SlideShare une entreprise Scribd logo
1  sur  21
Télécharger pour lire hors ligne
Combining density functional theory
calculations, supercomputing, and data-driven
methods to design new materials
Anubhav Jain
Energy Technologies Area
Lawrence Berkeley National Laboratory
Berkeley, CA
Slides posted to http://www.slideshare.net/anubhavster
New materials discovery for devices is needed but sporadic
•  Novel materials with enhanced performance characteristics
could make a big dent in sustainability, scalability, and cost
•  In practice, we tend to re-use the same fundamental
materials for decades
–  solar power w/Si since 1950s
–  graphite/LiCoO2 (basis of today’s Li battery electrodes) since
1990
•  Obviously, there are lots of improvements to manufacturing,
microstructure, etc., but how about new basic compositions?
•  Why is discovering better materials such a challenge?
2
What constrains traditional experimentation?
3
“[The Chevrel] discovery resulted from a lot of
unsuccessful experiments of Mg ions insertion
into well-known hosts for Li+ ions insertion, as
well as from the thorough literature analysis
concerning the possibility of divalent ions
intercalation into inorganic materials.”
-Aurbach group, on discovery of Chevrel cathode
for multivalent (e.g., Mg2+) batteries
Levi, Levi, Chasid, Aurbach
J. Electroceramics (2009)
Can we invent other, faster ways of finding materials?
•  The Materials Genome
Initiative thinks it is possible to
“discover, develop,
manufacture, and deploy
advanced materials at least
twice as fast as possible
today, at a fraction of the
cost”
•  Major components of the
strategy include:
–  simulations & supercomputers
–  digital data and data mining
–  better merging computation
and experiment
4
https://obamawhitehouse.archives.gov/mgi
Outline
5
①  Intro to Density Functional Theory (DFT)
②  The Materials Project database
③  Next steps
An overview of materials modeling techniques
6
Source: NASA
What is density functional theory (DFT)?
7
+	 )};({
)};({
trH
dt
trd
i i
i
Ψ=
Ψ ∧
!
+	H = ∇i
2
i=1
Ne
∑ + Vnuclear (ri)
i=1
Ne
∑ + Veffective(ri)
i=1
Ne
∑
DFT is a method to solve for the electronic structure and energetics of
arbitrary materials starting from first-principles.
In theory, it is exact for the ground state. In practice, accuracy depends on the
choice of (some) parameters, the type of material, the property to be studied,
and whether the simulated crystal is a good approximation of reality.
DFT resulted in the 1999 Nobel Prize for chemistry (W. Kohn). It is
responsible for 2 of the top 10 cited papers of all time, across all sciences.
How does one use DFT to design new materials?
8
A. Jain, Y. Shin, and K. A.
Persson, Nat. Rev. Mater.
1, 15004 (2016).
How accurate is DFT in practice?
9
Shown are typical DFT results for (i) Li
battery voltages, (ii) electronic band gaps,
and (iii) bulk modulus
(i) (ii)
(iii)
(i) V. L. Chevrier, S. P. Ong, R. Armiento, M. K. Y. Chan, and G. Ceder,
Phys. Rev. B 82, 075122 (2010).
(ii) M. Chan and G. Ceder, Phys. Rev. Lett. 105, 196403 (2010).
(iii) M. De Jong, W. Chen, T. Angsten, A. Jain, R. Notestine, A. Gamst,
M. Sluiter, C. K. Ande, S. Van Der Zwaag, J. J. Plata, C. Toher, S.
Curtarolo, G. Ceder, K.A. Persson, and M. Asta, Sci. Data 2, 150009
(2015).
Outline
10
①  Intro to Density Functional Theory (DFT)
②  The Materials Project database
③  Next steps
High-throughput DFT: a key idea
11
Automate the DFT
procedure
Supercomputing
Power
FireWorks
Software for programming
general computational
workflows that can be
scaled across large
supercomputers.
NERSC
Supercomputing center,
processor count is
~100,000 desktop
machines. Other centers
are also viable.
High-throughput
materials screening
G. Ceder & K.A.
Persson, Scientific
American (2015)
Examples of (early) high-throughput studies
12
Application Researcher Search space Candidates Hit rate
Scintillators Klintenberg et al. 22,000 136 1/160
Curtarolo et al. 11,893 ? ?
Topological insulators Klintenberg et al. 60,000 17 1/3500
Curtarolo et al. 15,000 28 1/535
High TC superconductors Klintenberg et al. 60,000 139 1/430
Thermoelectrics – ICSD
- Half Heusler systems
- Half Heusler best ZT
Curtarolo et al. 2,500
80,000
80,000
20
75
18
1/125
1/1055
1/4400
1-photon water splitting Jacobsen et al. 19,000 20 1/950
2-photon water splitting Jacobsen et al. 19,000 12 1/1585
Transparent shields Jacobsen et al. 19,000 8 1/2375
Hg adsorbers Bligaard et al. 5,581 14 1/400
HER catalysts Greeley et al. 756 1 1/756*
Li ion battery cathodes Ceder et al. 20,000 4 1/5000*
Entries marked with * have experimentally verified the candidates.
See also: Curtarolo et al., Nature Materials 12 (2013) 191–201.
Computations predict, experiments confirm
13
Sidorenkite-based Li-ion battery
cathodes
Carbon capture
YCuTe2 thermoelectrics
Dunstan, M. T., Jain, A., Liu, W., Ong, S. P., Liu, T., Lee,
J., Persson, K. A., Scott, S. A., Dennis, J. S. & Grey, C.
Large scale computational screening and experimental
discovery of novel materials for high temperature CO2
capture. Energy and Environmental Science (2016)
Chen, H.; Hao, Q.; Zivkovic, O.; Hautier, G.; Du, L.-S.; Tang,
Y.; Hu, Y.-Y.; Ma, X.; Grey, C. P.; Ceder, G. Sidorenkite
(Na3MnPO4CO3): A New Intercalation Cathode Material
for Na-Ion Batteries, Chem. Mater., 2013
Aydemir, U; Pohls, J-H; Zhu, H; Hautier, G; Bajaj, S; Gibbs,
ZM; Chen, W; Li, G; Broberg, D; White, MA; Asta, M;
Persson, K; Ceder, G; Jain, A; Snyder, GJ. Thermoelectric
Properties of Intrinsically Doped YCuTe2 with CuTe4-based
Layered Structure. J. Mat. Chem C, 2016
More examples here: A. Jain, Y. Shin, and K. A. Persson, Nat. Rev. Mater. 1, 15004 (2016).
Another key idea: putting all the data online
14
Jain*, Ong*, Hautier, Chen, Richards, Dacek, Cholia, Gunter, Skinner, Ceder,
and Persson, APL Mater., 2013, 1, 011002. *equal contributions
The Materials Project (http://www.materialsproject.org)
free and open
~30,000 registered users
around the world
>65,000 compounds
calculated
Data includes
•  thermodynamic props.
•  electronic band structure
•  aqueous stability (E-pH)
•  elasticity tensors
•  piezoelectric tensors
>75 million CPU-hours
invested = massive scale!
The data is re-used by the community
15
K. He, Y. Zhou, P. Gao, L. Wang, N. Pereira, G.G. Amatucci, et al.,
Sodiation via Heterogeneous Disproportionation in FeF2 Electrodes for
Sodium-Ion Batteries., ACS Nano. 8 (2014) 7251–9.
M.M. Doeff, J. Cabana,
M. Shirpour, Titanate
Anodes for Sodium Ion
Batteries, J. Inorg.
Organomet. Polym. Mater.
24 (2013) 5–14.
Further examples in: A. Jain, K.A. Persson, G. Ceder. APL Materials (2016).
Video tutorials are available
16
www.youtube.com/user/MaterialsProject
Outline
17
①  Intro to Density Functional Theory (DFT)
②  The Materials Project database
③  Next steps
DFT methods will become much more powerful
18
types of
materials
high-throughput
screening
computations
predict materials?
relative computing
power
1980s simple metals/
semiconductors
unimaginable by
almost anyone
unimaginable by
majority
1
1990s + oxides unimaginable by
majority
1-2 examples 1000
2000s + complex/
correlated
systems
1-2 examples ~5-10 examples 1,000,000
2010s +hybrid
systems
+excited state
properties?
~many dozens of
examples
~25 examples,
maybe 50 by end
of decade
1,000,000,000*
2020s ?very large
systems?
?routine? ?routine? ?1 trillion?
* The top 2 DOE supercomputers alone have a budget of 8 billion CPU-hours/year, in theory enough to run
basic DFT characterization (structure/charge/band structure) of ~40 million materials/year!
Data mining materials properties will be common
•  As the quantity of organized materials data (both
simulation and experiment) grows, there will be
increased opportunities to apply statistical
learning / data mining
•  New types of “predictive models”: recommender
systems, decision trees, even deep learning
•  Some key and upcoming players in the US:
–  Citrine Informatics
–  IBM Watson
–  NIST MGI efforts (ChiMaD, Materials Data Facility)
–  U. Buffalo Center for Materials Informatics
–  Center for Materials Processing Data
–  and our own Materials Project
19
Jain, Hautier, Ong, Persson, New opportunities for materials informatics: Resources and data mining techniques for
uncovering hidden relationships, J. Mater. Res. 31 (2016) 977–994.
But remember…
•  Accuracy will always be an issue
•  Max system size (~1000 atoms today w/o major effort) is another major
limitation
•  Not everything can be simulated
–  today, you are lucky if you can simulate 20% of what you want to know about a
material for an application with decent accuracy
–  translating engineering design criteria into a set of DFT-computable quantities
remains challenging
•  Even with many improvements to current technology, this will still just be
a tool in materials discovery and never a complete solution
•  But – perhaps we can indeed cut down on materials discovery time by a
factor of two!
20
Thank you!
•  Dr. Kristin Persson and Prof. Gerbrand Ceder,
founders of Materials Project and their teams
•  Prof. Shyue Ping Ong & Prof. Geoffroy Hautier
•  NERSC computing center and staff
•  Funding: U.S. Department of Energy
21
Slides posted to http://www.slideshare.net/anubhavster

Contenu connexe

Tendances

MSE PhD lecture. Adv. Mater. Synthesis. Thin Films. Oct 23, 2014.
MSE PhD lecture. Adv. Mater. Synthesis. Thin Films. Oct 23, 2014.MSE PhD lecture. Adv. Mater. Synthesis. Thin Films. Oct 23, 2014.
MSE PhD lecture. Adv. Mater. Synthesis. Thin Films. Oct 23, 2014.
Toru Hara
 
Two-Dimensional Layered Materials for Battery Application--Yifei Li
Two-Dimensional Layered Materials for Battery Application--Yifei LiTwo-Dimensional Layered Materials for Battery Application--Yifei Li
Two-Dimensional Layered Materials for Battery Application--Yifei Li
Yifei Li
 
Makram thesis presentation
Makram thesis presentationMakram thesis presentation
Makram thesis presentation
abdelqad
 

Tendances (20)

Perovskites solar cells degradation solutions
Perovskites solar cells degradation solutionsPerovskites solar cells degradation solutions
Perovskites solar cells degradation solutions
 
Density functional theory
Density functional theoryDensity functional theory
Density functional theory
 
High Entropy alloys
High Entropy alloysHigh Entropy alloys
High Entropy alloys
 
A DFT & TDDFT Study of Hybrid Halide Perovskite Quantum Dots
A DFT & TDDFT Study of Hybrid Halide Perovskite Quantum DotsA DFT & TDDFT Study of Hybrid Halide Perovskite Quantum Dots
A DFT & TDDFT Study of Hybrid Halide Perovskite Quantum Dots
 
Bismuth Ferrite Nano particles
Bismuth Ferrite Nano particlesBismuth Ferrite Nano particles
Bismuth Ferrite Nano particles
 
MSE PhD lecture. Adv. Mater. Synthesis. Thin Films. Oct 23, 2014.
MSE PhD lecture. Adv. Mater. Synthesis. Thin Films. Oct 23, 2014.MSE PhD lecture. Adv. Mater. Synthesis. Thin Films. Oct 23, 2014.
MSE PhD lecture. Adv. Mater. Synthesis. Thin Films. Oct 23, 2014.
 
Achieving the Photon Upconversion Process with Biomolecules
Achieving the Photon Upconversion Process with BiomoleculesAchieving the Photon Upconversion Process with Biomolecules
Achieving the Photon Upconversion Process with Biomolecules
 
Fabrication and Characterization of 2D Titanium Carbide MXene Nanosheets
Fabrication and Characterization of 2D Titanium Carbide MXene NanosheetsFabrication and Characterization of 2D Titanium Carbide MXene Nanosheets
Fabrication and Characterization of 2D Titanium Carbide MXene Nanosheets
 
1 basics of x ray powder diffraction
1 basics of x ray powder diffraction1 basics of x ray powder diffraction
1 basics of x ray powder diffraction
 
Mxenes presentation.pptx
Mxenes presentation.pptxMxenes presentation.pptx
Mxenes presentation.pptx
 
06 chapter1
06 chapter106 chapter1
06 chapter1
 
Methods available in WIEN2k for the treatment of exchange and correlation ef...
Methods available in WIEN2k for the treatment  of exchange and correlation ef...Methods available in WIEN2k for the treatment  of exchange and correlation ef...
Methods available in WIEN2k for the treatment of exchange and correlation ef...
 
Two-Dimensional Layered Materials for Battery Application--Yifei Li
Two-Dimensional Layered Materials for Battery Application--Yifei LiTwo-Dimensional Layered Materials for Battery Application--Yifei Li
Two-Dimensional Layered Materials for Battery Application--Yifei Li
 
Dft calculation by vasp
Dft calculation by vaspDft calculation by vasp
Dft calculation by vasp
 
Introduction to DFT Part 2
Introduction to DFT Part 2Introduction to DFT Part 2
Introduction to DFT Part 2
 
Computational modeling of perovskites ppt
Computational modeling of perovskites pptComputational modeling of perovskites ppt
Computational modeling of perovskites ppt
 
Graphene presentation 11 March 2014
Graphene presentation 11 March 2014Graphene presentation 11 March 2014
Graphene presentation 11 March 2014
 
Makram thesis presentation
Makram thesis presentationMakram thesis presentation
Makram thesis presentation
 
Presentation on Perovskite Solar Cell.
Presentation on Perovskite Solar Cell. Presentation on Perovskite Solar Cell.
Presentation on Perovskite Solar Cell.
 
A*STAR Webinar on The AI Revolution in Materials Science
A*STAR Webinar on The AI Revolution in Materials ScienceA*STAR Webinar on The AI Revolution in Materials Science
A*STAR Webinar on The AI Revolution in Materials Science
 

En vedette

Storyboard development rough draft
Storyboard development   rough draftStoryboard development   rough draft
Storyboard development rough draft
studies2017
 
Guida al grande romanzo epico dell’europa il foglio
Guida al grande romanzo epico dell’europa   il foglioGuida al grande romanzo epico dell’europa   il foglio
Guida al grande romanzo epico dell’europa il foglio
Carlo Favaretti
 

En vedette (20)

Lessonplan march27
Lessonplan march27Lessonplan march27
Lessonplan march27
 
Storyboard development
Storyboard developmentStoryboard development
Storyboard development
 
Prinsipkerja jfet1
Prinsipkerja jfet1Prinsipkerja jfet1
Prinsipkerja jfet1
 
Enfermedad Chikungunya
Enfermedad ChikungunyaEnfermedad Chikungunya
Enfermedad Chikungunya
 
TMP NSW March 2017 Testimonials
TMP NSW March 2017 TestimonialsTMP NSW March 2017 Testimonials
TMP NSW March 2017 Testimonials
 
Proyecto de ciencias
Proyecto de cienciasProyecto de ciencias
Proyecto de ciencias
 
Ejercicio 3
Ejercicio 3Ejercicio 3
Ejercicio 3
 
Apostilaredes
ApostilaredesApostilaredes
Apostilaredes
 
ITを知らない人にITを伝える技術
ITを知らない人にITを伝える技術ITを知らない人にITを伝える技術
ITを知らない人にITを伝える技術
 
como registrarte en slideshare
como registrarte en slidesharecomo registrarte en slideshare
como registrarte en slideshare
 
Informe semanal de actividades en vía pública del 17 al 23 de marzo 2017
Informe semanal de actividades en vía pública del 17 al 23 de  marzo 2017Informe semanal de actividades en vía pública del 17 al 23 de  marzo 2017
Informe semanal de actividades en vía pública del 17 al 23 de marzo 2017
 
Advérbio
AdvérbioAdvérbio
Advérbio
 
Tecnologia textil basica
Tecnologia textil basicaTecnologia textil basica
Tecnologia textil basica
 
Storyboard development rough draft
Storyboard development   rough draftStoryboard development   rough draft
Storyboard development rough draft
 
Guida al grande romanzo epico dell’europa il foglio
Guida al grande romanzo epico dell’europa   il foglioGuida al grande romanzo epico dell’europa   il foglio
Guida al grande romanzo epico dell’europa il foglio
 
Amref boot camp activity report
Amref boot camp activity reportAmref boot camp activity report
Amref boot camp activity report
 
Software tools to facilitate materials science research
Software tools to facilitate materials science researchSoftware tools to facilitate materials science research
Software tools to facilitate materials science research
 
Location search
Location searchLocation search
Location search
 
Fracturas
FracturasFracturas
Fracturas
 
constructoras vip
constructoras vipconstructoras vip
constructoras vip
 

Similaire à Combining density functional theory calculations, supercomputing, and data-driven methods to design new materials

Similaire à Combining density functional theory calculations, supercomputing, and data-driven methods to design new materials (20)

Introduction (Part I): High-throughput computation and machine learning appli...
Introduction (Part I): High-throughput computation and machine learning appli...Introduction (Part I): High-throughput computation and machine learning appli...
Introduction (Part I): High-throughput computation and machine learning appli...
 
High-throughput computation and machine learning methods applied to materials...
High-throughput computation and machine learning methods applied to materials...High-throughput computation and machine learning methods applied to materials...
High-throughput computation and machine learning methods applied to materials...
 
Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...
 
Materials discovery through theory, computation, and machine learning
Materials discovery through theory, computation, and machine learningMaterials discovery through theory, computation, and machine learning
Materials discovery through theory, computation, and machine learning
 
Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...
 
Software tools, crystal descriptors, and machine learning applied to material...
Software tools, crystal descriptors, and machine learning applied to material...Software tools, crystal descriptors, and machine learning applied to material...
Software tools, crystal descriptors, and machine learning applied to material...
 
The Materials Project: Applications to energy storage and functional materia...
The Materials Project: Applications to energy storage and functional materia...The Materials Project: Applications to energy storage and functional materia...
The Materials Project: Applications to energy storage and functional materia...
 
Methods, tools, and examples (Part II): High-throughput computation and machi...
Methods, tools, and examples (Part II): High-throughput computation and machi...Methods, tools, and examples (Part II): High-throughput computation and machi...
Methods, tools, and examples (Part II): High-throughput computation and machi...
 
Discovering advanced materials for energy applications (with high-throughput ...
Discovering advanced materials for energy applications (with high-throughput ...Discovering advanced materials for energy applications (with high-throughput ...
Discovering advanced materials for energy applications (with high-throughput ...
 
Computational Materials Design and Data Dissemination through the Materials P...
Computational Materials Design and Data Dissemination through the Materials P...Computational Materials Design and Data Dissemination through the Materials P...
Computational Materials Design and Data Dissemination through the Materials P...
 
The Materials Project: A Community Data Resource for Accelerating New Materia...
The Materials Project: A Community Data Resource for Accelerating New Materia...The Materials Project: A Community Data Resource for Accelerating New Materia...
The Materials Project: A Community Data Resource for Accelerating New Materia...
 
Overview of accelerated materials design efforts in the Hacking Materials res...
Overview of accelerated materials design efforts in the Hacking Materials res...Overview of accelerated materials design efforts in the Hacking Materials res...
Overview of accelerated materials design efforts in the Hacking Materials res...
 
Conducting and Enabling Data-Driven Research Through the Materials Project
Conducting and Enabling Data-Driven Research Through the Materials ProjectConducting and Enabling Data-Driven Research Through the Materials Project
Conducting and Enabling Data-Driven Research Through the Materials Project
 
Application of the Materials Project database and data mining towards the des...
Application of the Materials Project database and data mining towards the des...Application of the Materials Project database and data mining towards the des...
Application of the Materials Project database and data mining towards the des...
 
ICME Workshop Jul 2014 - The Materials Project
ICME Workshop Jul 2014 - The Materials ProjectICME Workshop Jul 2014 - The Materials Project
ICME Workshop Jul 2014 - The Materials Project
 
Prediction and Experimental Validation of New Bulk Thermoelectrics Compositio...
Prediction and Experimental Validation of New Bulk Thermoelectrics Compositio...Prediction and Experimental Validation of New Bulk Thermoelectrics Compositio...
Prediction and Experimental Validation of New Bulk Thermoelectrics Compositio...
 
Discovering and Exploring New Materials through the Materials Project
Discovering and Exploring New Materials through the Materials ProjectDiscovering and Exploring New Materials through the Materials Project
Discovering and Exploring New Materials through the Materials Project
 
The Materials Project: An Electronic Structure Database for Community-Based M...
The Materials Project: An Electronic Structure Database for Community-Based M...The Materials Project: An Electronic Structure Database for Community-Based M...
The Materials Project: An Electronic Structure Database for Community-Based M...
 
The Materials Project and computational materials discovery
The Materials Project and computational materials discoveryThe Materials Project and computational materials discovery
The Materials Project and computational materials discovery
 
Superconducting qubits for quantum information an outlook
Superconducting qubits for quantum information an outlookSuperconducting qubits for quantum information an outlook
Superconducting qubits for quantum information an outlook
 

Plus de Anubhav Jain

Plus de Anubhav Jain (20)

Discovering advanced materials for energy applications: theory, high-throughp...
Discovering advanced materials for energy applications: theory, high-throughp...Discovering advanced materials for energy applications: theory, high-throughp...
Discovering advanced materials for energy applications: theory, high-throughp...
 
Applications of Large Language Models in Materials Discovery and Design
Applications of Large Language Models in Materials Discovery and DesignApplications of Large Language Models in Materials Discovery and Design
Applications of Large Language Models in Materials Discovery and Design
 
An AI-driven closed-loop facility for materials synthesis
An AI-driven closed-loop facility for materials synthesisAn AI-driven closed-loop facility for materials synthesis
An AI-driven closed-loop facility for materials synthesis
 
Best practices for DuraMat software dissemination
Best practices for DuraMat software disseminationBest practices for DuraMat software dissemination
Best practices for DuraMat software dissemination
 
Best practices for DuraMat software dissemination
Best practices for DuraMat software disseminationBest practices for DuraMat software dissemination
Best practices for DuraMat software dissemination
 
Available methods for predicting materials synthesizability using computation...
Available methods for predicting materials synthesizability using computation...Available methods for predicting materials synthesizability using computation...
Available methods for predicting materials synthesizability using computation...
 
Efficient methods for accurately calculating thermoelectric properties – elec...
Efficient methods for accurately calculating thermoelectric properties – elec...Efficient methods for accurately calculating thermoelectric properties – elec...
Efficient methods for accurately calculating thermoelectric properties – elec...
 
Natural Language Processing for Data Extraction and Synthesizability Predicti...
Natural Language Processing for Data Extraction and Synthesizability Predicti...Natural Language Processing for Data Extraction and Synthesizability Predicti...
Natural Language Processing for Data Extraction and Synthesizability Predicti...
 
Machine Learning for Catalyst Design
Machine Learning for Catalyst DesignMachine Learning for Catalyst Design
Machine Learning for Catalyst Design
 
Discovering new functional materials for clean energy and beyond using high-t...
Discovering new functional materials for clean energy and beyond using high-t...Discovering new functional materials for clean energy and beyond using high-t...
Discovering new functional materials for clean energy and beyond using high-t...
 
Natural language processing for extracting synthesis recipes and applications...
Natural language processing for extracting synthesis recipes and applications...Natural language processing for extracting synthesis recipes and applications...
Natural language processing for extracting synthesis recipes and applications...
 
Accelerating New Materials Design with Supercomputing and Machine Learning
Accelerating New Materials Design with Supercomputing and Machine LearningAccelerating New Materials Design with Supercomputing and Machine Learning
Accelerating New Materials Design with Supercomputing and Machine Learning
 
DuraMat CO1 Central Data Resource: How it started, how it’s going …
DuraMat CO1 Central Data Resource: How it started, how it’s going …DuraMat CO1 Central Data Resource: How it started, how it’s going …
DuraMat CO1 Central Data Resource: How it started, how it’s going …
 
The Materials Project
The Materials ProjectThe Materials Project
The Materials Project
 
Evaluating Chemical Composition and Crystal Structure Representations using t...
Evaluating Chemical Composition and Crystal Structure Representations using t...Evaluating Chemical Composition and Crystal Structure Representations using t...
Evaluating Chemical Composition and Crystal Structure Representations using t...
 
Perspectives on chemical composition and crystal structure representations fr...
Perspectives on chemical composition and crystal structure representations fr...Perspectives on chemical composition and crystal structure representations fr...
Perspectives on chemical composition and crystal structure representations fr...
 
Machine Learning Platform for Catalyst Design
Machine Learning Platform for Catalyst DesignMachine Learning Platform for Catalyst Design
Machine Learning Platform for Catalyst Design
 
Applications of Natural Language Processing to Materials Design
Applications of Natural Language Processing to Materials DesignApplications of Natural Language Processing to Materials Design
Applications of Natural Language Processing to Materials Design
 
Assessing Factors Underpinning PV Degradation through Data Analysis
Assessing Factors Underpinning PV Degradation through Data AnalysisAssessing Factors Underpinning PV Degradation through Data Analysis
Assessing Factors Underpinning PV Degradation through Data Analysis
 
Extracting and Making Use of Materials Data from Millions of Journal Articles...
Extracting and Making Use of Materials Data from Millions of Journal Articles...Extracting and Making Use of Materials Data from Millions of Journal Articles...
Extracting and Making Use of Materials Data from Millions of Journal Articles...
 

Dernier

Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
PirithiRaju
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Sérgio Sacani
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
MohamedFarag457087
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
PirithiRaju
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
PirithiRaju
 
Conjugation, transduction and transformation
Conjugation, transduction and transformationConjugation, transduction and transformation
Conjugation, transduction and transformation
Areesha Ahmad
 

Dernier (20)

9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
 
Introduction to Viruses
Introduction to VirusesIntroduction to Viruses
Introduction to Viruses
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
 
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICESAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
 
300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptx300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptx
 
chemical bonding Essentials of Physical Chemistry2.pdf
chemical bonding Essentials of Physical Chemistry2.pdfchemical bonding Essentials of Physical Chemistry2.pdf
chemical bonding Essentials of Physical Chemistry2.pdf
 
pumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit flypumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit fly
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
 
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxCOST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
 
Zoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfZoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdf
 
Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.
 
Factory Acceptance Test( FAT).pptx .
Factory Acceptance Test( FAT).pptx       .Factory Acceptance Test( FAT).pptx       .
Factory Acceptance Test( FAT).pptx .
 
Site Acceptance Test .
Site Acceptance Test                    .Site Acceptance Test                    .
Site Acceptance Test .
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdf
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learning
 
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
 
Conjugation, transduction and transformation
Conjugation, transduction and transformationConjugation, transduction and transformation
Conjugation, transduction and transformation
 

Combining density functional theory calculations, supercomputing, and data-driven methods to design new materials

  • 1. Combining density functional theory calculations, supercomputing, and data-driven methods to design new materials Anubhav Jain Energy Technologies Area Lawrence Berkeley National Laboratory Berkeley, CA Slides posted to http://www.slideshare.net/anubhavster
  • 2. New materials discovery for devices is needed but sporadic •  Novel materials with enhanced performance characteristics could make a big dent in sustainability, scalability, and cost •  In practice, we tend to re-use the same fundamental materials for decades –  solar power w/Si since 1950s –  graphite/LiCoO2 (basis of today’s Li battery electrodes) since 1990 •  Obviously, there are lots of improvements to manufacturing, microstructure, etc., but how about new basic compositions? •  Why is discovering better materials such a challenge? 2
  • 3. What constrains traditional experimentation? 3 “[The Chevrel] discovery resulted from a lot of unsuccessful experiments of Mg ions insertion into well-known hosts for Li+ ions insertion, as well as from the thorough literature analysis concerning the possibility of divalent ions intercalation into inorganic materials.” -Aurbach group, on discovery of Chevrel cathode for multivalent (e.g., Mg2+) batteries Levi, Levi, Chasid, Aurbach J. Electroceramics (2009)
  • 4. Can we invent other, faster ways of finding materials? •  The Materials Genome Initiative thinks it is possible to “discover, develop, manufacture, and deploy advanced materials at least twice as fast as possible today, at a fraction of the cost” •  Major components of the strategy include: –  simulations & supercomputers –  digital data and data mining –  better merging computation and experiment 4 https://obamawhitehouse.archives.gov/mgi
  • 5. Outline 5 ①  Intro to Density Functional Theory (DFT) ②  The Materials Project database ③  Next steps
  • 6. An overview of materials modeling techniques 6 Source: NASA
  • 7. What is density functional theory (DFT)? 7 + )};({ )};({ trH dt trd i i i Ψ= Ψ ∧ ! + H = ∇i 2 i=1 Ne ∑ + Vnuclear (ri) i=1 Ne ∑ + Veffective(ri) i=1 Ne ∑ DFT is a method to solve for the electronic structure and energetics of arbitrary materials starting from first-principles. In theory, it is exact for the ground state. In practice, accuracy depends on the choice of (some) parameters, the type of material, the property to be studied, and whether the simulated crystal is a good approximation of reality. DFT resulted in the 1999 Nobel Prize for chemistry (W. Kohn). It is responsible for 2 of the top 10 cited papers of all time, across all sciences.
  • 8. How does one use DFT to design new materials? 8 A. Jain, Y. Shin, and K. A. Persson, Nat. Rev. Mater. 1, 15004 (2016).
  • 9. How accurate is DFT in practice? 9 Shown are typical DFT results for (i) Li battery voltages, (ii) electronic band gaps, and (iii) bulk modulus (i) (ii) (iii) (i) V. L. Chevrier, S. P. Ong, R. Armiento, M. K. Y. Chan, and G. Ceder, Phys. Rev. B 82, 075122 (2010). (ii) M. Chan and G. Ceder, Phys. Rev. Lett. 105, 196403 (2010). (iii) M. De Jong, W. Chen, T. Angsten, A. Jain, R. Notestine, A. Gamst, M. Sluiter, C. K. Ande, S. Van Der Zwaag, J. J. Plata, C. Toher, S. Curtarolo, G. Ceder, K.A. Persson, and M. Asta, Sci. Data 2, 150009 (2015).
  • 10. Outline 10 ①  Intro to Density Functional Theory (DFT) ②  The Materials Project database ③  Next steps
  • 11. High-throughput DFT: a key idea 11 Automate the DFT procedure Supercomputing Power FireWorks Software for programming general computational workflows that can be scaled across large supercomputers. NERSC Supercomputing center, processor count is ~100,000 desktop machines. Other centers are also viable. High-throughput materials screening G. Ceder & K.A. Persson, Scientific American (2015)
  • 12. Examples of (early) high-throughput studies 12 Application Researcher Search space Candidates Hit rate Scintillators Klintenberg et al. 22,000 136 1/160 Curtarolo et al. 11,893 ? ? Topological insulators Klintenberg et al. 60,000 17 1/3500 Curtarolo et al. 15,000 28 1/535 High TC superconductors Klintenberg et al. 60,000 139 1/430 Thermoelectrics – ICSD - Half Heusler systems - Half Heusler best ZT Curtarolo et al. 2,500 80,000 80,000 20 75 18 1/125 1/1055 1/4400 1-photon water splitting Jacobsen et al. 19,000 20 1/950 2-photon water splitting Jacobsen et al. 19,000 12 1/1585 Transparent shields Jacobsen et al. 19,000 8 1/2375 Hg adsorbers Bligaard et al. 5,581 14 1/400 HER catalysts Greeley et al. 756 1 1/756* Li ion battery cathodes Ceder et al. 20,000 4 1/5000* Entries marked with * have experimentally verified the candidates. See also: Curtarolo et al., Nature Materials 12 (2013) 191–201.
  • 13. Computations predict, experiments confirm 13 Sidorenkite-based Li-ion battery cathodes Carbon capture YCuTe2 thermoelectrics Dunstan, M. T., Jain, A., Liu, W., Ong, S. P., Liu, T., Lee, J., Persson, K. A., Scott, S. A., Dennis, J. S. & Grey, C. Large scale computational screening and experimental discovery of novel materials for high temperature CO2 capture. Energy and Environmental Science (2016) Chen, H.; Hao, Q.; Zivkovic, O.; Hautier, G.; Du, L.-S.; Tang, Y.; Hu, Y.-Y.; Ma, X.; Grey, C. P.; Ceder, G. Sidorenkite (Na3MnPO4CO3): A New Intercalation Cathode Material for Na-Ion Batteries, Chem. Mater., 2013 Aydemir, U; Pohls, J-H; Zhu, H; Hautier, G; Bajaj, S; Gibbs, ZM; Chen, W; Li, G; Broberg, D; White, MA; Asta, M; Persson, K; Ceder, G; Jain, A; Snyder, GJ. Thermoelectric Properties of Intrinsically Doped YCuTe2 with CuTe4-based Layered Structure. J. Mat. Chem C, 2016 More examples here: A. Jain, Y. Shin, and K. A. Persson, Nat. Rev. Mater. 1, 15004 (2016).
  • 14. Another key idea: putting all the data online 14 Jain*, Ong*, Hautier, Chen, Richards, Dacek, Cholia, Gunter, Skinner, Ceder, and Persson, APL Mater., 2013, 1, 011002. *equal contributions The Materials Project (http://www.materialsproject.org) free and open ~30,000 registered users around the world >65,000 compounds calculated Data includes •  thermodynamic props. •  electronic band structure •  aqueous stability (E-pH) •  elasticity tensors •  piezoelectric tensors >75 million CPU-hours invested = massive scale!
  • 15. The data is re-used by the community 15 K. He, Y. Zhou, P. Gao, L. Wang, N. Pereira, G.G. Amatucci, et al., Sodiation via Heterogeneous Disproportionation in FeF2 Electrodes for Sodium-Ion Batteries., ACS Nano. 8 (2014) 7251–9. M.M. Doeff, J. Cabana, M. Shirpour, Titanate Anodes for Sodium Ion Batteries, J. Inorg. Organomet. Polym. Mater. 24 (2013) 5–14. Further examples in: A. Jain, K.A. Persson, G. Ceder. APL Materials (2016).
  • 16. Video tutorials are available 16 www.youtube.com/user/MaterialsProject
  • 17. Outline 17 ①  Intro to Density Functional Theory (DFT) ②  The Materials Project database ③  Next steps
  • 18. DFT methods will become much more powerful 18 types of materials high-throughput screening computations predict materials? relative computing power 1980s simple metals/ semiconductors unimaginable by almost anyone unimaginable by majority 1 1990s + oxides unimaginable by majority 1-2 examples 1000 2000s + complex/ correlated systems 1-2 examples ~5-10 examples 1,000,000 2010s +hybrid systems +excited state properties? ~many dozens of examples ~25 examples, maybe 50 by end of decade 1,000,000,000* 2020s ?very large systems? ?routine? ?routine? ?1 trillion? * The top 2 DOE supercomputers alone have a budget of 8 billion CPU-hours/year, in theory enough to run basic DFT characterization (structure/charge/band structure) of ~40 million materials/year!
  • 19. Data mining materials properties will be common •  As the quantity of organized materials data (both simulation and experiment) grows, there will be increased opportunities to apply statistical learning / data mining •  New types of “predictive models”: recommender systems, decision trees, even deep learning •  Some key and upcoming players in the US: –  Citrine Informatics –  IBM Watson –  NIST MGI efforts (ChiMaD, Materials Data Facility) –  U. Buffalo Center for Materials Informatics –  Center for Materials Processing Data –  and our own Materials Project 19 Jain, Hautier, Ong, Persson, New opportunities for materials informatics: Resources and data mining techniques for uncovering hidden relationships, J. Mater. Res. 31 (2016) 977–994.
  • 20. But remember… •  Accuracy will always be an issue •  Max system size (~1000 atoms today w/o major effort) is another major limitation •  Not everything can be simulated –  today, you are lucky if you can simulate 20% of what you want to know about a material for an application with decent accuracy –  translating engineering design criteria into a set of DFT-computable quantities remains challenging •  Even with many improvements to current technology, this will still just be a tool in materials discovery and never a complete solution •  But – perhaps we can indeed cut down on materials discovery time by a factor of two! 20
  • 21. Thank you! •  Dr. Kristin Persson and Prof. Gerbrand Ceder, founders of Materials Project and their teams •  Prof. Shyue Ping Ong & Prof. Geoffroy Hautier •  NERSC computing center and staff •  Funding: U.S. Department of Energy 21 Slides posted to http://www.slideshare.net/anubhavster