing. It is defined as 
the theoretical volume in which the total amount of drug 
would need to be uniformly distributed to produce the 
desired blood concentration of a drug.
Volume of distribution may be increased by renal 
failure (due to fluid retention) and liver failure (due to 
altered body fluid and plasma protein binding ). 
Conversely it may be decreased in dehydration.
Volume of distribution may be increased by renal 
failure (due to fluid retention) and liver 
failure (due to altered body fluid and plasma 
protein binding. Conversely it may be decreased
in dehydration.
Distribution of drug in the absence of elimination:
The apparent volume into which a drug distributes, VD, is 
determined by injection of a standard dose of drug, 
which is initially contained entirely in the vascular 
system. The agent may then move from the plasma into 
the interstitium and into cells, causing the plasma 
concentration to decrease with time. Assume for 
simplicity that the drug is not eliminated from the body; 
the drug then achieves a uniform concentration that is 
sustained with time.  The concentration within the 
vascular compartment is the total amount of drug 
administered, divided by the volume into which it 
distributes. 
Apparent volume of distribution :
total amount of drug in the body
VD = ----------------------------------------------
drug blood plasma concentration
Therefore the dose required to give a certain plasma 
concentration can be determined if the VD for that drug 
is known. 
The VD is not a physiologic value; it is more a reflection 
of how a drug will distribute throughout the body 
depending on several physicochemical properties, e.g. 
solubility, charge, size, etc.
For example :
If 25 mg of a drug (D = 25 mg) are 
administered and the plasma 
concentration is 1 mg/L, then 
       VD = 25 mg/1 mg/L = 25 L.
Distribution of drug when elimination is present:
In reality, drugs are eliminated from the body, and a plot of 
concentration versus time shows two phases. The initial 
decrease in plasma concentration is due to a rapid distribution 
phase in which the drug is transferred from the plasma into the 
interstitium and the intracellular water. This is followed by a 
slower elimination phase during which the drug leaves the 
plasma compartment and is lost from the body 
For example, by renal or biliary excretion or by hepatic 
biotransformation. 
The rate at which the drug is eliminated is usually proportional 
to the concentration of drug, C; that is, the rate for most drugs 
is first-order and shows a linear relationship with time if  ln C 
(where ln C is the natural log of C, rather than C) is plotted 
versus time . This is because the elimination processes are not 
saturated.
Calculation of drug concentration if
distribution is instantaneous:
Assume that the elimination process began at the time 
of injection and continued throughout the distribution 
phase. Then, the concentration of drug in the plasma, 
C, can be extrapolated back to time zero (the time of 
injection) to determine C0, which is the concentration 
of drug that would have been achieved if the 
distribution phase had occurred instantly. 
For example, if 10 mg of drug are injected into a 
patient and the plasma concentration is extrapolated to 
time zero, the concentration is C0 = 1 mg/L  and then 
VD = 10 mg/1 mg/L = 10 L.
Uneven drug distribution between compartments:
The apparent volume of distribution assumes that the drug distributes 
uniformly, in a single compartment. However, most drugs distribute 
unevenly, in several compartments, and the volume of distribution does 
not describe a real, physical volume, but rather, reflects the ratio of drug 
in the extraplasmic spaces relative to the plasma space. Nonetheless, Vd
 
is useful because it can be used to calculate the amount of drug needed to
achieve a desired plasma concentration. For example, assume the 
arrhythmia of a cardiac patient is not well controlled due to inadequate 
plasma levels of digitalis. Suppose the concentration of the drug in the 
plasma is C1
 and the desired level of digitalis (known from clinical 
studies) is a higher concentration, C2
. The clinician needs to know how 
much additional drug should be administered to bring the circulating 
level of the drug from C1
 to C2
:
  The difference between the two values is the 
additional dosage needed, which equals VD
(C2
  C1
).
Concept of “Half Life”
 ½ life = how much time it takes for blood levels of 
drug to decrease to half of what it was at 
equilibrium
 There are really two kinds of ½ life…
“distribution” ½ life = when plasma levels fall to 
half what they were at equilibrium due to 
distribution to/storage in body’s tissue reservoirs
“elimination” ½ life = when plasma levels fall to 
half what they were at equilibrium due to drug 
being metabolized and eliminated
 It is usually the elimination ½ life that is used to 
determine dosing schedules, to decide when it is 
safe to put patients on a new drug
Concept of “Half Life”
Time [hours]
0 4 8 12 16 20 24
Conc.[mg/L]
0
1
2
3
4
5
Dependence of Half-life on
Clearance and Volume
For a given dose rate, the blood drug
concentration is inversely proportional to
clearance
Bioavailability: The rate and extent to which the parent
compound reaches the general
circulation.
Absolute Bioavailability
 requires I.V. administration
 Ratio of the oral:intravenous AUC values normalized for
dose
 Fabs= (AUC oral / AUC iv)*(Dose iv / Dose oral)
Relative Bioavailability
 no I.V. reference
 comparison AUC values (ratio) of different dosage
forms / formulations
 Frel = (AUC a / AUC b) * (Dose b /Dose a)
Bioavailability and Its Assessment
The VD may also be used to determine how
readily a drug will displace into the body
tissue compartments relative to the blood:
VD = VP + VT ( fu / fuT )
Where:
VP = plasma volume
VT = apparent tissue volume
fu = fraction unbound in plasma
fu = fraction unbound in tissue
 Pharmacokinetics
 “what the body does to the
drug”
• Absorption
• Distribution
• Metabolism
• Elimination
 Pharmacodynamics
 “what the drug does to the
body”
• wanted effects - efficacy
• unwanted effects -
toxicity
disposition
Dose regimen ResponseExposure
Site of action
Pharmacokinetics Pharmacodynamics
 Basic Pharmacokinetic Concepts
 Bioavailability
Definition
How absorption affects bioavailability?
Food Effect
How drug metabolism affects bioavailability?
How transporters affect bioavailability?
 Bioequivalence
Definition
Bio-IND
Waivers of In Vivo Study Requirements
Biopharmaceutics Classification System (BCS)
General Outline
Basic Concepts
 Easy to understand using intravenous
route
 No absorption phase
 Simple to follow
 Concepts clear with less
assumptions
 Need some math background
 algebra, log scale, Simple
linear Equations etc
 complex math (differential
equations, statistical concepts
etc) for Modeling, Population
PK, PK-PD etc.
Drug
Product
Drug in
Blood
Distribution to
Tissue and Receptor sites
MetabolismExcretion
IV administration, contd.,
 Following dose administration,
we need to follow its drug’s
disposition to understand its PK
characteristics.
 This is achieved by analyzing the
changes of the drug and/or its
metabolite(s) in blood, plasma,
urine etc.
 A simple approach is to
generate Drug Concentration-
Time profile
Dosing
Sampling at
Pre-determined
Time intervals
Bio-analytics Conc. vs time
profiles
Blood withdrawal
Concentration versus Time Profiles
One-
Compartment
Model
Assumes body as one
compartment
1
Two-Compartment Model
Central compartment (drug entry and
elimination)
Tissue compartment (drug distributes)
1 2
k
k
Dose
Dos
e
Broadly the concentration – time profiles can be viewed as two different ways
Concept of “Half Life”
 ½ life = how much time it takes for blood levels of
drug to decrease to half of what it was at
equilibrium
 There are really two kinds of ½ life…
“distribution” ½ life = when plasma levels fall to
half what they were at equilibrium due to
distribution to/storage in body’s tissue reservoirs
“elimination” ½ life = when plasma levels fall to
half what they were at equilibrium due to drug
being metabolized and eliminated
 It is usually the elimination ½ life that is used to
determine dosing schedules, to decide when it is
safe to put patients on a new drug
Concept of “Half Life”
Time [hours]
0 4 8 12 16 20 24
Conc.[mg/L]
0
1
2
3
4
5
Dependence of Half-life on
Clearance and Volume
For a given dose rate, the blood drug
concentration is inversely proportional to
clearance
Bioavailability: The rate and extent to which the parent
compound reaches the general
circulation.
Absolute Bioavailability
 requires I.V. administration
 Ratio of the oral:intravenous AUC values normalized for
dose
 Fabs= (AUC oral / AUC iv)*(Dose iv / Dose oral)
Relative Bioavailability
 no I.V. reference
 comparison AUC values (ratio) of different dosage
forms / formulations
 Frel = (AUC a / AUC b) * (Dose b /Dose a)
Bioavailability and Its Assessment
Time [hours]
0 4 8 12 16 20 24
Conc.[mg/L]
0
1
2
3
4
5
Time [hours]
0 4 8 12 16 20 24
Conc.[mg/L]
0
1
2
3
4
5
Solution
Capsule
20 mg administered as
an i.v. bolus (Diovan)
80 mg given as a solution
and a capsule (Diovan)
Thank you

Contenu connexe

Tendances

Factors affecting distribution of drug
Factors affecting distribution of drugFactors affecting distribution of drug
Factors affecting distribution of drugDr. SHUBHRAJIT MANTRY
 
Pharmacokinetics - drug absorption, drug distribution, drug metabolism, drug ...
Pharmacokinetics - drug absorption, drug distribution, drug metabolism, drug ...Pharmacokinetics - drug absorption, drug distribution, drug metabolism, drug ...
Pharmacokinetics - drug absorption, drug distribution, drug metabolism, drug ...http://neigrihms.gov.in/
 
Pharmacokinetics: Excretion of drugs
Pharmacokinetics: Excretion of drugsPharmacokinetics: Excretion of drugs
Pharmacokinetics: Excretion of drugsFarazaJaved
 
BIOAVAILABILITY BIOEQUIVALENCE THERAPEUTIC INDEX
BIOAVAILABILITY BIOEQUIVALENCE THERAPEUTIC INDEXBIOAVAILABILITY BIOEQUIVALENCE THERAPEUTIC INDEX
BIOAVAILABILITY BIOEQUIVALENCE THERAPEUTIC INDEXAsra Hameed
 
Concept of clearance & factors affecting renal excretion
Concept of clearance & factors affecting renal excretionConcept of clearance & factors affecting renal excretion
Concept of clearance & factors affecting renal excretionchiranjibi68
 
Clinical Pharmacokinetics-I [half life, order of kinetics, steady state]
Clinical Pharmacokinetics-I [half life, order of kinetics, steady state]Clinical Pharmacokinetics-I [half life, order of kinetics, steady state]
Clinical Pharmacokinetics-I [half life, order of kinetics, steady state]BADAR UDDIN UMAR
 
Protein drug binding
Protein drug bindingProtein drug binding
Protein drug bindingSagar Savale
 
Bioavailability and Factors Affecting Bioavailability of drug
Bioavailability and Factors Affecting Bioavailability of drug Bioavailability and Factors Affecting Bioavailability of drug
Bioavailability and Factors Affecting Bioavailability of drug Ashutosh Gupta
 

Tendances (20)

Excretion of drug
Excretion of drugExcretion of drug
Excretion of drug
 
Factors affecting distribution of drug
Factors affecting distribution of drugFactors affecting distribution of drug
Factors affecting distribution of drug
 
Drug metabolism
Drug metabolism Drug metabolism
Drug metabolism
 
Bioavailability ppt
Bioavailability pptBioavailability ppt
Bioavailability ppt
 
Therapeutic index
Therapeutic indexTherapeutic index
Therapeutic index
 
Bioavailability
Bioavailability Bioavailability
Bioavailability
 
Drug absorption
Drug absorption Drug absorption
Drug absorption
 
Pharmacokinetics - drug absorption, drug distribution, drug metabolism, drug ...
Pharmacokinetics - drug absorption, drug distribution, drug metabolism, drug ...Pharmacokinetics - drug absorption, drug distribution, drug metabolism, drug ...
Pharmacokinetics - drug absorption, drug distribution, drug metabolism, drug ...
 
Pharmacokinetics: Excretion of drugs
Pharmacokinetics: Excretion of drugsPharmacokinetics: Excretion of drugs
Pharmacokinetics: Excretion of drugs
 
BIOAVAILABILITY BIOEQUIVALENCE THERAPEUTIC INDEX
BIOAVAILABILITY BIOEQUIVALENCE THERAPEUTIC INDEXBIOAVAILABILITY BIOEQUIVALENCE THERAPEUTIC INDEX
BIOAVAILABILITY BIOEQUIVALENCE THERAPEUTIC INDEX
 
Elimination
EliminationElimination
Elimination
 
Concept of clearance & factors affecting renal excretion
Concept of clearance & factors affecting renal excretionConcept of clearance & factors affecting renal excretion
Concept of clearance & factors affecting renal excretion
 
Clinical Pharmacokinetics-I [half life, order of kinetics, steady state]
Clinical Pharmacokinetics-I [half life, order of kinetics, steady state]Clinical Pharmacokinetics-I [half life, order of kinetics, steady state]
Clinical Pharmacokinetics-I [half life, order of kinetics, steady state]
 
Pharmacodynamics
PharmacodynamicsPharmacodynamics
Pharmacodynamics
 
Protein drug binding
Protein drug bindingProtein drug binding
Protein drug binding
 
Clearance and renal excretion
Clearance and renal excretionClearance and renal excretion
Clearance and renal excretion
 
Factors modifying drug action
Factors modifying drug actionFactors modifying drug action
Factors modifying drug action
 
Bioavailability and Factors Affecting Bioavailability of drug
Bioavailability and Factors Affecting Bioavailability of drug Bioavailability and Factors Affecting Bioavailability of drug
Bioavailability and Factors Affecting Bioavailability of drug
 
Therapeutic drug monitoring
Therapeutic  drug monitoringTherapeutic  drug monitoring
Therapeutic drug monitoring
 
Pharmacokinetics
PharmacokineticsPharmacokinetics
Pharmacokinetics
 

En vedette

En vedette (8)

Bioavailability Studies
Bioavailability StudiesBioavailability Studies
Bioavailability Studies
 
bioavailability & bioequivalence
bioavailability & bioequivalence bioavailability & bioequivalence
bioavailability & bioequivalence
 
Bioavailability and bioequivalence
Bioavailability and bioequivalenceBioavailability and bioequivalence
Bioavailability and bioequivalence
 
Bioavailability and Bioequivalence Studies
Bioavailability and Bioequivalence StudiesBioavailability and Bioequivalence Studies
Bioavailability and Bioequivalence Studies
 
Bioavailability Of Disperse Dosage Form
Bioavailability Of Disperse Dosage FormBioavailability Of Disperse Dosage Form
Bioavailability Of Disperse Dosage Form
 
Measurement of bioavailability
Measurement of bioavailabilityMeasurement of bioavailability
Measurement of bioavailability
 
Bioequivalence protocol
Bioequivalence  protocolBioequivalence  protocol
Bioequivalence protocol
 
Bioavailability
BioavailabilityBioavailability
Bioavailability
 

Similaire à Pharmacology bioavailability

Absorption & Distribution.pptx
Absorption & Distribution.pptxAbsorption & Distribution.pptx
Absorption & Distribution.pptxVikramSharma288
 
bioavailability.pptx
bioavailability.pptxbioavailability.pptx
bioavailability.pptxMuskanAslam
 
BioavailabilityandBioequivalence.pdf
BioavailabilityandBioequivalence.pdfBioavailabilityandBioequivalence.pdf
BioavailabilityandBioequivalence.pdfabhisheksinghcompute
 
Pharmacokinetics principles 1
Pharmacokinetics principles 1Pharmacokinetics principles 1
Pharmacokinetics principles 1Dr. Marya Ahsan
 
Pharmacokinetics, Lecture by, Dr. Baqir Naqvi.pptx
Pharmacokinetics, Lecture by, Dr. Baqir Naqvi.pptxPharmacokinetics, Lecture by, Dr. Baqir Naqvi.pptx
Pharmacokinetics, Lecture by, Dr. Baqir Naqvi.pptxDr. Baqir Raza Naqvi
 
Presentation Bioavailability.pptx
Presentation Bioavailability.pptxPresentation Bioavailability.pptx
Presentation Bioavailability.pptxAxmedXBullaale
 
ppt on pharmacokinetics pharmacolocy
ppt on pharmacokinetics pharmacolocy ppt on pharmacokinetics pharmacolocy
ppt on pharmacokinetics pharmacolocy AnuragSingh799
 
1.0.bioavailability, pharmacokinetics and efficacy determination
1.0.bioavailability, pharmacokinetics and efficacy determination1.0.bioavailability, pharmacokinetics and efficacy determination
1.0.bioavailability, pharmacokinetics and efficacy determinationsalummkata1
 
GIT ABSORPTION FOR ORAL Administered Drug
GIT ABSORPTION FOR ORAL Administered DrugGIT ABSORPTION FOR ORAL Administered Drug
GIT ABSORPTION FOR ORAL Administered DrugAli Mashwani
 
Bioavailability and bioequivalence
Bioavailability and bioequivalenceBioavailability and bioequivalence
Bioavailability and bioequivalenceFehmiMukadam
 
Bioavailability and bioequivalence
Bioavailability and bioequivalenceBioavailability and bioequivalence
Bioavailability and bioequivalenceDr. Fehmi Mukadam
 
Pharmacokinetics
PharmacokineticsPharmacokinetics
PharmacokineticsMrunalAkre
 
Pharmacokinetics (1).ppt
Pharmacokinetics (1).pptPharmacokinetics (1).ppt
Pharmacokinetics (1).pptssuser497f37
 

Similaire à Pharmacology bioavailability (20)

bio availability.pptx
bio availability.pptxbio availability.pptx
bio availability.pptx
 
Bioavailability.pptx
Bioavailability.pptxBioavailability.pptx
Bioavailability.pptx
 
Bioavailabilityand bioequivalence
Bioavailabilityand bioequivalenceBioavailabilityand bioequivalence
Bioavailabilityand bioequivalence
 
Absorption & Distribution.pptx
Absorption & Distribution.pptxAbsorption & Distribution.pptx
Absorption & Distribution.pptx
 
bioavailability.pptx
bioavailability.pptxbioavailability.pptx
bioavailability.pptx
 
Pharmacology.pptx
Pharmacology.pptxPharmacology.pptx
Pharmacology.pptx
 
BioavailabilityandBioequivalence.pdf
BioavailabilityandBioequivalence.pdfBioavailabilityandBioequivalence.pdf
BioavailabilityandBioequivalence.pdf
 
Pharmacokinetics principles 1
Pharmacokinetics principles 1Pharmacokinetics principles 1
Pharmacokinetics principles 1
 
Pharmacokinetics, Lecture by, Dr. Baqir Naqvi.pptx
Pharmacokinetics, Lecture by, Dr. Baqir Naqvi.pptxPharmacokinetics, Lecture by, Dr. Baqir Naqvi.pptx
Pharmacokinetics, Lecture by, Dr. Baqir Naqvi.pptx
 
Presentation Bioavailability.pptx
Presentation Bioavailability.pptxPresentation Bioavailability.pptx
Presentation Bioavailability.pptx
 
ppt on pharmacokinetics pharmacolocy
ppt on pharmacokinetics pharmacolocy ppt on pharmacokinetics pharmacolocy
ppt on pharmacokinetics pharmacolocy
 
1.0.bioavailability, pharmacokinetics and efficacy determination
1.0.bioavailability, pharmacokinetics and efficacy determination1.0.bioavailability, pharmacokinetics and efficacy determination
1.0.bioavailability, pharmacokinetics and efficacy determination
 
Lectures 11 Bioavailability
Lectures 11 BioavailabilityLectures 11 Bioavailability
Lectures 11 Bioavailability
 
GP-Bioavailability.pdf
GP-Bioavailability.pdfGP-Bioavailability.pdf
GP-Bioavailability.pdf
 
GIT ABSORPTION FOR ORAL Administered Drug
GIT ABSORPTION FOR ORAL Administered DrugGIT ABSORPTION FOR ORAL Administered Drug
GIT ABSORPTION FOR ORAL Administered Drug
 
Pharmacokinetics.pptx
Pharmacokinetics.pptxPharmacokinetics.pptx
Pharmacokinetics.pptx
 
Bioavailability and bioequivalence
Bioavailability and bioequivalenceBioavailability and bioequivalence
Bioavailability and bioequivalence
 
Bioavailability and bioequivalence
Bioavailability and bioequivalenceBioavailability and bioequivalence
Bioavailability and bioequivalence
 
Pharmacokinetics
PharmacokineticsPharmacokinetics
Pharmacokinetics
 
Pharmacokinetics (1).ppt
Pharmacokinetics (1).pptPharmacokinetics (1).ppt
Pharmacokinetics (1).ppt
 

Plus de MBBS IMS MSU

Hema practical 05 hema staining
Hema practical 05 hema stainingHema practical 05 hema staining
Hema practical 05 hema stainingMBBS IMS MSU
 
Hema practical 03 coagulation
Hema practical 03 coagulationHema practical 03 coagulation
Hema practical 03 coagulationMBBS IMS MSU
 
Hema practical 02 hematology
Hema practical 02 hematologyHema practical 02 hematology
Hema practical 02 hematologyMBBS IMS MSU
 
Pharmacology anticoagulation
Pharmacology   anticoagulationPharmacology   anticoagulation
Pharmacology anticoagulationMBBS IMS MSU
 
Microbiology hiv-yf
Microbiology   hiv-yfMicrobiology   hiv-yf
Microbiology hiv-yfMBBS IMS MSU
 
Forensic medicine firearms and firearm injuries
Forensic medicine   firearms and firearm injuriesForensic medicine   firearms and firearm injuries
Forensic medicine firearms and firearm injuriesMBBS IMS MSU
 
Forensic medicine firearms and firearm injuries
Forensic medicine   firearms and firearm injuriesForensic medicine   firearms and firearm injuries
Forensic medicine firearms and firearm injuriesMBBS IMS MSU
 
Forensic medicine firearms and firearm injuries
Forensic medicine   firearms and firearm injuriesForensic medicine   firearms and firearm injuries
Forensic medicine firearms and firearm injuriesMBBS IMS MSU
 
Forensic medicine changes after death
Forensic medicine   changes after deathForensic medicine   changes after death
Forensic medicine changes after deathMBBS IMS MSU
 
Pharmacology cvs medicine
Pharmacology   cvs medicinePharmacology   cvs medicine
Pharmacology cvs medicineMBBS IMS MSU
 
Pharmacology antiarrhythmias
Pharmacology   antiarrhythmiasPharmacology   antiarrhythmias
Pharmacology antiarrhythmiasMBBS IMS MSU
 
Pharmacology angina
Pharmacology   anginaPharmacology   angina
Pharmacology anginaMBBS IMS MSU
 
Pathology hematology 3
Pathology   hematology 3Pathology   hematology 3
Pathology hematology 3MBBS IMS MSU
 
Forensic medicine the medico-legal autopsy
Forensic medicine   the medico-legal autopsyForensic medicine   the medico-legal autopsy
Forensic medicine the medico-legal autopsyMBBS IMS MSU
 
Forensic medicine post mortem artefact
Forensic medicine   post mortem artefactForensic medicine   post mortem artefact
Forensic medicine post mortem artefactMBBS IMS MSU
 
Pharmacology anemia and its treatment
Pharmacology   anemia and its treatmentPharmacology   anemia and its treatment
Pharmacology anemia and its treatmentMBBS IMS MSU
 
Pharmacology neuromuscular blockers & anemia
Pharmacology   neuromuscular blockers & anemiaPharmacology   neuromuscular blockers & anemia
Pharmacology neuromuscular blockers & anemiaMBBS IMS MSU
 
Pharmacology - Parkinsonism
Pharmacology - ParkinsonismPharmacology - Parkinsonism
Pharmacology - ParkinsonismMBBS IMS MSU
 
Forensic medicine medical negligence
Forensic medicine   medical negligenceForensic medicine   medical negligence
Forensic medicine medical negligenceMBBS IMS MSU
 
Forensic medicine medical negligence 2-bolam principle
Forensic medicine   medical negligence 2-bolam principleForensic medicine   medical negligence 2-bolam principle
Forensic medicine medical negligence 2-bolam principleMBBS IMS MSU
 

Plus de MBBS IMS MSU (20)

Hema practical 05 hema staining
Hema practical 05 hema stainingHema practical 05 hema staining
Hema practical 05 hema staining
 
Hema practical 03 coagulation
Hema practical 03 coagulationHema practical 03 coagulation
Hema practical 03 coagulation
 
Hema practical 02 hematology
Hema practical 02 hematologyHema practical 02 hematology
Hema practical 02 hematology
 
Pharmacology anticoagulation
Pharmacology   anticoagulationPharmacology   anticoagulation
Pharmacology anticoagulation
 
Microbiology hiv-yf
Microbiology   hiv-yfMicrobiology   hiv-yf
Microbiology hiv-yf
 
Forensic medicine firearms and firearm injuries
Forensic medicine   firearms and firearm injuriesForensic medicine   firearms and firearm injuries
Forensic medicine firearms and firearm injuries
 
Forensic medicine firearms and firearm injuries
Forensic medicine   firearms and firearm injuriesForensic medicine   firearms and firearm injuries
Forensic medicine firearms and firearm injuries
 
Forensic medicine firearms and firearm injuries
Forensic medicine   firearms and firearm injuriesForensic medicine   firearms and firearm injuries
Forensic medicine firearms and firearm injuries
 
Forensic medicine changes after death
Forensic medicine   changes after deathForensic medicine   changes after death
Forensic medicine changes after death
 
Pharmacology cvs medicine
Pharmacology   cvs medicinePharmacology   cvs medicine
Pharmacology cvs medicine
 
Pharmacology antiarrhythmias
Pharmacology   antiarrhythmiasPharmacology   antiarrhythmias
Pharmacology antiarrhythmias
 
Pharmacology angina
Pharmacology   anginaPharmacology   angina
Pharmacology angina
 
Pathology hematology 3
Pathology   hematology 3Pathology   hematology 3
Pathology hematology 3
 
Forensic medicine the medico-legal autopsy
Forensic medicine   the medico-legal autopsyForensic medicine   the medico-legal autopsy
Forensic medicine the medico-legal autopsy
 
Forensic medicine post mortem artefact
Forensic medicine   post mortem artefactForensic medicine   post mortem artefact
Forensic medicine post mortem artefact
 
Pharmacology anemia and its treatment
Pharmacology   anemia and its treatmentPharmacology   anemia and its treatment
Pharmacology anemia and its treatment
 
Pharmacology neuromuscular blockers & anemia
Pharmacology   neuromuscular blockers & anemiaPharmacology   neuromuscular blockers & anemia
Pharmacology neuromuscular blockers & anemia
 
Pharmacology - Parkinsonism
Pharmacology - ParkinsonismPharmacology - Parkinsonism
Pharmacology - Parkinsonism
 
Forensic medicine medical negligence
Forensic medicine   medical negligenceForensic medicine   medical negligence
Forensic medicine medical negligence
 
Forensic medicine medical negligence 2-bolam principle
Forensic medicine   medical negligence 2-bolam principleForensic medicine   medical negligence 2-bolam principle
Forensic medicine medical negligence 2-bolam principle
 

Dernier

Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 

Dernier (20)

Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 

Pharmacology bioavailability

  • 2. • Bioavailability is the fraction of administered drug that reaches the systemic circulation. • Bioavailability is expressed as the fraction of administered drug that gains access to the systemic circulation in a chemically unchanged form. • For example, if 100 mg of a drug are administered orally and 70 mg of this drug are absorbed unchanged, the bioavailability is 0.7 or seventy percent. Bioavailability:
  • 3. Determination of bioavailability: Bioavailability is determined by comparing plasma levels of a drug after a particular route of administration (for example, oral administration) with plasma drug levels achieved by IV injection in which all of the agent rapidly enters the circulation. When the drug is given orally, only part of the administered dose appears in the plasma.
  • 4. By plotting plasma concentrations of the drug versus time, we can measure the area under the curve (AUC). This curve reflects the extent of absorption of the drug. [Note: By definition, this is 100 percent for drugs delivered IV.] Bioavailability of a drug administered orally is the ratio of the area calculated for oral administration compared with the area calculated for IV injection
  • 5.
  • 6. Pharmacokinetic Studies Key Measurements • AUC – Area under the concentration- time curve • Cmax – Maximum concentration – A difference of greater than 20% in Cmax or the AUC represents a significant difference between the study and reference compounds • Tmax – Time to maximum concentration Study Compound Reference Compound Time Concentration Cmax Tmax AUC
  • 7. FDA Requirements for Bioequivalence 125% 100% 80% Product A Bioequivalent Reference Drug Product B Not Bioequivalent • Product A is bioequivalent to the reference drug; its 90% confidence interval of the AUC falls within 80% to 125% of the reference drug • Product B is not bioequivalent to the reference drug; its 90% confidence interval of the AUC falls outside of 80% to 125% of the reference drug Pharmacokinetic ReferenceRange
  • 8. Factors that influence bioavailability: First-pass hepatic metabolism: When a drug is absorbed across the GI tract, it enters the portal circulation before entering the systemic circulation. If the drug is rapidly metabolized by the liver, the amount of unchanged drug that gains access to the systemic circulation is decreased. Many drugs, such as propranolol or lidocaine, undergo significant biotransformation during a single passage through the liver.
  • 9. Solubility of the drug: Very hydrophilic drugs are poorly absorbed because of their inability to cross the lipid-rich cell membranes. For a drug to be readily absorbed, it must be largely hydrophobic, yet have some solubility in aqueous solutions. This is one reason why many drugs are weak acids or weak bases. There are some drugs that are highly lipid-soluble, and they are transported in the aqueous solutions of the body on carrier proteins such as albumin.
  • 10. Chemical instability: Some drugs, such as penicillin G, are unstable in the pH of the gastric contents. Others, such as insulin, are destroyed in the GI tract by degradative enzymes. Nature of the drug formulation: Drug absorption may be altered by factors unrelated to the chemistry of the drug. For example, particle size, salt form, crystal polymorphism, enteric coatings and the presence of excipients (such as binders and dispersing agents) can influence the ease of dissolution and, therefore, alter the rate of absorption.
  • 11. Bioequivalence: Two related drugs are bioequivalent if they show comparable bioavailability and similar times to achieve peak blood concentrations. Two related drugs with a significant difference in bioavailability are said to be bioinequivalent.
  • 12. Therapeutic equivalence : Two similar drugs are therapeutically equivalent if they have comparable efficacy and safety. Clinical effectiveness often depends on both the maximum serum drug concentrations and on the time required (after administration) to reach peak concentration. Therefore, two drugs that are bioequivalent may not be therapeutically equivalent.
  • 13. Volume of Distribution : The volume of distribution (VD) , also known  as apparent volume of distribution, is  a pharmacological term used to quantify the  distribution of a medication between plasma and the rest  of the body after oral or parenteral dosing. It is defined as  the theoretical volume in which the total amount of drug  would need to be uniformly distributed to produce the  desired blood concentration of a drug. Volume of distribution may be increased by renal  failure (due to fluid retention) and liver failure (due to  altered body fluid and plasma protein binding ).  Conversely it may be decreased in dehydration.
  • 15. Distribution of drug in the absence of elimination: The apparent volume into which a drug distributes, VD, is  determined by injection of a standard dose of drug,  which is initially contained entirely in the vascular  system. The agent may then move from the plasma into  the interstitium and into cells, causing the plasma  concentration to decrease with time. Assume for  simplicity that the drug is not eliminated from the body;  the drug then achieves a uniform concentration that is  sustained with time.  The concentration within the  vascular compartment is the total amount of drug  administered, divided by the volume into which it  distributes. 
  • 16. Apparent volume of distribution : total amount of drug in the body VD = ---------------------------------------------- drug blood plasma concentration Therefore the dose required to give a certain plasma  concentration can be determined if the VD for that drug  is known.  The VD is not a physiologic value; it is more a reflection  of how a drug will distribute throughout the body  depending on several physicochemical properties, e.g.  solubility, charge, size, etc.
  • 18.
  • 19. Distribution of drug when elimination is present: In reality, drugs are eliminated from the body, and a plot of  concentration versus time shows two phases. The initial  decrease in plasma concentration is due to a rapid distribution  phase in which the drug is transferred from the plasma into the  interstitium and the intracellular water. This is followed by a  slower elimination phase during which the drug leaves the  plasma compartment and is lost from the body  For example, by renal or biliary excretion or by hepatic  biotransformation.  The rate at which the drug is eliminated is usually proportional  to the concentration of drug, C; that is, the rate for most drugs  is first-order and shows a linear relationship with time if  ln C  (where ln C is the natural log of C, rather than C) is plotted  versus time . This is because the elimination processes are not  saturated.
  • 20.
  • 21. Calculation of drug concentration if distribution is instantaneous: Assume that the elimination process began at the time  of injection and continued throughout the distribution  phase. Then, the concentration of drug in the plasma,  C, can be extrapolated back to time zero (the time of  injection) to determine C0, which is the concentration  of drug that would have been achieved if the  distribution phase had occurred instantly.  For example, if 10 mg of drug are injected into a  patient and the plasma concentration is extrapolated to  time zero, the concentration is C0 = 1 mg/L  and then  VD = 10 mg/1 mg/L = 10 L.
  • 22.
  • 23. Uneven drug distribution between compartments: The apparent volume of distribution assumes that the drug distributes  uniformly, in a single compartment. However, most drugs distribute  unevenly, in several compartments, and the volume of distribution does  not describe a real, physical volume, but rather, reflects the ratio of drug  in the extraplasmic spaces relative to the plasma space. Nonetheless, Vd   is useful because it can be used to calculate the amount of drug needed to achieve a desired plasma concentration. For example, assume the  arrhythmia of a cardiac patient is not well controlled due to inadequate  plasma levels of digitalis. Suppose the concentration of the drug in the  plasma is C1  and the desired level of digitalis (known from clinical  studies) is a higher concentration, C2 . The clinician needs to know how  much additional drug should be administered to bring the circulating  level of the drug from C1  to C2 :   The difference between the two values is the  additional dosage needed, which equals VD (C2   C1 ).
  • 24. Concept of “Half Life”  ½ life = how much time it takes for blood levels of  drug to decrease to half of what it was at  equilibrium  There are really two kinds of ½ life… “distribution” ½ life = when plasma levels fall to  half what they were at equilibrium due to  distribution to/storage in body’s tissue reservoirs “elimination” ½ life = when plasma levels fall to  half what they were at equilibrium due to drug  being metabolized and eliminated  It is usually the elimination ½ life that is used to  determine dosing schedules, to decide when it is  safe to put patients on a new drug
  • 25. Concept of “Half Life” Time [hours] 0 4 8 12 16 20 24 Conc.[mg/L] 0 1 2 3 4 5
  • 26.
  • 27. Dependence of Half-life on Clearance and Volume
  • 28. For a given dose rate, the blood drug concentration is inversely proportional to clearance
  • 29. Bioavailability: The rate and extent to which the parent compound reaches the general circulation. Absolute Bioavailability  requires I.V. administration  Ratio of the oral:intravenous AUC values normalized for dose  Fabs= (AUC oral / AUC iv)*(Dose iv / Dose oral) Relative Bioavailability  no I.V. reference  comparison AUC values (ratio) of different dosage forms / formulations  Frel = (AUC a / AUC b) * (Dose b /Dose a) Bioavailability and Its Assessment
  • 30. The VD may also be used to determine how readily a drug will displace into the body tissue compartments relative to the blood: VD = VP + VT ( fu / fuT ) Where: VP = plasma volume VT = apparent tissue volume fu = fraction unbound in plasma fu = fraction unbound in tissue
  • 31.  Pharmacokinetics  “what the body does to the drug” • Absorption • Distribution • Metabolism • Elimination  Pharmacodynamics  “what the drug does to the body” • wanted effects - efficacy • unwanted effects - toxicity disposition
  • 32. Dose regimen ResponseExposure Site of action Pharmacokinetics Pharmacodynamics
  • 33.  Basic Pharmacokinetic Concepts  Bioavailability Definition How absorption affects bioavailability? Food Effect How drug metabolism affects bioavailability? How transporters affect bioavailability?  Bioequivalence Definition Bio-IND Waivers of In Vivo Study Requirements Biopharmaceutics Classification System (BCS) General Outline
  • 34.
  • 35. Basic Concepts  Easy to understand using intravenous route  No absorption phase  Simple to follow  Concepts clear with less assumptions  Need some math background  algebra, log scale, Simple linear Equations etc  complex math (differential equations, statistical concepts etc) for Modeling, Population PK, PK-PD etc. Drug Product Drug in Blood Distribution to Tissue and Receptor sites MetabolismExcretion
  • 36. IV administration, contd.,  Following dose administration, we need to follow its drug’s disposition to understand its PK characteristics.  This is achieved by analyzing the changes of the drug and/or its metabolite(s) in blood, plasma, urine etc.  A simple approach is to generate Drug Concentration- Time profile Dosing Sampling at Pre-determined Time intervals Bio-analytics Conc. vs time profiles Blood withdrawal
  • 37. Concentration versus Time Profiles One- Compartment Model Assumes body as one compartment 1 Two-Compartment Model Central compartment (drug entry and elimination) Tissue compartment (drug distributes) 1 2 k k Dose Dos e Broadly the concentration – time profiles can be viewed as two different ways
  • 38. Concept of “Half Life”  ½ life = how much time it takes for blood levels of drug to decrease to half of what it was at equilibrium  There are really two kinds of ½ life… “distribution” ½ life = when plasma levels fall to half what they were at equilibrium due to distribution to/storage in body’s tissue reservoirs “elimination” ½ life = when plasma levels fall to half what they were at equilibrium due to drug being metabolized and eliminated  It is usually the elimination ½ life that is used to determine dosing schedules, to decide when it is safe to put patients on a new drug
  • 39. Concept of “Half Life” Time [hours] 0 4 8 12 16 20 24 Conc.[mg/L] 0 1 2 3 4 5
  • 40.
  • 41. Dependence of Half-life on Clearance and Volume
  • 42. For a given dose rate, the blood drug concentration is inversely proportional to clearance
  • 43. Bioavailability: The rate and extent to which the parent compound reaches the general circulation. Absolute Bioavailability  requires I.V. administration  Ratio of the oral:intravenous AUC values normalized for dose  Fabs= (AUC oral / AUC iv)*(Dose iv / Dose oral) Relative Bioavailability  no I.V. reference  comparison AUC values (ratio) of different dosage forms / formulations  Frel = (AUC a / AUC b) * (Dose b /Dose a) Bioavailability and Its Assessment
  • 44. Time [hours] 0 4 8 12 16 20 24 Conc.[mg/L] 0 1 2 3 4 5 Time [hours] 0 4 8 12 16 20 24 Conc.[mg/L] 0 1 2 3 4 5 Solution Capsule 20 mg administered as an i.v. bolus (Diovan) 80 mg given as a solution and a capsule (Diovan)
  • 45.

Notes de l'éditeur

  1. Pharmacokinetic Studies. Key Measurements. To investigate the bioequivalence of 2 drug products or compounds, the FDA considers PK studies that determine the area under the concentration-time curve (AUC), maximum concentration (Cmax), and time to Cmax (Tmax) for the study compound (generic) and a reference compound (innovator).1 Each of these values for the study compound are compared with those of the reference compound. For the study and reference compounds to be considered bioequivalent, their rates and extents of absorption must not show a significant difference when administered at the same molar dose of the therapeutic ingredient under similar experimental conditions. The red area in the diagram represents the AUC, or the extent of absorption, of the reference compound. The yellow area represents the AUC of the study compound. Cmax is an indicator of the absorption rate and Tmax is influenced by the route of compound administration. A difference of greater than 20% in Cmax or the AUC represents a significant difference between the study and reference compounds. Reference 1. Approved Drug Products With Therapeutic Equivalence Evaluations. 23rd ed. 2003. FDA/CDER Web site. Available at: http://www.fda.gov/cder/ob/docs/preface/ecpreface.htm#Therapeutic Equivalence-Related Terms. Accessed September 29, 2003.
  2. FDA Requirements for Bioequivalence. The rate and extent of absorption between a drug being tested and the reference drug is compared statistically using characteristics of concentration-time curves, such as AUC and Cmax. For a drug to be approved as bioequivalent to the reference drug, its AUC and Cmax values must fall within a 90% confidence interval (CI), or between 80% and 125%, of the reference drug values. In the example shown on this slide, Product A is bioequivalent to the reference drug. Its AUC value falls within 80% to 125% of the reference drug. Product B is not bioequivalent to the reference drug. Its AUC value falls outside of 80% to 125% of the reference drug.1 Reference 1. Approved Drug Products With Therapeutic Equivalence Evaluations. 23rd ed. 2003. FDA/CDER Web site. Available at: http://www.fda.gov/cder/ob/docs/preface/ecpreface.htm#Therapeutic Equivalence-Related Terms. Accessed September 29, 2003.