SlideShare une entreprise Scribd logo
1  sur  18
Presented by:-ASHISH BANSODE
(B.E. CIVIL)
INTRODUCTION
 Submerged floating tunnel is basically making a
tunnel to float underwater which is balanced by its
buoyancy, self weight and constraint forces resulted
from cable system and thus submerged to a certain
depth underwater.
 It is basically tube like structure floating at some depth
below water surface and fixed against excessive
movements. The tube is designed to accommodate
road and or rail traffic.
“ARCHIMEDES PRINCIPLE”
 Any object wholly or partially immersed in an fluid, is
buoyed up by a force equal to the weight of the fluid
displaced by the object.
 this means if more surface area exposed to water
surface more are the chances of floating it.
 Ships, submarines, offshore oil rigs etc. work on this
principle.
 Research shows that the buoyancy to weight ratio for
the tunnel to float should be less than one and
between 0.5 to 0.8
MATERIAL USED:-
 As the tunnel is situated at a depth of 30m, it should
be perfectly water tight and secondly it should resist
the salty sea water and thirdly it should be withstand
against hydrostatic forces coming on it.
 It is made of 4 layers. Outermost layer is constructed
of aluminium to resist the salty sea water. Second and
third layer is made of the foam to float the tunnel
easily in water. Fourth layer is of concrete which gives
strength to the tunnel.
PRESENT SCENARIO
 A simple submerged tunnel have been used as a means
of transport for about 100 years.
 They are considered to built when the underneath
ground surface is shallow and the tunnel can be placed
directly on sea bed and can be covered by sand and
backfill material so as to avoid their movement.
NEED FOR SUBMERGED FLOATING
TUNNEL
 A “SFT” is considered when the depth of sea or ocean
is too deep so that no tunnel or any solid body could
sustain the pressure acting on it at such a deep level.
 In that case the tunnel is lifted up such as about 30 to
100m deep from the sea surface where the water
pressure is comparatively lower than what is at the
bottom depth.
PARAMETERS OF AN “SFT”
An SFT basically consists of four parts
1) The tunnel structure which is made of different
segments
2) The shore connection structure which connects it to
shores.
3) The cable systems which are anchored to the
waterbeds to balance net buoyancy.
4) The foundation structure which are constructed at
waterbed to install cable system.
Step by step procedure
1) Construction of tunnel segments on dry dock.
2) Transporting the tunnel segments to their final
places and placing them underwater.
3) Joining of different tunnel segments by using rubber
gasket.
4) Anchoring the tunnel to the cables.
STEP ONE{PRECASTING}:-
 Huge tunnel sections are constructed on dry dock.
 The procedure consists same as that of precast
construction.
 Dry dock is flooded and the panels are transported to
their respective places.
 Sinking of the panel is controlled by the use of ballast
tank as in case of submarines.
STEP TWO{JOINTS}:-
 After the submersion of different panels in water they
are connected with one another by using a rubber
gasket.
 Another procedure includes trapping of water between
the joints and then removing it afterwards.
STEP THREE{FOUNDATIONS}:-
 The application consists same as that of in caisson
foundation.
 A hollow chamber is penetrated down the sea bed as
shown which evacuates the water trapped inside it by a
valve present on its top surface.
 Such type of foundations are been used for the
offshore oil rig plants.
STEP FOUR{ANCHORING OF
CABLES}
 After the foundation work is completed the cables are
anchored to the floating tunnel which will avoid its
movement and will place it firmly in alignment.
 This operation can be carried out by divers.
 Finally the tunnel will be in position and ready to use.
Advantages of “SFT”
 Allows construction of tunnel in extremely deep water,
where conventional bridges or tunnels are technically
difficult or prohibitively expensive.
 Any type of cross sectional area can be provided since
being prefabricated.
 No obstruction to navigational routes as compared to
conventional bridges since all of the tunnel being
placed underwater.
 Construction activities has less harmful effects on
aquatic life.
 No harmful environmental effects such as fog or storm
since the whole structure is covered and is present
inside the water.
 Low energy consumption due to more gentle gradient.
 Vehicular emission can be collected at one end of the
tunnel thus reducing the air pollution.
 Tremendous speed for trains could be obtained by
creating a vacuum inside the tunnel since it will result
in negligible air resistance.
TRANSATLANTIC TUNNEL
 AIM- to join north America to west Europe via a
submerged floating tunnel present in the Atlantic
ocean.
 Will require 54000 prefabricated tunnel segments.
 Use of maglev trains for fast travel.
 Maintaining perfect vacuum to avoid air resistance.
 Could travel from New York to London within 54
minutes with a tremendous speed of 8000km/h.
CONCLUSION:-
The submerged floating tunnel will set up new trends in
transportation engineering and which shows with the advances in
technology that will reduce the time required for travelling. And
make the transportation more effective by hiding the traffic under
water by which the beauty of landscape is maintained and valuable
land is available for other purposes. Benefits can be obtained with
respect to less energy consumption, air pollution and reduced
noise emmission.For wide and deep crossings the submerged
floating tunnel may be the only feasible fix link, replacing present
day ferries and providing local communities with new
opportunities for improved communication and regional
development.
REFRENCES:-
1. Forum Of European
National Highway
Research
Laboratories (1996), Analy
sis of the submerged floating
tunnel concept, Transport
Research Laboratory
Crowthrone,Berkshire,RG45
6AU.
2. Havard Ostlid (2010),
When is SFT
competitive, Procedia
Engineering, 4, 3–11
3.http://dsc.discovery.com/c
onvergence/engineering/tra
nsatlantictunnel/interactive/
interactive.html
[1] Jacobson SE. The use of LWAC in the
pontoons of the Nordhordland floating
bridge. Proc. of 2nd Int. Symp. on Structural
Lightweight
Aggregate Concrete, Norway; 2000, p.73-78.
[2] Meaas P, Landet E, Vindøy V. Design of
the Salhus (Nordhordland) floating bridge.
Proc. of Strait Crossings 94, Krokeborg (ed.),
Balkema, Rotterdam ; 1994, p.729-734.
[3] Matson D, Jakobsen S, Larsen PN, Veng
K, Pradilla E. Design and construction of the
William R. Bennet Bridge. Proc. of 17th
Congress
of IABSE 2008, IABSE; 2008.
[4] Larssen RM. Crossing of Storfjord with
SFT – A pre-study (in Norwegian). Project
report from Dr. In. Aas-Jakobsen, Oslo 1999.
floating tunnels

Contenu connexe

Tendances

Submerged Floating Tunnel by Shantanu Patil
Submerged Floating Tunnel by Shantanu PatilSubmerged Floating Tunnel by Shantanu Patil
Submerged Floating Tunnel by Shantanu PatilShantanu Patil
 
SUBMERGED FLOATING TUNNELS
SUBMERGED FLOATING TUNNELSSUBMERGED FLOATING TUNNELS
SUBMERGED FLOATING TUNNELSsathish sak
 
Submerged tunnel technical seminar
Submerged tunnel technical seminarSubmerged tunnel technical seminar
Submerged tunnel technical seminarPrashant Ojha
 
Submerged floating tunnel
Submerged floating tunnel Submerged floating tunnel
Submerged floating tunnel Aditya Parida
 
High performance concrete ppt
High performance concrete pptHigh performance concrete ppt
High performance concrete pptGoogle
 
Bridge Engineering
Bridge EngineeringBridge Engineering
Bridge EngineeringKHUSHBU SHAH
 
Tunnel constructions
Tunnel constructionsTunnel constructions
Tunnel constructionsVinay Vb
 
Sulphur infiltrated concrete
Sulphur infiltrated concreteSulphur infiltrated concrete
Sulphur infiltrated concretesuraj bhanushali
 
Harbours and docks
Harbours and docksHarbours and docks
Harbours and docksMHarishbabu
 
H & d ppt 06 repair docks
H & d ppt 06 repair docksH & d ppt 06 repair docks
H & d ppt 06 repair docksHasna Hassan
 
Light transmitting concrete
Light transmitting concreteLight transmitting concrete
Light transmitting concreteSahla Fathima
 
Bridge engineering
Bridge engineeringBridge engineering
Bridge engineeringPooja Lonare
 
Site selection for a harbour
Site selection for a harbourSite selection for a harbour
Site selection for a harbourLatif Hyder Wadho
 

Tendances (20)

Submerged Floating Tunnel by Shantanu Patil
Submerged Floating Tunnel by Shantanu PatilSubmerged Floating Tunnel by Shantanu Patil
Submerged Floating Tunnel by Shantanu Patil
 
SUBMERGED FLOATING TUNNELS
SUBMERGED FLOATING TUNNELSSUBMERGED FLOATING TUNNELS
SUBMERGED FLOATING TUNNELS
 
Submerged tunnel technical seminar
Submerged tunnel technical seminarSubmerged tunnel technical seminar
Submerged tunnel technical seminar
 
Submerged floating tunnel
Submerged floating tunnel Submerged floating tunnel
Submerged floating tunnel
 
High performance concrete ppt
High performance concrete pptHigh performance concrete ppt
High performance concrete ppt
 
Bridge Engineering
Bridge EngineeringBridge Engineering
Bridge Engineering
 
Tunnel constructions
Tunnel constructionsTunnel constructions
Tunnel constructions
 
cracks repairing
 cracks repairing  cracks repairing
cracks repairing
 
Harbour
HarbourHarbour
Harbour
 
HARBOURS ENGINEERING
HARBOURS ENGINEERING HARBOURS ENGINEERING
HARBOURS ENGINEERING
 
Break waters
Break watersBreak waters
Break waters
 
Sulphur infiltrated concrete
Sulphur infiltrated concreteSulphur infiltrated concrete
Sulphur infiltrated concrete
 
Pervious concrete
Pervious concretePervious concrete
Pervious concrete
 
Harbours and docks
Harbours and docksHarbours and docks
Harbours and docks
 
H & d ppt 06 repair docks
H & d ppt 06 repair docksH & d ppt 06 repair docks
H & d ppt 06 repair docks
 
Submerged tunnel ppt
Submerged tunnel pptSubmerged tunnel ppt
Submerged tunnel ppt
 
Light transmitting concrete
Light transmitting concreteLight transmitting concrete
Light transmitting concrete
 
Bridge engineering
Bridge engineeringBridge engineering
Bridge engineering
 
Site selection for a harbour
Site selection for a harbourSite selection for a harbour
Site selection for a harbour
 
1.1 box jacking
1.1 box jacking1.1 box jacking
1.1 box jacking
 

Similaire à floating tunnels

409967709-Submerged-Floating-tunnel.pptx
409967709-Submerged-Floating-tunnel.pptx409967709-Submerged-Floating-tunnel.pptx
409967709-Submerged-Floating-tunnel.pptxGokulS229289
 
TRANSATLANTIC-TUNNEL-Floating-Tunnel.pptx
TRANSATLANTIC-TUNNEL-Floating-Tunnel.pptxTRANSATLANTIC-TUNNEL-Floating-Tunnel.pptx
TRANSATLANTIC-TUNNEL-Floating-Tunnel.pptxSoulLoad
 
SUBMERGED FLOATING TUNNEL Civil engineering presentation
SUBMERGED FLOATING TUNNEL Civil engineering presentationSUBMERGED FLOATING TUNNEL Civil engineering presentation
SUBMERGED FLOATING TUNNEL Civil engineering presentationunofficialdevil48
 
Immersed tunnels
Immersed tunnelsImmersed tunnels
Immersed tunnelsarravindsai
 
Immersed tunnels Proposal Mumbai, India
Immersed tunnels Proposal Mumbai, IndiaImmersed tunnels Proposal Mumbai, India
Immersed tunnels Proposal Mumbai, IndiaAbhay Ocean India ltd.
 
7. TUNNEL ENGINEERING
7. TUNNEL ENGINEERING7. TUNNEL ENGINEERING
7. TUNNEL ENGINEERINGVATSAL PATEL
 
Tunneling exploration
Tunneling explorationTunneling exploration
Tunneling explorationjamali husain
 
RMT Group5 presentation.pptx
RMT Group5 presentation.pptxRMT Group5 presentation.pptx
RMT Group5 presentation.pptxSubratDash37
 
The Akashi-Kaikyo Suspension Bridge
The Akashi-Kaikyo Suspension BridgeThe Akashi-Kaikyo Suspension Bridge
The Akashi-Kaikyo Suspension Bridgeelsayed ahmed
 
Fib2010 article260 design & construction_rev_a
Fib2010 article260 design & construction_rev_aFib2010 article260 design & construction_rev_a
Fib2010 article260 design & construction_rev_agefyra-rion
 
20150421031337318
2015042103133731820150421031337318
20150421031337318James Prs
 

Similaire à floating tunnels (20)

Floating tunnel
Floating tunnelFloating tunnel
Floating tunnel
 
409967709-Submerged-Floating-tunnel.pptx
409967709-Submerged-Floating-tunnel.pptx409967709-Submerged-Floating-tunnel.pptx
409967709-Submerged-Floating-tunnel.pptx
 
TRANSATLANTIC-TUNNEL-Floating-Tunnel.pptx
TRANSATLANTIC-TUNNEL-Floating-Tunnel.pptxTRANSATLANTIC-TUNNEL-Floating-Tunnel.pptx
TRANSATLANTIC-TUNNEL-Floating-Tunnel.pptx
 
Tunneling
TunnelingTunneling
Tunneling
 
SUBMERGED FLOATING TUNNEL Civil engineering presentation
SUBMERGED FLOATING TUNNEL Civil engineering presentationSUBMERGED FLOATING TUNNEL Civil engineering presentation
SUBMERGED FLOATING TUNNEL Civil engineering presentation
 
Immersed tunnels
Immersed tunnelsImmersed tunnels
Immersed tunnels
 
Immersed tunnels Proposal Mumbai, India
Immersed tunnels Proposal Mumbai, IndiaImmersed tunnels Proposal Mumbai, India
Immersed tunnels Proposal Mumbai, India
 
1115
11151115
1115
 
Final ppt of ts
Final ppt of tsFinal ppt of ts
Final ppt of ts
 
Eurasia tunnel1
Eurasia tunnel1Eurasia tunnel1
Eurasia tunnel1
 
Under ground railway
Under ground railwayUnder ground railway
Under ground railway
 
NATM ppt sumit
NATM ppt sumitNATM ppt sumit
NATM ppt sumit
 
7. TUNNEL ENGINEERING
7. TUNNEL ENGINEERING7. TUNNEL ENGINEERING
7. TUNNEL ENGINEERING
 
Tunneling exploration
Tunneling explorationTunneling exploration
Tunneling exploration
 
RMT Group5 presentation.pptx
RMT Group5 presentation.pptxRMT Group5 presentation.pptx
RMT Group5 presentation.pptx
 
The Akashi-Kaikyo Suspension Bridge
The Akashi-Kaikyo Suspension BridgeThe Akashi-Kaikyo Suspension Bridge
The Akashi-Kaikyo Suspension Bridge
 
Fib2010 article260 design & construction_rev_a
Fib2010 article260 design & construction_rev_aFib2010 article260 design & construction_rev_a
Fib2010 article260 design & construction_rev_a
 
Tunnel boring machines123
Tunnel boring machines123Tunnel boring machines123
Tunnel boring machines123
 
20150421031337318
2015042103133731820150421031337318
20150421031337318
 
Group 5 1
Group 5 1Group 5 1
Group 5 1
 

Dernier

Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...fonyou31
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajanpragatimahajan3
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024Janet Corral
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 

Dernier (20)

Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajan
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 

floating tunnels

  • 2. INTRODUCTION  Submerged floating tunnel is basically making a tunnel to float underwater which is balanced by its buoyancy, self weight and constraint forces resulted from cable system and thus submerged to a certain depth underwater.  It is basically tube like structure floating at some depth below water surface and fixed against excessive movements. The tube is designed to accommodate road and or rail traffic.
  • 3. “ARCHIMEDES PRINCIPLE”  Any object wholly or partially immersed in an fluid, is buoyed up by a force equal to the weight of the fluid displaced by the object.  this means if more surface area exposed to water surface more are the chances of floating it.  Ships, submarines, offshore oil rigs etc. work on this principle.  Research shows that the buoyancy to weight ratio for the tunnel to float should be less than one and between 0.5 to 0.8
  • 4. MATERIAL USED:-  As the tunnel is situated at a depth of 30m, it should be perfectly water tight and secondly it should resist the salty sea water and thirdly it should be withstand against hydrostatic forces coming on it.  It is made of 4 layers. Outermost layer is constructed of aluminium to resist the salty sea water. Second and third layer is made of the foam to float the tunnel easily in water. Fourth layer is of concrete which gives strength to the tunnel.
  • 5. PRESENT SCENARIO  A simple submerged tunnel have been used as a means of transport for about 100 years.  They are considered to built when the underneath ground surface is shallow and the tunnel can be placed directly on sea bed and can be covered by sand and backfill material so as to avoid their movement.
  • 6. NEED FOR SUBMERGED FLOATING TUNNEL  A “SFT” is considered when the depth of sea or ocean is too deep so that no tunnel or any solid body could sustain the pressure acting on it at such a deep level.  In that case the tunnel is lifted up such as about 30 to 100m deep from the sea surface where the water pressure is comparatively lower than what is at the bottom depth.
  • 7. PARAMETERS OF AN “SFT” An SFT basically consists of four parts 1) The tunnel structure which is made of different segments 2) The shore connection structure which connects it to shores. 3) The cable systems which are anchored to the waterbeds to balance net buoyancy. 4) The foundation structure which are constructed at waterbed to install cable system.
  • 8. Step by step procedure 1) Construction of tunnel segments on dry dock. 2) Transporting the tunnel segments to their final places and placing them underwater. 3) Joining of different tunnel segments by using rubber gasket. 4) Anchoring the tunnel to the cables.
  • 9. STEP ONE{PRECASTING}:-  Huge tunnel sections are constructed on dry dock.  The procedure consists same as that of precast construction.  Dry dock is flooded and the panels are transported to their respective places.  Sinking of the panel is controlled by the use of ballast tank as in case of submarines.
  • 10. STEP TWO{JOINTS}:-  After the submersion of different panels in water they are connected with one another by using a rubber gasket.  Another procedure includes trapping of water between the joints and then removing it afterwards.
  • 11. STEP THREE{FOUNDATIONS}:-  The application consists same as that of in caisson foundation.  A hollow chamber is penetrated down the sea bed as shown which evacuates the water trapped inside it by a valve present on its top surface.  Such type of foundations are been used for the offshore oil rig plants.
  • 12. STEP FOUR{ANCHORING OF CABLES}  After the foundation work is completed the cables are anchored to the floating tunnel which will avoid its movement and will place it firmly in alignment.  This operation can be carried out by divers.  Finally the tunnel will be in position and ready to use.
  • 13. Advantages of “SFT”  Allows construction of tunnel in extremely deep water, where conventional bridges or tunnels are technically difficult or prohibitively expensive.  Any type of cross sectional area can be provided since being prefabricated.  No obstruction to navigational routes as compared to conventional bridges since all of the tunnel being placed underwater.  Construction activities has less harmful effects on aquatic life.
  • 14.  No harmful environmental effects such as fog or storm since the whole structure is covered and is present inside the water.  Low energy consumption due to more gentle gradient.  Vehicular emission can be collected at one end of the tunnel thus reducing the air pollution.  Tremendous speed for trains could be obtained by creating a vacuum inside the tunnel since it will result in negligible air resistance.
  • 15. TRANSATLANTIC TUNNEL  AIM- to join north America to west Europe via a submerged floating tunnel present in the Atlantic ocean.  Will require 54000 prefabricated tunnel segments.  Use of maglev trains for fast travel.  Maintaining perfect vacuum to avoid air resistance.  Could travel from New York to London within 54 minutes with a tremendous speed of 8000km/h.
  • 16. CONCLUSION:- The submerged floating tunnel will set up new trends in transportation engineering and which shows with the advances in technology that will reduce the time required for travelling. And make the transportation more effective by hiding the traffic under water by which the beauty of landscape is maintained and valuable land is available for other purposes. Benefits can be obtained with respect to less energy consumption, air pollution and reduced noise emmission.For wide and deep crossings the submerged floating tunnel may be the only feasible fix link, replacing present day ferries and providing local communities with new opportunities for improved communication and regional development.
  • 17. REFRENCES:- 1. Forum Of European National Highway Research Laboratories (1996), Analy sis of the submerged floating tunnel concept, Transport Research Laboratory Crowthrone,Berkshire,RG45 6AU. 2. Havard Ostlid (2010), When is SFT competitive, Procedia Engineering, 4, 3–11 3.http://dsc.discovery.com/c onvergence/engineering/tra nsatlantictunnel/interactive/ interactive.html [1] Jacobson SE. The use of LWAC in the pontoons of the Nordhordland floating bridge. Proc. of 2nd Int. Symp. on Structural Lightweight Aggregate Concrete, Norway; 2000, p.73-78. [2] Meaas P, Landet E, Vindøy V. Design of the Salhus (Nordhordland) floating bridge. Proc. of Strait Crossings 94, Krokeborg (ed.), Balkema, Rotterdam ; 1994, p.729-734. [3] Matson D, Jakobsen S, Larsen PN, Veng K, Pradilla E. Design and construction of the William R. Bennet Bridge. Proc. of 17th Congress of IABSE 2008, IABSE; 2008. [4] Larssen RM. Crossing of Storfjord with SFT – A pre-study (in Norwegian). Project report from Dr. In. Aas-Jakobsen, Oslo 1999.