SlideShare une entreprise Scribd logo
1  sur  27
A
Summer Training Report
On
Construction of Cement Concrete Road
At
U.P. P.W.D, C.D.-3, MAINPURI
Submitted for Partial fulfillment of

Bachelor of Technology
CIVIL ENGG.
Submitted to: -

Submitted By:-

Dept. of Anshul Kumar
(CIVIL ENGINEERING)B.Tech 4thYr.
Roll No:-1106400902

HINDUSTAN COLLEGE OF SCIENCE &
TECHNOLOGY, FARAH, MATHURA
Batch: 2010-14
ACKNOWLEDGEMENT

I express my satisfaction on the completion of this summer training
program and project report submission as a part of the curriculum for the
degree of Bachelor of Technology, Civil Engineering. I express my deepest
gratitude to my supervisor and mentor Mr. P. K. SINGHAL for his kind
guidance during the entire period of training. His consistent support and
advices has helped me to complete this research project successfully. Also I
thank all the members of P.W.D., C.D.-3 MAINPURI, U.P. Department for
their kind support. They have always been a source of inspiration to me.

DATE: - 31/07/2013

ANSHUL KUMAR
Content
1.
PWD Introduction
2.

About Cement road

4.

Material

5.

Tests

6.

Cement road construction

6.1

Preparation of subgrade

6.2

Preparation of base

6.3

Form work

6.4

Watering of base
6.5

joints

6.6

Material mix & placing

6.7

Compaction

6.8

Finishing of surface

6.9

Curing

6.10

Filling joint

6.11

Edging

6.12

open to traffic

7

Reference
Introduction
Point of view geographic and population of the state is the nation's largest
state. State Industrial, economic and social development of the state and
the population of each village is absolutely necessary to re-connect to the
main roads. In addition to state important national roads, state roads and
district roads and their proper broad be made to improve the quality of
traffic point of view is of particular importance. Public Works Department
to build roads and improve connectivity in rural zones, Other District Road
and State broad and improvement of rural roads and main routes narrow
construction of zones and depleted bridges brides reconstruction of the
bases are transacted on a priority basis . Also under PradhanMantri Gram
SadakYojana and pre-fabricated construction of rural roads linking the
work of other district roads broad Suddikrn the scale bases are edited.

Successful operation of various schemes for the Public Works Department
engineers and supervisory boards in different districts of the engineer’s
office has been settled. Activities by planning, execution, and quality
control etc. remove impediments find joy in relation to the supervision
over the activities are focused. Various schemes operated by the
Department of the Office of the Regional Chief Engineers and Chief
Engineers office.
About Road
A road is a thoroughfare, route, or way on land between two places, which
has been paved or otherwise improved to allow travel by some conveyance,
including a horse, cart, or motor vehicle. Roads consist of one, or
sometimes two, roadways (carriageways) each with one or more lanes and
also any associated sidewalks (British English: pavement) and road verges.
Roads that are available for use by the public may be referred to as public
roads or highways.

MATERIAL
Concrete is widely used in domestic, commercial, recreational, rural and
educational construction.
Communities around the world rely on concrete as a safe, strong and
simple building material. It is used in all types of construction; from
domestic work to multi-storey office blocks and shopping complexes.
Despite the common usage of concrete, few people are aware of the
considerations involved in designing strong, durable, high quality concrete.

There are mainly three types1-Cement
2-Sand
3-Aggregate
Cement
A cement is a binder, a substance that sets and hardens independently, and
can bind other materials together. The word "cement" traces to the Romans,
who used the term caementiciumto describe masonry resembling
modern concrete that was made from crushed rock with burnt lime as
binder. The volcanic ash and pulverized brick additives that were added to
the burnt lime to obtain a hydraulic binder were later referred to
as cementum, cimentum, cement, and cement.
Cements used in construction can be characterized as being
either hydraulic or non-hydraulic. Hydraulic cements (e.g., Portland
cement) harden because of hydration, a chemical reaction between
the anhydrous cement powder and water. Thus, they can harden underwater
or when constantly exposed to wet weather. The chemical reaction results
in hydrates that are not very water-soluble and so are quite durable in
water. Non-hydraulic cements do not harden underwater; for example,
slaked limes harden by reaction with atmospheric carbon dioxide.
The most important uses of cement are as an ingredient in the production
of mortar in masonry, and of concrete, a combination of cement and an
aggregate to form a strong building material.
Types of Cement:Portland cement
Portland cement is by far the most common type of cement in general use
around the world. This cement is made by heating limestone (calcium
carbonate) with small quantities of other materials (such as clay) to
1450 °C in a kiln, in a process known as calcination, whereby a molecule
of carbon dioxide is liberated from the calcium carbonate to form calcium
oxide, or quicklime, which is then blended with the other materials that
have been included in the mix. The resulting hard substance, called
'clinker', is then ground with a small amount of gypsum into a powder to
make 'Ordinary Portland Cement', the most commonly used type of cement
(often referred to as OPC). Portland cement is a basic ingredient
of concrete, mortar and most non-specialty grout. The most common use
for Portland cement is in the production of concrete. Concrete is a
composite material consisting of aggregate (gravel and sand), cement,
and water. As a construction material, concrete can be cast in almost any
shape desired, and once hardened, can become a structural (load bearing)
element. Portland cement may be grey or white.
Portland fly ash cement
Its contains up to 35% flyash. The fly ash is pozzolanic, so that ultimate
strength is maintained. Because fly ash addition allows a lower concrete
water content, early strength can also be maintained. Where good quality
cheap fly ash is available, this can be an economic alternative to ordinary
Portland cement.
Portland pozzolan cement
Its includes fly ash cement, since fly ash is a pozzolan , but also includes
cements made from other natural or artificial pozzolans. In countries
where volcanic ashes are available.
Portland silica fume cement
Addition of silica fume can yield exceptionally high strengths, and cements
containing 5–20% silica fume are occasionally produced. However, silica
fume is more usually added to Portland cement at the concrete mixer

Sand
Sand is a naturally occurring granular material composed of finely
divided rock and mineral particles. The composition of sand is highly
variable, depending on the local rock sources and conditions, but the most
common constituent of sand in inland continental settings and nontropical coastal settings is silica (silicon dioxide, or SiO2), usually in the
form of quartz.
The second most common type of sand is calcium carbonate, for
example aragonite, which has mostly been created, over the past half
billion years, by various forms of life, like coral and shellfish. It is, for
example, the primary form of sand apparent in areas where reefs have
dominated the ecosystem for millions of years like the Caribbean.

Composition
In terms of particle size as used by geologists, sand particles range in
diameter from 0.0625 mm (or 1⁄16 mm) to 2 mm. An individual particle in
this range size is termed a sand grain. Sand grains are between gravel (with
particles ranging from 2 mm up to 64 mm) and silt (particles smaller than
0.0625 mm down to 0.004 mm). The size specification between sand and
gravel has remained constant for more than a century, but particle
diameters as small as 0.02 mm were considered sand under the Alter
berg standard in use during the early 20th century. A 1953 engineering
standard published by the American Association of State Highway and
Transportation Officials set the minimum sand size at 0.074 mm.

Aggregate
Aggregates are inert granular materials such as sand, gravel, or crushed
stone that, along with water and Portland cement, are an essential
ingredient in concrete. For a good concrete mix, aggregates need to be
clean, hard, strong particles free of absorbed chemicals or coatings of clay
and other fine materials that could cause the deterioration of concrete.
Aggregates, which account for 60 to 75 percent of the total volume of
concrete, are divided into two distinct categories-fine and coarse. Fine
aggregates generally consist of natural sand or crushed stone with most
particles passing through a 3/8-inch (9.5-mm) sieve. Coarse aggregates are
any particles greater than 0.19 inch (4.75 mm), but generally range between
3/8 and 1.5 inches (9.5 mm to 37.5 mm) in diameter. Gravels constitute the
majority of coarse aggregate used in concrete with crushed stone making
up most of the remainder.

Natural gravel and sand are usually dug or dredged from a pit, river, lake,
or seabed. Crushed aggregate is produced by crushing quarry rock,
boulders, cobbles, or large-size gravel. Recycled concrete is a viable source
of aggregate and has been satisfactorily used in granular subbases, soilcement, and in new concrete. Aggregate processing consists of crushing,
screening, and washing the aggregate to obtain proper cleanliness and
gradation. If necessary, a benefaction process such as jigging or heavy
media separation can be used to upgrade the quality.
Once processed, the aggregates are handled and stored in a way that
minimizes segregation and degradation and prevents contamination.
Aggregates strongly influence concrete's freshly mixed and hardened
properties, mixture proportions, and economy. Consequently, selection of
aggregates is an important process. Although some variation in aggregate
properties is expected, characteristics that are considered when selecting
aggregate include:
grading
durability
particle shape and surface texture
abrasion and skid resistance
unit weights and voids
absorption and surface moisture

Grading refers to the determination of the particle-size distribution for
aggregate. Grading limits and maximum aggregate size are specified
because grading and size affect the amount of aggregate used as well as
cement and water requirements, workability

Shape and size
Particle shape and surface texture influence the properties of freshly mixed
concrete more than the properties of hardened concrete. Rough-textured,
angular, and elongated particles require more water to produce workable
concrete than smooth, rounded compact aggregate. Consequently, the
cement content must also be increased to maintain the water-cement ratio.
Generally, flat and elongated particles are avoided or are limited to about
15 percent by weight of the total aggregate. Unit-weight measures the
volume that graded aggregate and the voids between them will occupy in
concrete. The void content between particles affects the amount of cement
paste required for the mix. Angular aggregate increase the void content.
Larger sizes of well-graded aggregate and improved grading decrease the
void content. Absorption and surface moisture of aggregate are measured
when selecting aggregate because the internal structure of aggregate is
made up of solid material and voids that may or may not contain water. The
amount of water in the concrete mixture must be adjusted to include the
moisture conditions of the aggregate. Abrasion and skid resistance of an
aggregate are essential when the aggregate is to be used in concrete
constantly subject to abrasion as in heavy-duty floors or pavements.
Different minerals in the aggregate wear and polish at different rates.
Harder aggregate can be selected in highly abrasive conditions to minimize
wear.

Test
There are four main tests to be done on concrete:
1-The Slump Test.
2-Compression Test
3-Impact Test
4-Cube Test
THE SLUMP TEST
The slump test is done to make sure a concrete mix is workable.
Workability measures how easy the concrete is to place, handle and
compact
Standard slump cone (100 mm top diameter x 200 mm bottom diameter x 300 mm high)
Small scoop
Bullet-nosed rod
(600 mm long x 16 mm diameter )
Rule
Slump plate (500 mm x 500 mm)

Method
1 Clean the cone. Dampen with water and place on the slump plate.
The slump plate should be clean, firm, level and non-absorbent.
2 Collect a sample.
3 Stand firmly on the footpieces and fill 1/3 the volume of the cone with
the sample. Compact the concrete by 'rodding' 25 times.
Rodding Rodding means to push a steel rod in and out of the
concrete to compact it into the cylinder, or slump cone.
Always rod in a definite pattern, working from outside into the middle.

4 Now fill to 2 /3 and again rod 25 times, just into the top
of the first layer.

5 Fill to overflowing, rodding again this time just into the top
of the second layer. Top up the cone till it overflows.

6 Level off the surface with the steel rod using a rolling
action. Clean any concrete from around
the base and top of the cone, push down on the
handles and step off the footpieces.

7 Carefully lift the cone straight up making sure
not to move the sample.

8 Turn the cone upside down and place the rod across the
up-turned cone.
THE COMPRESSION TEST
The compression test shows the compressive strength of hardened
concrete. The testing is done in a laboratory off-site. The only work done
on-site is to make a concrete cylinder for the compression test.
The strength is measured in Megapascals(MPa) and is commonly specified
as a characteristic strength of concrete measured at 28 days after mixing.
The compressive strength is a measure of the concrete’s ability to resist
loads which tend to crush it.
Tools
Cylinders (100 mm diameter x 200 mm high or 150 mm diameter x
300 mm high)
( The small cylinders are
normally used for most
testing due to their lighter
weight )
Small scoop
Bullet-nosed rod (600 mm x
16 mm)
Steel float
Steel plate

Method
1

Clean the cylinder mould and coat the inside lightly with
form oil, then place on a clean, level and firm surface, ie
the steel plate.

2

Collect a sample.
3

Fill 1/2 the volume of the mould with concrete then
compact by rodding 25 times. Cylinders may also be
compacted by vibrating using a vibrating table.

The Compression Test continues on the next page
13

Fill the cone to overflowing and rod 25 times
into the top of the first
4

layer, then top up the mould till overflowing.
5 Level off the top with the steel float and clean any
concrete from around the mould.

6 Cap, clearly tag the cylinder
and put it in a cool dry place
to set for at least 24 hours.

7 After the mould is removed the cylinder is sent to the laboratory
where it is cured and crushed to test compressive strength.
Impact Testing
An impact test is a dynamic test conducted on a selected specimen which
is usually notched. The specimen is struck and broken by a single blow in
a specially designed machine.
This demo illustrates the experiment setup, procedure and the energy
absorbed in an impact test.
CubeTest
Test applied to the concrete, this is the
utmost important which gives an idea
about all the characteristics of concrete.
By this single test one judge that
whether Concreting has been done
properly or not. For cube test two types
of specimens either cubes of 15 cm X
15 cm X 15 cm or 10cm X 10 cm x 10 cm depending upon the size of aggregate
are used. For most of the works cubical moulds of size 15 cm x 15cm x 15 cm
are commonly used.
This concrete is poured in the mould and tempered properly so as not to
have any voids. After 24 hours these moulds are removed and test
specimens are put in water for curing. The top surface of these specimen
should be made even and smooth. This is done by putting cement paste
and spreading smoothly on whole area of specimen.
These specimens are tested by compression testing machine after 7 days
curing or 28 days curing. Load should be applied gradually at the rate of
140 kg/cm2 per minute till the Specimens fails. Load at the failure
divided by area of specimen gives the compressive strength of concrete.

APPARATUS
Compression testing machine

PREPARATION OF CUBE SPECIMENS
The proportion and material for making these test specimens are from the
same concrete used in the field.

SPECIMEN
6 cubes of 15 cm size Mix. M15 or above

MIXING
Mix the concrete either by hand or in a laboratory batch mixer
HAND MIXING
(i)Mix the cement and fine aggregate on a water tight none-absorbent
platform until the mixture is thoroughly blended and is of uniform color
(ii)Add the coarse aggregate and mix with cement and fine aggregate
until the coarse aggregate is uniformly distributed throughout the batch
(iii)Add water and mix it until the concrete appears to be homogeneous
and of the desired consistency.

PRECAUTIONS
The water for curing should be tested every 7days and the temperature of water must
be at 27+-2oC.

PROCEDURE
(I) Remove the specimen from water after specified curing time and wipe out excess
water from the surface.
(II) Take the dimension of the specimen to the nearest 0.2m
(III) Clean the bearing surface of the testing machine
(IV) Place the specimen in the machine in such a manner that the load shall be applied
to the opposite sides of the cube cast.
(V) Align the specimen centrally on the base plate of the machine.
(VI) Rotate the movable portion gently by hand so that it touches the top surface of
the specimen.
(VII) Apply the load gradually without shock and continuously at the rate of
140kg/cm2/minute till the specimen fails
(VIII) Record the maximum load and note any unusual features in the type of failure.
Using mix Concrete , there some
Point to construct the road1. Preparation of base
2. Form working
3. Preparation of subgrade
4. Watering of base
5. Joints
6. Material mix & placing
7. Compaction
8. Finishing of surface
8A.

Floating

8B.

Belting

8C.

Brooming

9. Curing
10. Joint filling
11. Edging
12. Open to traffic
1. Preparation of subgrade
1. Rolling on sub grade by roller
2. Filling the granular soil in the weak part and pot holes
3. Correct the soil coat , Camber , longitudinal slop
When concrete direct laid on subgrade, For preventing the waterseepaging into the soil , used water proof paper on entire length.
1. Rolling on sub grade by roller
2. Filling the granular soil in the weak part and pot holes
3. Correct the soil coat , Camber , longitudinal slop
When concrete direct laid on subgrade, For preventing the waterseepaging into the soil , used water proof paper on entire length.

2. Preparation of base
Choose any one type of base
1. W.B.M. base
As base material of W.B.M. Road; stone ballast, concrete 10-15cm
layer are used. For bonding between concrete slab & W.B.M. used 1:2
cement wash on W.B.M.
2. Concrete base
On the road used 10cm Cement concrete(1:2:4) or lime
concrete(16:32:64)
3. Granular medium material layer
10-15cm composite layer of sand , moorum, bajriare usedfor better
drainage facilities
4. Stabilization soil

3. Form work
Material for form workWooden sheets, battens, plywood, fibre hard board, steel plates,
angles, rope, minerals.
1. before using form work, it should free from all type material like as
dust ,cement.
2. To placing the concrete in appropriate depth used 2.5-5cm thick
and 3mtr long wooden sheeting.

3. The depth of wooden block must be same as level of slab thick.
4. After 24hrs form work displaced next length of road.
4. Watering of base
If base is dry
Than using the sprinkling process on it properly after that placing the
concrete.
5.Joints
Where is necessary to provide transverse, Longitudinal joints; there
wedge of woods, metals fix on level of concrete.
After setting of concrete it should be pull out.
If provided the dowel bar in joints, bars should be fit at right
position.

6.Material mix & placing
Mixer is equipment that mix the concrete using distinct amount
of cement , concrete, sand and water. Concrete slab should have
more than 5-10cm thick cause of drying.
Used two type mixer1. Batch mixerat site, used for small road construction
2. Continuous mixerContinuous mixer used for large construction .
if distance is more from site , mix concrete transported at site
within setting time.
Two methods generally used in placing of concrete1. Alternate bay methodPlaced the concrete on both side of road alternatively like
as1,3,5… part at one side and 2,4,6… part other side .
1st side
2nd side
This method have slow process due to road traffic problems.
2. Continuous bay methodconstruct one side of road regularly, if completed some part of
first side than construct other side.
this method have fast process without no obstruction of traffic

7. Compaction
Purpose of compaction is that to pull out air from void and make
concrete harden.
Compaction done by1.mechanically surface vibrator
2. manuallyhand tempers

8. Finishing of surface
1.FloatingFor levelling the surface use floating, scree-ding , power trowel.
So that there is no acceptable more than 3mm variation in
concrete level surface.

2.BeltingFor making surface clean used belting process. Belt is nothing
but a 15-30cm thick sheets of canvass which have more length
than road.

3. BroomingBrooming is the process in which we made rough surface parallel
to road by brush.
It useful in avoiding slip & comfortable travelling on road .
The depth of line on road no more than 1.5mm.

9.Curing
Curing is the name of increasing the hydration process of cement.
after setting the concrete , curing process done till 14-28days.
Some method of curing are1.Shading concrete works
2. Covering with hessian & gunny bags
3. Sprinkling of water
4.By ponding
5. Membrane curing
6. Steam curing

10. Filling joint
After drying road, clean the joints and fill the shelling compound
or hot bitumen .
also bitumen fill road bank.

11. Edging
To protect damaging the sides of concrete pavements used over
burnt brick work.
in place of brick, provided kerb of pre mix concrete.

12.open to traffic
Generally after a month, road should be open to traffic.
If used rapid hardening cement it take 7 days to open traffic.

Reference
www.Google.com
www.concrete.net.au
www.res.gov.in
www.upjl.com
www.concrete.com
www.sand.uk

Contenu connexe

Tendances

PWD CC ROAD CONSTRUCTION WORK TRAINING REPORT
PWD CC ROAD CONSTRUCTION WORK TRAINING REPORTPWD CC ROAD CONSTRUCTION WORK TRAINING REPORT
PWD CC ROAD CONSTRUCTION WORK TRAINING REPORT
Satyam Anand
 
Aryan k tranning file road ppt 07
Aryan k tranning file road ppt 07Aryan k tranning file road ppt 07
Aryan k tranning file road ppt 07
aryan kumar
 

Tendances (20)

PWD CC ROAD CONSTRUCTION WORK TRAINING REPORT
PWD CC ROAD CONSTRUCTION WORK TRAINING REPORTPWD CC ROAD CONSTRUCTION WORK TRAINING REPORT
PWD CC ROAD CONSTRUCTION WORK TRAINING REPORT
 
Construction of cc_road
Construction of cc_roadConstruction of cc_road
Construction of cc_road
 
Sachin gupta summer training in pwd
Sachin gupta summer training in pwdSachin gupta summer training in pwd
Sachin gupta summer training in pwd
 
Highway construction Report
Highway construction Report Highway construction Report
Highway construction Report
 
Road construction report
Road construction reportRoad construction report
Road construction report
 
Summer Training Report On Bituminous (Asphalt) Road
Summer Training Report On Bituminous (Asphalt) RoadSummer Training Report On Bituminous (Asphalt) Road
Summer Training Report On Bituminous (Asphalt) Road
 
Concrete Road Pavement
Concrete Road Pavement Concrete Road Pavement
Concrete Road Pavement
 
ppt on pwd cement concrete road pavement
ppt on pwd cement concrete road pavementppt on pwd cement concrete road pavement
ppt on pwd cement concrete road pavement
 
Bituminous road construction
Bituminous road constructionBituminous road construction
Bituminous road construction
 
Bitumin road construction
Bitumin road constructionBitumin road construction
Bitumin road construction
 
Bituminous Road
 Bituminous Road Bituminous Road
Bituminous Road
 
PRESENTATION ON SUMMER INTERNSHIP ON MULTISTOREY BUILDING CONSTRUCTION
PRESENTATION ON SUMMER INTERNSHIP ON MULTISTOREY BUILDING CONSTRUCTION PRESENTATION ON SUMMER INTERNSHIP ON MULTISTOREY BUILDING CONSTRUCTION
PRESENTATION ON SUMMER INTERNSHIP ON MULTISTOREY BUILDING CONSTRUCTION
 
CONSTRUCTION OF CEMENT CONCRETE ROAD
CONSTRUCTION OF CEMENT CONCRETE ROADCONSTRUCTION OF CEMENT CONCRETE ROAD
CONSTRUCTION OF CEMENT CONCRETE ROAD
 
Gangaram yadav ppt road con....
Gangaram yadav ppt road con....Gangaram yadav ppt road con....
Gangaram yadav ppt road con....
 
Mukesh ppt cc road
Mukesh ppt cc roadMukesh ppt cc road
Mukesh ppt cc road
 
Traning report on pwd cement concrete road pavement
Traning report on pwd cement concrete road pavementTraning report on pwd cement concrete road pavement
Traning report on pwd cement concrete road pavement
 
Aryan k tranning file road ppt 07
Aryan k tranning file road ppt 07Aryan k tranning file road ppt 07
Aryan k tranning file road ppt 07
 
Construction of residential building summer training ppt
 Construction of residential building summer training ppt Construction of residential building summer training ppt
Construction of residential building summer training ppt
 
SUMMER TRAINING REPORT ON BUILDING CONSTRUCTION
SUMMER TRAINING REPORT ON BUILDING CONSTRUCTIONSUMMER TRAINING REPORT ON BUILDING CONSTRUCTION
SUMMER TRAINING REPORT ON BUILDING CONSTRUCTION
 
Central Public Works Department (CPWD) summer training report
Central Public Works Department (CPWD) summer training reportCentral Public Works Department (CPWD) summer training report
Central Public Works Department (CPWD) summer training report
 

Similaire à Anshul pwd training report

Anshulpwdtrainingreport 131122214149-phpapp02
Anshulpwdtrainingreport 131122214149-phpapp02Anshulpwdtrainingreport 131122214149-phpapp02
Anshulpwdtrainingreport 131122214149-phpapp02
taye2020
 
Chaitra 2016 batch REPORT
Chaitra 2016 batch REPORT Chaitra 2016 batch REPORT
Chaitra 2016 batch REPORT
Chaithra M
 

Similaire à Anshul pwd training report (20)

Anshulpwdtrainingreport 131122214149-phpapp02
Anshulpwdtrainingreport 131122214149-phpapp02Anshulpwdtrainingreport 131122214149-phpapp02
Anshulpwdtrainingreport 131122214149-phpapp02
 
Pwd Repo1.docx
Pwd Repo1.docxPwd Repo1.docx
Pwd Repo1.docx
 
Concrete
ConcreteConcrete
Concrete
 
Fine aggregate with quarry dust and red soil in concrete
Fine aggregate with quarry dust and red soil in concreteFine aggregate with quarry dust and red soil in concrete
Fine aggregate with quarry dust and red soil in concrete
 
Building Materials: Concrete
Building Materials: Concrete Building Materials: Concrete
Building Materials: Concrete
 
lec#4Cementatious Mat.ppt
lec#4Cementatious Mat.pptlec#4Cementatious Mat.ppt
lec#4Cementatious Mat.ppt
 
Building Materials.pptx
Building Materials.pptxBuilding Materials.pptx
Building Materials.pptx
 
BFM-Presentation-On-Concrete.pptx
BFM-Presentation-On-Concrete.pptxBFM-Presentation-On-Concrete.pptx
BFM-Presentation-On-Concrete.pptx
 
Partial replacement of Fine aggreggate by Copper Slag and Cement by Fly Ash
Partial replacement of Fine aggreggate by Copper Slag and Cement by Fly AshPartial replacement of Fine aggreggate by Copper Slag and Cement by Fly Ash
Partial replacement of Fine aggreggate by Copper Slag and Cement by Fly Ash
 
N1304038490
N1304038490N1304038490
N1304038490
 
IRJET- An Experimental Investigation on Concrete Manufactured by Partial Repl...
IRJET- An Experimental Investigation on Concrete Manufactured by Partial Repl...IRJET- An Experimental Investigation on Concrete Manufactured by Partial Repl...
IRJET- An Experimental Investigation on Concrete Manufactured by Partial Repl...
 
Roads & Pavements
Roads & PavementsRoads & Pavements
Roads & Pavements
 
Introduction to Cement
Introduction to CementIntroduction to Cement
Introduction to Cement
 
Chaitra 2016 batch REPORT
Chaitra 2016 batch REPORT Chaitra 2016 batch REPORT
Chaitra 2016 batch REPORT
 
Damian Trevor - Construction Materials Concrete
Damian Trevor - Construction Materials ConcreteDamian Trevor - Construction Materials Concrete
Damian Trevor - Construction Materials Concrete
 
Introduction to civil Engg.pptx
Introduction to civil Engg.pptxIntroduction to civil Engg.pptx
Introduction to civil Engg.pptx
 
Introduction to Civil Engg. Unit-II.pdf
Introduction to Civil Engg. Unit-II.pdfIntroduction to Civil Engg. Unit-II.pdf
Introduction to Civil Engg. Unit-II.pdf
 
Construction materials.pptx
Construction materials.pptxConstruction materials.pptx
Construction materials.pptx
 
Cement Manufacturing & Sustainability Reports
Cement Manufacturing & Sustainability ReportsCement Manufacturing & Sustainability Reports
Cement Manufacturing & Sustainability Reports
 
IRJET- An Experimental Investigation on Cement Mortar Brick by Partial Re...
IRJET-  	  An Experimental Investigation on Cement Mortar Brick by Partial Re...IRJET-  	  An Experimental Investigation on Cement Mortar Brick by Partial Re...
IRJET- An Experimental Investigation on Cement Mortar Brick by Partial Re...
 

Plus de Anshul Shakya

Safety aspects on construction site in noida area Anshul
Safety aspects on construction site in noida area AnshulSafety aspects on construction site in noida area Anshul
Safety aspects on construction site in noida area Anshul
Anshul Shakya
 
Multi story building construction training report anshul
Multi story building construction training report anshulMulti story building construction training report anshul
Multi story building construction training report anshul
Anshul Shakya
 
NDT (NON DESTRUCTIVE TESTING) OF CONCRETE STRUCTURE ANSHUL
NDT (NON DESTRUCTIVE TESTING) OF CONCRETE STRUCTURE ANSHULNDT (NON DESTRUCTIVE TESTING) OF CONCRETE STRUCTURE ANSHUL
NDT (NON DESTRUCTIVE TESTING) OF CONCRETE STRUCTURE ANSHUL
Anshul Shakya
 

Plus de Anshul Shakya (8)

Safety aspects on construction site in noida area Anshul
Safety aspects on construction site in noida area AnshulSafety aspects on construction site in noida area Anshul
Safety aspects on construction site in noida area Anshul
 
PILE FOUNDATION PROJECT TRAINING ANSHUL
PILE FOUNDATION PROJECT TRAINING ANSHULPILE FOUNDATION PROJECT TRAINING ANSHUL
PILE FOUNDATION PROJECT TRAINING ANSHUL
 
Multi story building construction training report anshul
Multi story building construction training report anshulMulti story building construction training report anshul
Multi story building construction training report anshul
 
NDT (NON DESTRUCTIVE TESTING) OF CONCRETE STRUCTURE ANSHUL
NDT (NON DESTRUCTIVE TESTING) OF CONCRETE STRUCTURE ANSHULNDT (NON DESTRUCTIVE TESTING) OF CONCRETE STRUCTURE ANSHUL
NDT (NON DESTRUCTIVE TESTING) OF CONCRETE STRUCTURE ANSHUL
 
Multi story building construction anshul
Multi story building construction anshulMulti story building construction anshul
Multi story building construction anshul
 
ndt test (non destructive testing) for civil engg. material ANSHUL
 ndt test (non destructive testing) for  civil engg. material ANSHUL ndt test (non destructive testing) for  civil engg. material ANSHUL
ndt test (non destructive testing) for civil engg. material ANSHUL
 
CEMENT MANUFATURING WASTE
CEMENT MANUFATURING WASTECEMENT MANUFATURING WASTE
CEMENT MANUFATURING WASTE
 
cement road construction in the rural areas
cement road construction in the rural areas cement road construction in the rural areas
cement road construction in the rural areas
 

Dernier

Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
vu2urc
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
Joaquim Jorge
 

Dernier (20)

Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 

Anshul pwd training report

  • 1. A Summer Training Report On Construction of Cement Concrete Road At U.P. P.W.D, C.D.-3, MAINPURI Submitted for Partial fulfillment of Bachelor of Technology CIVIL ENGG. Submitted to: - Submitted By:- Dept. of Anshul Kumar (CIVIL ENGINEERING)B.Tech 4thYr. Roll No:-1106400902 HINDUSTAN COLLEGE OF SCIENCE & TECHNOLOGY, FARAH, MATHURA Batch: 2010-14
  • 2. ACKNOWLEDGEMENT I express my satisfaction on the completion of this summer training program and project report submission as a part of the curriculum for the degree of Bachelor of Technology, Civil Engineering. I express my deepest gratitude to my supervisor and mentor Mr. P. K. SINGHAL for his kind guidance during the entire period of training. His consistent support and advices has helped me to complete this research project successfully. Also I thank all the members of P.W.D., C.D.-3 MAINPURI, U.P. Department for their kind support. They have always been a source of inspiration to me. DATE: - 31/07/2013 ANSHUL KUMAR
  • 3. Content 1. PWD Introduction 2. About Cement road 4. Material 5. Tests 6. Cement road construction 6.1 Preparation of subgrade 6.2 Preparation of base 6.3 Form work 6.4 Watering of base
  • 4. 6.5 joints 6.6 Material mix & placing 6.7 Compaction 6.8 Finishing of surface 6.9 Curing 6.10 Filling joint 6.11 Edging 6.12 open to traffic 7 Reference
  • 5. Introduction Point of view geographic and population of the state is the nation's largest state. State Industrial, economic and social development of the state and the population of each village is absolutely necessary to re-connect to the main roads. In addition to state important national roads, state roads and district roads and their proper broad be made to improve the quality of traffic point of view is of particular importance. Public Works Department to build roads and improve connectivity in rural zones, Other District Road and State broad and improvement of rural roads and main routes narrow construction of zones and depleted bridges brides reconstruction of the bases are transacted on a priority basis . Also under PradhanMantri Gram SadakYojana and pre-fabricated construction of rural roads linking the work of other district roads broad Suddikrn the scale bases are edited. Successful operation of various schemes for the Public Works Department engineers and supervisory boards in different districts of the engineer’s office has been settled. Activities by planning, execution, and quality control etc. remove impediments find joy in relation to the supervision over the activities are focused. Various schemes operated by the Department of the Office of the Regional Chief Engineers and Chief Engineers office.
  • 6. About Road A road is a thoroughfare, route, or way on land between two places, which has been paved or otherwise improved to allow travel by some conveyance, including a horse, cart, or motor vehicle. Roads consist of one, or sometimes two, roadways (carriageways) each with one or more lanes and also any associated sidewalks (British English: pavement) and road verges. Roads that are available for use by the public may be referred to as public roads or highways. MATERIAL Concrete is widely used in domestic, commercial, recreational, rural and educational construction. Communities around the world rely on concrete as a safe, strong and simple building material. It is used in all types of construction; from domestic work to multi-storey office blocks and shopping complexes. Despite the common usage of concrete, few people are aware of the considerations involved in designing strong, durable, high quality concrete. There are mainly three types1-Cement 2-Sand 3-Aggregate
  • 7. Cement A cement is a binder, a substance that sets and hardens independently, and can bind other materials together. The word "cement" traces to the Romans, who used the term caementiciumto describe masonry resembling modern concrete that was made from crushed rock with burnt lime as binder. The volcanic ash and pulverized brick additives that were added to the burnt lime to obtain a hydraulic binder were later referred to as cementum, cimentum, cement, and cement. Cements used in construction can be characterized as being either hydraulic or non-hydraulic. Hydraulic cements (e.g., Portland cement) harden because of hydration, a chemical reaction between the anhydrous cement powder and water. Thus, they can harden underwater or when constantly exposed to wet weather. The chemical reaction results in hydrates that are not very water-soluble and so are quite durable in water. Non-hydraulic cements do not harden underwater; for example, slaked limes harden by reaction with atmospheric carbon dioxide. The most important uses of cement are as an ingredient in the production of mortar in masonry, and of concrete, a combination of cement and an aggregate to form a strong building material. Types of Cement:Portland cement Portland cement is by far the most common type of cement in general use around the world. This cement is made by heating limestone (calcium carbonate) with small quantities of other materials (such as clay) to 1450 °C in a kiln, in a process known as calcination, whereby a molecule of carbon dioxide is liberated from the calcium carbonate to form calcium oxide, or quicklime, which is then blended with the other materials that have been included in the mix. The resulting hard substance, called 'clinker', is then ground with a small amount of gypsum into a powder to make 'Ordinary Portland Cement', the most commonly used type of cement (often referred to as OPC). Portland cement is a basic ingredient of concrete, mortar and most non-specialty grout. The most common use for Portland cement is in the production of concrete. Concrete is a composite material consisting of aggregate (gravel and sand), cement, and water. As a construction material, concrete can be cast in almost any
  • 8. shape desired, and once hardened, can become a structural (load bearing) element. Portland cement may be grey or white. Portland fly ash cement Its contains up to 35% flyash. The fly ash is pozzolanic, so that ultimate strength is maintained. Because fly ash addition allows a lower concrete water content, early strength can also be maintained. Where good quality cheap fly ash is available, this can be an economic alternative to ordinary Portland cement. Portland pozzolan cement Its includes fly ash cement, since fly ash is a pozzolan , but also includes cements made from other natural or artificial pozzolans. In countries where volcanic ashes are available. Portland silica fume cement Addition of silica fume can yield exceptionally high strengths, and cements containing 5–20% silica fume are occasionally produced. However, silica fume is more usually added to Portland cement at the concrete mixer Sand Sand is a naturally occurring granular material composed of finely divided rock and mineral particles. The composition of sand is highly variable, depending on the local rock sources and conditions, but the most common constituent of sand in inland continental settings and nontropical coastal settings is silica (silicon dioxide, or SiO2), usually in the form of quartz. The second most common type of sand is calcium carbonate, for example aragonite, which has mostly been created, over the past half billion years, by various forms of life, like coral and shellfish. It is, for example, the primary form of sand apparent in areas where reefs have dominated the ecosystem for millions of years like the Caribbean. Composition In terms of particle size as used by geologists, sand particles range in diameter from 0.0625 mm (or 1⁄16 mm) to 2 mm. An individual particle in
  • 9. this range size is termed a sand grain. Sand grains are between gravel (with particles ranging from 2 mm up to 64 mm) and silt (particles smaller than 0.0625 mm down to 0.004 mm). The size specification between sand and gravel has remained constant for more than a century, but particle diameters as small as 0.02 mm were considered sand under the Alter berg standard in use during the early 20th century. A 1953 engineering standard published by the American Association of State Highway and Transportation Officials set the minimum sand size at 0.074 mm. Aggregate Aggregates are inert granular materials such as sand, gravel, or crushed stone that, along with water and Portland cement, are an essential ingredient in concrete. For a good concrete mix, aggregates need to be clean, hard, strong particles free of absorbed chemicals or coatings of clay and other fine materials that could cause the deterioration of concrete. Aggregates, which account for 60 to 75 percent of the total volume of concrete, are divided into two distinct categories-fine and coarse. Fine aggregates generally consist of natural sand or crushed stone with most particles passing through a 3/8-inch (9.5-mm) sieve. Coarse aggregates are any particles greater than 0.19 inch (4.75 mm), but generally range between 3/8 and 1.5 inches (9.5 mm to 37.5 mm) in diameter. Gravels constitute the majority of coarse aggregate used in concrete with crushed stone making up most of the remainder. Natural gravel and sand are usually dug or dredged from a pit, river, lake, or seabed. Crushed aggregate is produced by crushing quarry rock, boulders, cobbles, or large-size gravel. Recycled concrete is a viable source of aggregate and has been satisfactorily used in granular subbases, soilcement, and in new concrete. Aggregate processing consists of crushing, screening, and washing the aggregate to obtain proper cleanliness and gradation. If necessary, a benefaction process such as jigging or heavy media separation can be used to upgrade the quality. Once processed, the aggregates are handled and stored in a way that minimizes segregation and degradation and prevents contamination.
  • 10. Aggregates strongly influence concrete's freshly mixed and hardened properties, mixture proportions, and economy. Consequently, selection of aggregates is an important process. Although some variation in aggregate properties is expected, characteristics that are considered when selecting aggregate include: grading durability particle shape and surface texture abrasion and skid resistance unit weights and voids absorption and surface moisture Grading refers to the determination of the particle-size distribution for aggregate. Grading limits and maximum aggregate size are specified because grading and size affect the amount of aggregate used as well as cement and water requirements, workability Shape and size Particle shape and surface texture influence the properties of freshly mixed concrete more than the properties of hardened concrete. Rough-textured, angular, and elongated particles require more water to produce workable concrete than smooth, rounded compact aggregate. Consequently, the cement content must also be increased to maintain the water-cement ratio. Generally, flat and elongated particles are avoided or are limited to about 15 percent by weight of the total aggregate. Unit-weight measures the volume that graded aggregate and the voids between them will occupy in concrete. The void content between particles affects the amount of cement paste required for the mix. Angular aggregate increase the void content. Larger sizes of well-graded aggregate and improved grading decrease the void content. Absorption and surface moisture of aggregate are measured when selecting aggregate because the internal structure of aggregate is made up of solid material and voids that may or may not contain water. The amount of water in the concrete mixture must be adjusted to include the moisture conditions of the aggregate. Abrasion and skid resistance of an aggregate are essential when the aggregate is to be used in concrete
  • 11. constantly subject to abrasion as in heavy-duty floors or pavements. Different minerals in the aggregate wear and polish at different rates. Harder aggregate can be selected in highly abrasive conditions to minimize wear. Test There are four main tests to be done on concrete: 1-The Slump Test. 2-Compression Test 3-Impact Test 4-Cube Test
  • 12. THE SLUMP TEST The slump test is done to make sure a concrete mix is workable. Workability measures how easy the concrete is to place, handle and compact
  • 13. Standard slump cone (100 mm top diameter x 200 mm bottom diameter x 300 mm high) Small scoop Bullet-nosed rod (600 mm long x 16 mm diameter ) Rule Slump plate (500 mm x 500 mm) Method 1 Clean the cone. Dampen with water and place on the slump plate. The slump plate should be clean, firm, level and non-absorbent. 2 Collect a sample. 3 Stand firmly on the footpieces and fill 1/3 the volume of the cone with the sample. Compact the concrete by 'rodding' 25 times. Rodding Rodding means to push a steel rod in and out of the concrete to compact it into the cylinder, or slump cone. Always rod in a definite pattern, working from outside into the middle. 4 Now fill to 2 /3 and again rod 25 times, just into the top of the first layer. 5 Fill to overflowing, rodding again this time just into the top of the second layer. Top up the cone till it overflows. 6 Level off the surface with the steel rod using a rolling action. Clean any concrete from around the base and top of the cone, push down on the handles and step off the footpieces. 7 Carefully lift the cone straight up making sure not to move the sample. 8 Turn the cone upside down and place the rod across the up-turned cone.
  • 14. THE COMPRESSION TEST The compression test shows the compressive strength of hardened concrete. The testing is done in a laboratory off-site. The only work done on-site is to make a concrete cylinder for the compression test. The strength is measured in Megapascals(MPa) and is commonly specified as a characteristic strength of concrete measured at 28 days after mixing. The compressive strength is a measure of the concrete’s ability to resist loads which tend to crush it. Tools Cylinders (100 mm diameter x 200 mm high or 150 mm diameter x 300 mm high) ( The small cylinders are normally used for most testing due to their lighter weight ) Small scoop Bullet-nosed rod (600 mm x 16 mm) Steel float Steel plate Method 1 Clean the cylinder mould and coat the inside lightly with form oil, then place on a clean, level and firm surface, ie the steel plate. 2 Collect a sample.
  • 15. 3 Fill 1/2 the volume of the mould with concrete then compact by rodding 25 times. Cylinders may also be compacted by vibrating using a vibrating table. The Compression Test continues on the next page 13 Fill the cone to overflowing and rod 25 times into the top of the first 4 layer, then top up the mould till overflowing. 5 Level off the top with the steel float and clean any concrete from around the mould. 6 Cap, clearly tag the cylinder and put it in a cool dry place to set for at least 24 hours. 7 After the mould is removed the cylinder is sent to the laboratory where it is cured and crushed to test compressive strength.
  • 16. Impact Testing An impact test is a dynamic test conducted on a selected specimen which is usually notched. The specimen is struck and broken by a single blow in a specially designed machine. This demo illustrates the experiment setup, procedure and the energy absorbed in an impact test.
  • 17. CubeTest Test applied to the concrete, this is the utmost important which gives an idea about all the characteristics of concrete. By this single test one judge that whether Concreting has been done properly or not. For cube test two types of specimens either cubes of 15 cm X 15 cm X 15 cm or 10cm X 10 cm x 10 cm depending upon the size of aggregate are used. For most of the works cubical moulds of size 15 cm x 15cm x 15 cm are commonly used. This concrete is poured in the mould and tempered properly so as not to have any voids. After 24 hours these moulds are removed and test specimens are put in water for curing. The top surface of these specimen should be made even and smooth. This is done by putting cement paste and spreading smoothly on whole area of specimen. These specimens are tested by compression testing machine after 7 days curing or 28 days curing. Load should be applied gradually at the rate of 140 kg/cm2 per minute till the Specimens fails. Load at the failure divided by area of specimen gives the compressive strength of concrete. APPARATUS Compression testing machine PREPARATION OF CUBE SPECIMENS The proportion and material for making these test specimens are from the same concrete used in the field. SPECIMEN 6 cubes of 15 cm size Mix. M15 or above MIXING Mix the concrete either by hand or in a laboratory batch mixer
  • 18. HAND MIXING (i)Mix the cement and fine aggregate on a water tight none-absorbent platform until the mixture is thoroughly blended and is of uniform color (ii)Add the coarse aggregate and mix with cement and fine aggregate until the coarse aggregate is uniformly distributed throughout the batch (iii)Add water and mix it until the concrete appears to be homogeneous and of the desired consistency. PRECAUTIONS The water for curing should be tested every 7days and the temperature of water must be at 27+-2oC. PROCEDURE (I) Remove the specimen from water after specified curing time and wipe out excess water from the surface. (II) Take the dimension of the specimen to the nearest 0.2m (III) Clean the bearing surface of the testing machine (IV) Place the specimen in the machine in such a manner that the load shall be applied to the opposite sides of the cube cast. (V) Align the specimen centrally on the base plate of the machine. (VI) Rotate the movable portion gently by hand so that it touches the top surface of the specimen. (VII) Apply the load gradually without shock and continuously at the rate of 140kg/cm2/minute till the specimen fails (VIII) Record the maximum load and note any unusual features in the type of failure.
  • 19. Using mix Concrete , there some Point to construct the road1. Preparation of base 2. Form working 3. Preparation of subgrade 4. Watering of base 5. Joints 6. Material mix & placing 7. Compaction 8. Finishing of surface 8A. Floating 8B. Belting 8C. Brooming 9. Curing 10. Joint filling 11. Edging 12. Open to traffic
  • 20. 1. Preparation of subgrade 1. Rolling on sub grade by roller 2. Filling the granular soil in the weak part and pot holes 3. Correct the soil coat , Camber , longitudinal slop When concrete direct laid on subgrade, For preventing the waterseepaging into the soil , used water proof paper on entire length. 1. Rolling on sub grade by roller 2. Filling the granular soil in the weak part and pot holes 3. Correct the soil coat , Camber , longitudinal slop When concrete direct laid on subgrade, For preventing the waterseepaging into the soil , used water proof paper on entire length. 2. Preparation of base Choose any one type of base 1. W.B.M. base As base material of W.B.M. Road; stone ballast, concrete 10-15cm layer are used. For bonding between concrete slab & W.B.M. used 1:2 cement wash on W.B.M. 2. Concrete base On the road used 10cm Cement concrete(1:2:4) or lime concrete(16:32:64) 3. Granular medium material layer 10-15cm composite layer of sand , moorum, bajriare usedfor better drainage facilities
  • 21. 4. Stabilization soil 3. Form work Material for form workWooden sheets, battens, plywood, fibre hard board, steel plates, angles, rope, minerals. 1. before using form work, it should free from all type material like as dust ,cement. 2. To placing the concrete in appropriate depth used 2.5-5cm thick and 3mtr long wooden sheeting. 3. The depth of wooden block must be same as level of slab thick. 4. After 24hrs form work displaced next length of road.
  • 22. 4. Watering of base If base is dry Than using the sprinkling process on it properly after that placing the concrete. 5.Joints Where is necessary to provide transverse, Longitudinal joints; there wedge of woods, metals fix on level of concrete. After setting of concrete it should be pull out. If provided the dowel bar in joints, bars should be fit at right position. 6.Material mix & placing Mixer is equipment that mix the concrete using distinct amount of cement , concrete, sand and water. Concrete slab should have more than 5-10cm thick cause of drying. Used two type mixer1. Batch mixerat site, used for small road construction 2. Continuous mixerContinuous mixer used for large construction . if distance is more from site , mix concrete transported at site within setting time. Two methods generally used in placing of concrete1. Alternate bay methodPlaced the concrete on both side of road alternatively like as1,3,5… part at one side and 2,4,6… part other side . 1st side 2nd side
  • 23. This method have slow process due to road traffic problems. 2. Continuous bay methodconstruct one side of road regularly, if completed some part of first side than construct other side. this method have fast process without no obstruction of traffic 7. Compaction Purpose of compaction is that to pull out air from void and make concrete harden. Compaction done by1.mechanically surface vibrator 2. manuallyhand tempers 8. Finishing of surface
  • 24. 1.FloatingFor levelling the surface use floating, scree-ding , power trowel. So that there is no acceptable more than 3mm variation in concrete level surface. 2.BeltingFor making surface clean used belting process. Belt is nothing but a 15-30cm thick sheets of canvass which have more length than road. 3. BroomingBrooming is the process in which we made rough surface parallel to road by brush. It useful in avoiding slip & comfortable travelling on road . The depth of line on road no more than 1.5mm. 9.Curing
  • 25. Curing is the name of increasing the hydration process of cement. after setting the concrete , curing process done till 14-28days. Some method of curing are1.Shading concrete works 2. Covering with hessian & gunny bags 3. Sprinkling of water 4.By ponding 5. Membrane curing 6. Steam curing 10. Filling joint
  • 26. After drying road, clean the joints and fill the shelling compound or hot bitumen . also bitumen fill road bank. 11. Edging To protect damaging the sides of concrete pavements used over burnt brick work. in place of brick, provided kerb of pre mix concrete. 12.open to traffic Generally after a month, road should be open to traffic. If used rapid hardening cement it take 7 days to open traffic. Reference