SlideShare une entreprise Scribd logo
1  sur  60
T10 – HIALOPLASMA,T10 – HIALOPLASMA,
CITOESQUELETO Y ESTRUCTURASCITOESQUELETO Y ESTRUCTURAS
NO MEMBRANOSAS DE LA CÉLULA.NO MEMBRANOSAS DE LA CÉLULA.1.1. Hialoplasma o citosol.Hialoplasma o citosol.
2.2. Citoesqueleto.Citoesqueleto.
3.3. Centrosoma.Centrosoma.
4.4. Cilios y flagelos.Cilios y flagelos.
5.5. Ribosomas.Ribosomas.
6.6. Inclusiones citoplasmáticas.Inclusiones citoplasmáticas.
7.7. La pared celular.La pared celular.
8.8. Matriz extracelular.Matriz extracelular.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
ANTECEDENTES PAU:ANTECEDENTES PAU:
2005 – Septiembre: cilios, zonas estructurales y esquema rotulado de un corte2005 – Septiembre: cilios, zonas estructurales y esquema rotulado de un corte
transversal de su tallo;transversal de su tallo;
2010 – Junio:2010 – Junio: centriolos y centrosomas; cilios y flagelos, funciones ycentriolos y centrosomas; cilios y flagelos, funciones y
diferencias;diferencias;
 Es el medio celular donde se encuentran inmersos losEs el medio celular donde se encuentran inmersos los
orgánulos citoplasmáticos.orgánulos citoplasmáticos.
 Se trata de un sistema coloidal muy heterogéneo.Se trata de un sistema coloidal muy heterogéneo.
 Alta diversidad de sus componentes.Alta diversidad de sus componentes.
 Sufre variaciones según el momento de la fisiología celularSufre variaciones según el momento de la fisiología celular
que se considere.que se considere.
 Al microscopio óptico no se aprecia estructura alguna, pero seAl microscopio óptico no se aprecia estructura alguna, pero se
puede estudiar por otras técnicas como la centrifugaciónpuede estudiar por otras técnicas como la centrifugación
diferencial.diferencial.
 Los análisis químicos revelan una proporción de agua en tornoLos análisis químicos revelan una proporción de agua en torno
a 85%, pero puede variar, pasando de sol a gel.a 85%, pero puede variar, pasando de sol a gel.
 En disolución o suspensión coloidal hay toda clase deEn disolución o suspensión coloidal hay toda clase de
biomoléculas e intermediarios metabólicos (iones,biomoléculas e intermediarios metabólicos (iones,
aminoácidos, proteínas, glúcidos y ATP).aminoácidos, proteínas, glúcidos y ATP).
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
1 – Hialoplasma o citosol.
 Los métodos citoquímicos y la microscopía electrónica revelanLos métodos citoquímicos y la microscopía electrónica revelan
la existencia de dos tipos de estructuras:la existencia de dos tipos de estructuras:
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
1 – Hialoplasma o citosol.
 Funciones:Funciones:
 Regulador del pH intracelularRegulador del pH intracelular
 Compartimento donde se realizan gran numero deCompartimento donde se realizan gran numero de
reacciones metabólicas:reacciones metabólicas:
 GlucogenogénesisGlucogenogénesis
 GlucogenolisisGlucogenolisis
 Biosíntesis de aminoácidosBiosíntesis de aminoácidos
 Modificaciones de proteínasModificaciones de proteínas
 Biosíntesis de ácidos grasosBiosíntesis de ácidos grasos
 Reacciones con participación de ATP y ARNtReacciones con participación de ATP y ARNt
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
1 – Hialoplasma o citosol.
 Es una red compleja de fibras proteicas que seEs una red compleja de fibras proteicas que se
extienden por todo el citoplasma.extienden por todo el citoplasma.
 Es una estructura muy dinámicaEs una estructura muy dinámica
 Está implicada en el mantenimiento o los cambios deEstá implicada en el mantenimiento o los cambios de
forma de la célula y de su estructura interna, en losforma de la célula y de su estructura interna, en los
movimientos celulares y endocelulares de orgánulos ymovimientos celulares y endocelulares de orgánulos y
estableciendo vías de comunicación entre distintasestableciendo vías de comunicación entre distintas
áreas celulares.áreas celulares.
 Hay tres tipos de componentes fibrosos:Hay tres tipos de componentes fibrosos:
 Microfilamentos,Microfilamentos,
 MicrotúbulosMicrotúbulos
 Filamentos intermedios.Filamentos intermedios.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
2 – Citoesqueleto.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
2 – Citoesqueleto.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
2 – Citoesqueleto.
Tipos de filamentos.
Microfilamentos de actina.
Formados por
monómeros.
 Se encuentran en células eucariotas.Se encuentran en células eucariotas.
 Son necesarios para el movimiento celular.Son necesarios para el movimiento celular.
 Son las estructuras filamentosas más finasSon las estructuras filamentosas más finas
 Son fibras sólidas compuestas por actina, una proteína globular compuestaSon fibras sólidas compuestas por actina, una proteína globular compuesta
por 375 aminoácidos.por 375 aminoácidos.
 Los filamentos de actina se encuentran justoLos filamentos de actina se encuentran justo
debajo de la membrana plasmática y estándebajo de la membrana plasmática y están
entrecruzados por varias proteínas específicasentrecruzados por varias proteínas específicas
formando el córtex celular, o corteza celular.formando el córtex celular, o corteza celular.
 La actina es la proteína celular más abundante.La actina es la proteína celular más abundante.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
2 – Citoesqueleto.
 La actina se puede encontrar de dos formas:La actina se puede encontrar de dos formas:
 Actina G (actina no polimerizada). Es una proteína globular asociada aActina G (actina no polimerizada). Es una proteína globular asociada a
otra proteína, la profilina que evita la polimerización.otra proteína, la profilina que evita la polimerización.
 Actina F (actina polimerizada). Formada por dos hebras de actina GActina F (actina polimerizada). Formada por dos hebras de actina G
enrolladas en sentido dextrógiro.enrolladas en sentido dextrógiro.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
2 – Citoesqueleto.
La polimerización está polarizada, es decir, existe un extremo en el que laLa polimerización está polarizada, es decir, existe un extremo en el que la
hebra se alarga por adición de unidades y otro en el que se acorta porhebra se alarga por adición de unidades y otro en el que se acorta por
pérdida de las mismas, lo que puede suceder a distintas velocidades.pérdida de las mismas, lo que puede suceder a distintas velocidades.
Los microfilamentos de actina están ampliamente distribuidos en las células yLos microfilamentos de actina están ampliamente distribuidos en las células y
se encuentran asociados a otros tipos de proteínas. Según sean estos otrosse encuentran asociados a otros tipos de proteínas. Según sean estos otros
tipos de proteínas, las funciones pueden cambiar.tipos de proteínas, las funciones pueden cambiar.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
2 – Citoesqueleto.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
2 – Citoesqueleto.
 Llamados así por su tamaño (unos 10 nm deLlamados así por su tamaño (unos 10 nm de
diámetro) intermedio entre microtúbulos ydiámetro) intermedio entre microtúbulos y
microfilamentos.microfilamentos.
 Son proteínas fibrosas, resistentes y estables.Son proteínas fibrosas, resistentes y estables.
 Hay tres tipos de filamentos intermediosHay tres tipos de filamentos intermedios
citoplasmáticoscitoplasmáticos
1.1. Queratinas.Queratinas.
2.2. Vimentinas.Vimentinas.
3.3. Neurofilamentos.Neurofilamentos.
 Otro tipo de filamentos intermedios están en elOtro tipo de filamentos intermedios están en el
núcleo, formando la lámina nuclear interna.núcleo, formando la lámina nuclear interna.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
2 – Citoesqueleto.
Filamentos intermedios.
 Las queratinas constituyen una gran familia: Hay alrededor de veinteLas queratinas constituyen una gran familia: Hay alrededor de veinte
tipos en células epiteliales y 8 más en pelos y uñas (se les llamatipos en células epiteliales y 8 más en pelos y uñas (se les llama αα--
queratinas para diferenciarlas de lasqueratinas para diferenciarlas de las ββ-queratinas de las alas de los-queratinas de las alas de los
pájaros, que tienen una estructura diferente).pájaros, que tienen una estructura diferente).
 A su vez existen dos tipos deA su vez existen dos tipos de αα-queratinas:-queratinas:
1.1. tipo I (ácidas).tipo I (ácidas).
2.2. tipo II (neutras y básicas).tipo II (neutras y básicas).
 Los filamentos se forman con ambos tipos (son heterodímeros). Dan unaLos filamentos se forman con ambos tipos (son heterodímeros). Dan una
elevada resistencia mecánica a las células.elevada resistencia mecánica a las células.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
2 – Citoesqueleto.
 Los filamentos de proteínas del tipo vimentina se forman con polímeros deLos filamentos de proteínas del tipo vimentina se forman con polímeros de
un solo tipo de proteína (fibroblastos, células endoteliales y glóbulosun solo tipo de proteína (fibroblastos, células endoteliales y glóbulos
blancos, de vimentina y filamentos de desmina en las células musculares).blancos, de vimentina y filamentos de desmina en las células musculares).
 Los neurofilamentos, forman el citoesqueleto primario de los axones y lasLos neurofilamentos, forman el citoesqueleto primario de los axones y las
dendritas de las neuronas.dendritas de las neuronas.
 En el núcleo, los filamentos intermedios forman la lámina nuclear asociadaEn el núcleo, los filamentos intermedios forman la lámina nuclear asociada
a la membrana nuclear interna.a la membrana nuclear interna.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
2 – Citoesqueleto.
Esquema de la Vimentina, subunidades que la componen
(arriba) y forma extendia (debajo).
 Funciones:Funciones:
 Su principal función esSu principal función es
otorgar resistencia a laotorgar resistencia a la
célula al estrés mecánico,célula al estrés mecánico,
gracias a la formación degracias a la formación de
largos polímeros.largos polímeros.
 También contribuyen alTambién contribuyen al
mantenimiento de la formamantenimiento de la forma
celular junto con el restocelular junto con el resto
de los componentes delde los componentes del
citoesqueleto.citoesqueleto.
 Ayudan a la distribución yAyudan a la distribución y
posicionamiento de losposicionamiento de los
orgánulos celulares.orgánulos celulares.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
2 – Citoesqueleto.
 Es el componente mas abundante delEs el componente mas abundante del
citoesqueleto.citoesqueleto.
 Están constituidos por moléculas deEstán constituidos por moléculas de
tubulina, formando dímerostubulina, formando dímeros
 αα-tubulina-tubulina
 ββ-tubulina-tubulina
 Un microtúbulo es una estructuraUn microtúbulo es una estructura
cilíndrica y hueca de unos 250 nm decilíndrica y hueca de unos 250 nm de
diámetro y varias micras de longituddiámetro y varias micras de longitud
en la que los dímeros de tubulinaen la que los dímeros de tubulina
están asociados en 13están asociados en 13
protofilamentos lineares queprotofilamentos lineares que
constituyen las paredes delconstituyen las paredes del
microtúbulo.microtúbulo.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
2 – Citoesqueleto.
Microtúbulos.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
2 – Citoesqueleto.
Los microtúbulos se forman por la polimerización de tubulina.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
2 – Citoesqueleto.
Los microtúbulos se despolimerizan y repolimerizan contínuamente.
 Al igual que los filamentos de actina,Al igual que los filamentos de actina,
cada microtúbulo posee un extremo (-)cada microtúbulo posee un extremo (-)
que crece lentamente y un extremo (+)que crece lentamente y un extremo (+)
que crece con mayor velocidad.que crece con mayor velocidad.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
2 – Citoesqueleto.
 Los microtúbulos seLos microtúbulos se
originan a partir deloriginan a partir del
centrosoma en las célulascentrosoma en las células
animales, y de un centroanimales, y de un centro
organizador deorganizador de
microtúbulos, en lasmicrotúbulos, en las
células vegetales.células vegetales.
 A partir de losA partir de los
microtúbulos se originan:microtúbulos se originan:
1.1. El citoesqueleto.El citoesqueleto.
2.2. El huso acromático.El huso acromático.
3.3. Los centríolos.Los centríolos.
4.4. Los cilios y los flagelos.Los cilios y los flagelos.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
2 – Citoesqueleto.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
2 – Citoesqueleto.
 Funciones:Funciones:
1.1. Movimiento de la célula:Movimiento de la célula:
 Junto a los microfilamentos de actina, participan en la emisión deJunto a los microfilamentos de actina, participan en la emisión de
prolongaciones citoplasmáticas o pseudópodos,prolongaciones citoplasmáticas o pseudópodos,
 Asimismo, son los principales elementos estructurales de losAsimismo, son los principales elementos estructurales de los
cilios y los flagelos.cilios y los flagelos.
2.2. La forma celular.La forma celular.
3.3. Organización y distribución de orgánulos y transporteOrganización y distribución de orgánulos y transporte
intracelular.intracelular.
4.4. Separación de cromosomas (huso mitótico o acromático).Separación de cromosomas (huso mitótico o acromático).
5.5. Forman estructuras muy estables como: centríolos, ciliosForman estructuras muy estables como: centríolos, cilios
y flagelos.y flagelos.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
2 – Citoesqueleto.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
2 – Citoesqueleto.
 Está sólo en células animales, próximo alEstá sólo en células animales, próximo al
núcleo y sin membrana.núcleo y sin membrana.
 En las plantas no hay centríolos, pero si laEn las plantas no hay centríolos, pero si la
presencia de proteínas específicas delpresencia de proteínas específicas del
centrosoma.centrosoma.
 El centrosoma está formado por dosEl centrosoma está formado por dos
centríolos centrales, dispuestoscentríolos centrales, dispuestos
perpendicularmente entre sí, que recibenperpendicularmente entre sí, que reciben
juntos el nombre de diplosoma.juntos el nombre de diplosoma.
 Rodeando a éstos hay un material deRodeando a éstos hay un material de
aspecto amorfo y denso, llamado materialaspecto amorfo y denso, llamado material
pericentriolar.pericentriolar.
 Todo el conjunto recibe el nombre deTodo el conjunto recibe el nombre de
Centro Organizador de MicrotúbulosCentro Organizador de Microtúbulos
(COMT).(COMT).
 De la centrosfera parten unas fibras,De la centrosfera parten unas fibras,
denominadas áster (microtúbulosdenominadas áster (microtúbulos
dispuestos de forma radial).dispuestos de forma radial).
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
3 – Centrosoma.
 Estructura:Estructura:
 Cada centríolo del centrosomaCada centríolo del centrosoma
consta de nueve grupos de tresconsta de nueve grupos de tres
microtúbulos o tripletes que semicrotúbulos o tripletes que se
disponen formando un cilindro.disponen formando un cilindro.
 La estructura se mantiene gracias aLa estructura se mantiene gracias a
proteínas que unen a los tripletesproteínas que unen a los tripletes
entre si formando los llamadosentre si formando los llamados
puentes de nexina.puentes de nexina.
 En cada triplete de microtúbulos,En cada triplete de microtúbulos,
sólo uno es completo (13sólo uno es completo (13
protofilamentos), en tanto que losprotofilamentos), en tanto que los
otros dos poseen sólo 10 yotros dos poseen sólo 10 y
comparten tres protofilamentos concomparten tres protofilamentos con
el anterior.el anterior.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
3 – Centrosoma.
 Duplicación del centrosoma.Duplicación del centrosoma.
1.1. A partir de cada centríoloA partir de cada centríolo
(madre e hijo(madre e hijo
respectivamente) serespectivamente) se
comienzan a formar otros doscomienzan a formar otros dos
centríolos perpendicularescentríolos perpendiculares
(procentriolos).(procentriolos).
2.2. En el procentriolo se formaEn el procentriolo se forma
primero el cilindro con losprimero el cilindro con los
microtubulos A, y mas tardemicrotubulos A, y mas tarde
los B y C.los B y C.
3.3. Este nuevo centriolo creceEste nuevo centriolo crece
longitudinalmente, hasta sulongitudinalmente, hasta su
completa diferenciación, yacompleta diferenciación, ya
en la fase G2.en la fase G2.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
3 – Centrosoma.
 Funciones:Funciones:
1.1. El centrosoma participa en laEl centrosoma participa en la
división celular, ya que cuando sedivisión celular, ya que cuando se
separan los dos diplosomashijos,separan los dos diplosomashijos,
entre ellos, se extienden losentre ellos, se extienden los
microtúbulos que forman el husomicrotúbulos que forman el huso
acromático.acromático.
2.2. En los vegetales, el huso mitóticoEn los vegetales, el huso mitótico
se forma en torno a una zona difusase forma en torno a una zona difusa
que hace las veces de COMT.que hace las veces de COMT.
3.3. El corpúsculo basal que se halla enEl corpúsculo basal que se halla en
la base de cada cilio y flagelo es unla base de cada cilio y flagelo es un
centríolo típico, que sirve decentríolo típico, que sirve de
anclaje y organización de losanclaje y organización de los
microtúbulos que forman lamicrotúbulos que forman la
estructura interna del cilio o delestructura interna del cilio o del
flagelo.flagelo.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
3 – Centrosoma.
 Son prolongaciones de la membrana plasmática dotadas de movimiento queSon prolongaciones de la membrana plasmática dotadas de movimiento que
aparecen en muchos tipos de células animales.aparecen en muchos tipos de células animales.
 En células libres tienen una función locomotriz, ya que proporcionanEn células libres tienen una función locomotriz, ya que proporcionan
movimiento a la célula.movimiento a la célula.
 Cuando aparecen en células fijas provocan el movimiento del fluidoCuando aparecen en células fijas provocan el movimiento del fluido
extracelular formando pequeños remolinos que atrapan partículas.extracelular formando pequeños remolinos que atrapan partículas.
 La diferencia entre unos y otros estriba en el tamaño y el número.La diferencia entre unos y otros estriba en el tamaño y el número.
 CILIOS: Pequeños(2 a 10µm) y muy numerosos.CILIOS: Pequeños(2 a 10µm) y muy numerosos.
 FLAGELOS: Largos (hasta 200 µm) y escasos.FLAGELOS: Largos (hasta 200 µm) y escasos.
 En ambos casos el diámetro (unas 2 µm) y la estructura interna es la misma.En ambos casos el diámetro (unas 2 µm) y la estructura interna es la misma.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
4 – Cilios y flagelos.
 Estructura de cilios y flagelos.Estructura de cilios y flagelos.
 En ambos se distinguen cuatro zonas:En ambos se distinguen cuatro zonas:
 Tallo o axonema.Tallo o axonema.
 Zona de transición.Zona de transición.
 Corpúsculo basal.Corpúsculo basal.
 Raíces ciliares.Raíces ciliares.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
4 – Cilios y flagelos.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
4 – Cilios y flagelos.
 Hay una membrana plasmática y una matriz oHay una membrana plasmática y una matriz o
medio interno.medio interno.
 Axonema formado por un sistema de nueveAxonema formado por un sistema de nueve
pares de microtúbulos periféricos y un par depares de microtúbulos periféricos y un par de
microtúbulos centrales, paralelos al eje delmicrotúbulos centrales, paralelos al eje del
cilio o flagelo (9+2).cilio o flagelo (9+2).
 Los dos microtúbulos centrales sonLos dos microtúbulos centrales son
completos (13 protofilamentos).completos (13 protofilamentos).
 En los perifericos, el A es completo, y el BEn los perifericos, el A es completo, y el B
sólo tiene 10 protofilamentos. Estos dossólo tiene 10 protofilamentos. Estos dos
microtúbulos se unen por la proteína tektina.microtúbulos se unen por la proteína tektina.
 Los dobletes vecinos se unen por puentes deLos dobletes vecinos se unen por puentes de
nexina.nexina.
 El microtúbulo A emite dos prolongacionesEl microtúbulo A emite dos prolongaciones
de otra proteína llamada dineína (responsablede otra proteína llamada dineína (responsable
del movimiento).del movimiento).
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
4 – Cilios y flagelos.
Axonema.
 La zona de transición no se halla rodeada de membrana, ya que se sitúa enLa zona de transición no se halla rodeada de membrana, ya que se sitúa en
el citoplasma.el citoplasma.
 Carece del doblete central.Carece del doblete central.
 Es la base del cilio o flagelo y aparece la placa basal, que conecta la baseEs la base del cilio o flagelo y aparece la placa basal, que conecta la base
del cilio o flagelo con la membrana plasmática.del cilio o flagelo con la membrana plasmática.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
4 – Cilios y flagelos.
Zona de transición.
 Estructura identica al centríolo (9+0)Estructura identica al centríolo (9+0)
 Lugar donde se organizan los microtúbulos que constituyen el axonema.Lugar donde se organizan los microtúbulos que constituyen el axonema.
 Presenta tripletes y en él se aprecian dos zonas: una distal que es similar aPresenta tripletes y en él se aprecian dos zonas: una distal que es similar a
un centríolo, y una proximal en la que aparece un eje central proteico delun centríolo, y una proximal en la que aparece un eje central proteico del
que parten radialmente proteínas hacia los tripletes de la periferia; estaque parten radialmente proteínas hacia los tripletes de la periferia; esta
estructura se denomina «rueda de carro».estructura se denomina «rueda de carro».
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
4 – Cilios y flagelos.
Corpúsculo basal.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
4 – Cilios y flagelos.
 La raíz es un conjunto de microfilamentos de función contráctil.La raíz es un conjunto de microfilamentos de función contráctil.
 La función de estos, parece estar relacionada con la coordinación delLa función de estos, parece estar relacionada con la coordinación del
movimiento especialmente en los cilios.movimiento especialmente en los cilios.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
4 – Cilios y flagelos.
Corpúsculo basal.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
4 – Cilios y flagelos.
 Los cilios y flagelos que tendrá una célula se produceLos cilios y flagelos que tendrá una célula se produce
durante la diferenciación celular y por tanto se tienendurante la diferenciación celular y por tanto se tienen
que formar de nuevo.que formar de nuevo.
 Los microtúbulos se forman a partir de losLos microtúbulos se forman a partir de los
microtúbulos que forman el cuerpo basal.microtúbulos que forman el cuerpo basal.
 Y estos cuerpos basales se forman a partir de uno delY estos cuerpos basales se forman a partir de uno del
os centriolos del centrosoma que migra hacia laos centriolos del centrosoma que migra hacia la
membrana plasmática, contacta con ella y se inicia lamembrana plasmática, contacta con ella y se inicia la
polimerización de los túbulos A y B del axonema.polimerización de los túbulos A y B del axonema.
 Al final del proceso el centriolo se transforma enAl final del proceso el centriolo se transforma en
cuerpo basal.cuerpo basal.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
4 – Cilios y flagelos.
Formación de cilios y flagelos.
 Descubiertos por Palade en 1953.Descubiertos por Palade en 1953.
 Sólo pueden observarse alSólo pueden observarse al
microscopio electrónico (250Åmicroscopio electrónico (250Å
de diámetro).de diámetro).
 Son orgánulos carentes deSon orgánulos carentes de
membrana.membrana.
 Aparecen dispersos por elAparecen dispersos por el
hialoplasma o adheridos a lashialoplasma o adheridos a las
membranas del retículomembranas del retículo
endoplasmático y núcleo celular.endoplasmático y núcleo celular.
 Pueden estar libres oPueden estar libres o
encadenadas (polisomas oencadenadas (polisomas o
polirribosomas).polirribosomas).
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
5 – Ribosomas.
1.1. Hay dos subunidades de forma aproximadamente globular,Hay dos subunidades de forma aproximadamente globular,
una mayor y otra menor, que presentan distintos sitios deuna mayor y otra menor, que presentan distintos sitios de
unión del ARNunión del ARNmm, del ARN, del ARNtt y a las endomembranas.y a las endomembranas.
2.2. Ambas pueden aparecer separadas o permanecer unidas.Ambas pueden aparecer separadas o permanecer unidas.
3.3. Las dos subunidades se forman en el nucléolo, donde seLas dos subunidades se forman en el nucléolo, donde se
unen el ARNunen el ARNrr y las proteínas ribosomales.y las proteínas ribosomales.
4.4. Estas últimas, se han formado en el citoplasma y tienen queEstas últimas, se han formado en el citoplasma y tienen que
emigrar hasta el nucléolo. Las subunidades salen separadasemigrar hasta el nucléolo. Las subunidades salen separadas
del núcleo y se juntan en el citoplasma.del núcleo y se juntan en el citoplasma.
5.5. El análisis químico revela que tienen una composición deEl análisis químico revela que tienen una composición de
casi un 50% de agua y que el resto son diversas proteínascasi un 50% de agua y que el resto son diversas proteínas
unidas a ARNunidas a ARNrr. Además, hay iones Mg. Además, hay iones Mg2+2+
responsables deresponsables de
mantener unidas proteínas y ARNmantener unidas proteínas y ARNrr, y también a las, y también a las
subunidades.subunidades.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
5 – Ribosomas.
Estructura de los ribosomas.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
5 – Ribosomas.
Comparación de ribosomas procariotas y eucariotas.
1.1. Síntesis de las proteínas, es decir, la traducción del mensaje genético enSíntesis de las proteínas, es decir, la traducción del mensaje genético en
forma de cadena polipeptídica.forma de cadena polipeptídica.
2.2. Para ello, la hebra de ARNPara ello, la hebra de ARNmm portadora del mensaje mantiene el polisomaportadora del mensaje mantiene el polisoma
como el hilo de un collar.como el hilo de un collar.
3.3. Los ARNt cargados con los aminoácidos llegan y los aminoácidos vanLos ARNt cargados con los aminoácidos llegan y los aminoácidos van
uniéndose entre sí por enlaces peptídicos.uniéndose entre sí por enlaces peptídicos.
4.4. En general, la subunidad pequeña está implicada en la tarea genéticaEn general, la subunidad pequeña está implicada en la tarea genética
(unión con el ARN(unión con el ARNmm y los ARNy los ARNtt a los sitios A y P), mientras la subunidada los sitios A y P), mientras la subunidad
grande realiza la tarea bioquímica (transferencia y unión de cadagrande realiza la tarea bioquímica (transferencia y unión de cada
aminoácido con el siguiente).aminoácido con el siguiente).
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
5 – Ribosomas.
Funciones.
 Son depósitos de diversas sustancias que seSon depósitos de diversas sustancias que se
encuentran en el citosol de células animales yencuentran en el citosol de células animales y
vegetales.vegetales.
 En las células animales podemos encontrar:En las células animales podemos encontrar:
 Inclusiones de glucógeno.Inclusiones de glucógeno. Aparecen fundamentalmente en células muscularesAparecen fundamentalmente en células musculares
y hepáticas en forma de gránulos.y hepáticas en forma de gránulos.
 Inclusiones de lípidos.Inclusiones de lípidos. Se observan como gotas de diferentes diámetros, muySe observan como gotas de diferentes diámetros, muy
grandes en las células adiposas.grandes en las células adiposas.
 Inclusiones de pigmentos.Inclusiones de pigmentos. Pueden ser de diferente naturaleza. La melanina esPueden ser de diferente naturaleza. La melanina es
de color oscuro y tiene función protectora, la lipofucsina es de color amarillode color oscuro y tiene función protectora, la lipofucsina es de color amarillo
parduzco y está presente en células nerviosas y cardiacas envejecidas, laparduzco y está presente en células nerviosas y cardiacas envejecidas, la
hemosiderina procede de la degradación de la hemoglobina y se localiza enhemosiderina procede de la degradación de la hemoglobina y se localiza en
hígado, bazo y médula ósea.hígado, bazo y médula ósea.
 Inclusiones cristalinas.Inclusiones cristalinas. Son depósitos en forma de cristal. Aparecen enSon depósitos en forma de cristal. Aparecen en
distintos tipos celulares como las células de Sertoli y de Leydig (testículos).distintos tipos celulares como las células de Sertoli y de Leydig (testículos).
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
6 – Inclusiones citoplasmáticas.
 En las células vegetales se pueden encontrar:En las células vegetales se pueden encontrar:
 Aceites esenciales.Aceites esenciales. Forman gotitas que se unen y puedenForman gotitas que se unen y pueden
llegar a formar grandes lagunas que quedan en elllegar a formar grandes lagunas que quedan en el
citoplasma de la célula o salir al exterior. Su oxidación ycitoplasma de la célula o salir al exterior. Su oxidación y
polimerización forma las resinas.polimerización forma las resinas.
 Inclusiones lipídicas.Inclusiones lipídicas. Aparecen como corpúsculosAparecen como corpúsculos
refringentes.refringentes.
 Latex.Latex. Es una sustancia elaborada por el citoplasma celularEs una sustancia elaborada por el citoplasma celular
y de la que deriva el caucho natural.y de la que deriva el caucho natural.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
6 – Inclusiones citoplasmáticas.
 La pared celular es una matriz extracelular compleja que rodeaLa pared celular es una matriz extracelular compleja que rodea
a las células vegetales (también tienen pared celular bacterias,a las células vegetales (también tienen pared celular bacterias,
algas y hongos).algas y hongos).
 Actúa como exoesqueleto de estas células.Actúa como exoesqueleto de estas células.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
7 – La pared celular.
Composición.
1.1. Lámina media de pectinas.Lámina media de pectinas. Es laEs la
primera en formarse entre dos células queprimera en formarse entre dos células que
acaban de dividirse y permanecen unidas.acaban de dividirse y permanecen unidas.
En algunas zonas de comunicación entreEn algunas zonas de comunicación entre
células vecinas no aparece esta láminacélulas vecinas no aparece esta lámina
(plasmodesmos)(plasmodesmos)
2.2. Pared primariaPared primaria de celulosa y matriz dede celulosa y matriz de
hemicelulosay pectinas. que la célula vahemicelulosay pectinas. que la célula va
depositando durante el crecimiento entredepositando durante el crecimiento entre
la membrana plasmática y la láminala membrana plasmática y la lámina
media. Permite el crecimiento.media. Permite el crecimiento.
3.3. Pared secundariaPared secundaria con abundantes fibrascon abundantes fibras
de celulosa y una matriz más escasa dede celulosa y una matriz más escasa de
hemicelulosa, que forma hasta tres capashemicelulosa, que forma hasta tres capas
diferentes. Es muy rígida (contienediferentes. Es muy rígida (contiene
lignina) y difícilmente deformable, por lolignina) y difícilmente deformable, por lo
que sólo aparece en células especializadasque sólo aparece en células especializadas
de los tejidos esqueléticos y conductores.de los tejidos esqueléticos y conductores.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
7 – La pared celular.
Estructura.
 La pared celular da forma y rigidez a la célula e impide suLa pared celular da forma y rigidez a la célula e impide su
ruptura.ruptura.
 La célula vegetal contiene en su citoplasma una elevadaLa célula vegetal contiene en su citoplasma una elevada
concentración de moléculas que, debido a la presión osmótica,concentración de moléculas que, debido a la presión osmótica,
origina una corriente de agua hacia el interior celular queorigina una corriente de agua hacia el interior celular que
acabaría por hincharla y romperla si no fuera por la pared.acabaría por hincharla y romperla si no fuera por la pared.
 Es responsable de que la planta se mantenga erguida.Es responsable de que la planta se mantenga erguida.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
7 – La pared celular.
Funciones.
 Red de macromoléculas en el espacio intercelular.Red de macromoléculas en el espacio intercelular.
 Está compuesta de muchas proteínas versátiles y polisacáridosEstá compuesta de muchas proteínas versátiles y polisacáridos
secretados localmente y ensamblados en estrecha asociaciónsecretados localmente y ensamblados en estrecha asociación
con la superficie de la célula que la ha producido.con la superficie de la célula que la ha producido.
 Aparece entre las células de los tejidos animales y actúa comoAparece entre las células de los tejidos animales y actúa como
nexo de unión, rellena espacios intercelulares, da consistencianexo de unión, rellena espacios intercelulares, da consistencia
a tejidos y órganos y, además, condiciona la forma, ela tejidos y órganos y, además, condiciona la forma, el
desarrollo y la proliferación de las células englobadas por ladesarrollo y la proliferación de las células englobadas por la
matriz.matriz.
 Hasta hace poco tiempo se pensaba en la matriz como unaHasta hace poco tiempo se pensaba en la matriz como una
especie de andamiaje inerte que estabilizaba la estructuraespecie de andamiaje inerte que estabilizaba la estructura
física de los tejidos. Ahora es claro que la matriz juega un rolfísica de los tejidos. Ahora es claro que la matriz juega un rol
mucho más activo y complejo en la regulación delmucho más activo y complejo en la regulación del
comportamiento de las células que interactúan con ella,comportamiento de las células que interactúan con ella,
influenciando su desarrollo, migración, proliferación, forma yinfluenciando su desarrollo, migración, proliferación, forma y
función.función.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
8 – Matriz extracelular.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
8 – Matriz extracelular.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
8 – Matriz extracelular.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
8 – Matriz extracelular.
Estructura.
 El colágeno es una proteína fibrosa formada porEl colágeno es una proteína fibrosa formada por
tres cadenas (cadenas α) espiralizadas sobre sitres cadenas (cadenas α) espiralizadas sobre si
mismas.mismas.
 Proporciona estructura, resistencia a la rotura yProporciona estructura, resistencia a la rotura y
consistencia a la matriz.consistencia a la matriz.
 El colágeno es la principal proteína de la matrizEl colágeno es la principal proteína de la matriz
extracelular (25% de las proteínas). Estáextracelular (25% de las proteínas). Está
constituido por una triple hélice ordenada hacia laconstituido por una triple hélice ordenada hacia la
izquierda, con tres residuos aminoacídicos porizquierda, con tres residuos aminoacídicos por
vuelta. Uno de ellos siempre es glicina y de losvuelta. Uno de ellos siempre es glicina y de los
otros dos es bastante frecuente que uno sea prolinaotros dos es bastante frecuente que uno sea prolina
y otro hidroxiprolina.y otro hidroxiprolina.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
8 – Matriz extracelular.
Proteínas.
Colágeno.
 Las moléculas de colágeno se asocian en fibrillas de colágenoLas moléculas de colágeno se asocian en fibrillas de colágeno
(10 a 300 nm de diámetro, visibles con el microscopio(10 a 300 nm de diámetro, visibles con el microscopio
electrónico) y luego en estructuras más complejas, las fibraselectrónico) y luego en estructuras más complejas, las fibras
de colágeno, que son visibles al microscopio óptico. Luego dede colágeno, que son visibles al microscopio óptico. Luego de
su formación las fibrillas de colágeno se entrecruzan con otrassu formación las fibrillas de colágeno se entrecruzan con otras
a través de enlaces entre residuos de lisina. El grado dea través de enlaces entre residuos de lisina. El grado de
entrecruzamiento es variable: en el tendón de Aquiles es muyentrecruzamiento es variable: en el tendón de Aquiles es muy
significativo.significativo.
 Forma fibras muy resistentes a la tracción.Forma fibras muy resistentes a la tracción.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
8 – Matriz extracelular.
 La elastina es una proteína fibrosaLa elastina es una proteína fibrosa
que se comporta como una gomaque se comporta como una goma
frente a la tracción.frente a la tracción.
 Proporciona elasticidad a laProporciona elasticidad a la
matriz.matriz.
 Tejidos de los vertebrados, comoTejidos de los vertebrados, como
la piel, vasos sanguíneos o losla piel, vasos sanguíneos o los
pulmones, necesitan al mismopulmones, necesitan al mismo
tiempo ser fuertes pero elásticostiempo ser fuertes pero elásticos
para poder cumplir con supara poder cumplir con su
función. En estos tejidos existefunción. En estos tejidos existe
una red de fibras elásticas en launa red de fibras elásticas en la
matriz extracelular de sus célulasmatriz extracelular de sus células
que les permite expandirse yque les permite expandirse y
volver a su posición inicial.volver a su posición inicial.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
8 – Matriz extracelular.
Elastina.
 El principal componente de las fibras es la elastina,El principal componente de las fibras es la elastina,
una proteína hidrofóbica rica en glicina y prolina. Aluna proteína hidrofóbica rica en glicina y prolina. Al
igual que en el colágeno, las moléculas de elastinaigual que en el colágeno, las moléculas de elastina
están entrecruzadas por uniones covalentes entreestán entrecruzadas por uniones covalentes entre
residuos de lisina. Esto le permite pasar de unaresiduos de lisina. Esto le permite pasar de una
conformación donde las moléculas están enrolladas alconformación donde las moléculas están enrolladas al
azar a una en la que adoptan una totalmente estirada.azar a una en la que adoptan una totalmente estirada.
 Si bien la elastina es el principal componente de lasSi bien la elastina es el principal componente de las
fibras elásticas, éstas están recubiertas porfibras elásticas, éstas están recubiertas por
glicoproteínas diversas, de la cual la más común es laglicoproteínas diversas, de la cual la más común es la
fibrilina, que recubren la red de elastina.fibrilina, que recubren la red de elastina.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
8 – Matriz extracelular.
 Es una de las primeras proteínas deEs una de las primeras proteínas de
la matriz extracelular sintetizadala matriz extracelular sintetizada
por un embrión en desarrollo. Tienepor un embrión en desarrollo. Tiene
tres cadenas polipeptídicastres cadenas polipeptídicas
ordenadas en forma de cruz, conordenadas en forma de cruz, con
distintos dominios destinados adistintos dominios destinados a
unirse a los otros componentes de launirse a los otros componentes de la
lámina basal.lámina basal.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
8 – Matriz extracelular.
Glucoproteínas.
Laminina.
 La fibronectina es una glucoproteína queLa fibronectina es una glucoproteína que
forma una trama fibrosa larga e insoluble, conforma una trama fibrosa larga e insoluble, con
función adherente. Proporciona adhesión entrefunción adherente. Proporciona adhesión entre
células, y entre células y fibras de colágeno.células, y entre células y fibras de colágeno.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
8 – Matriz extracelular.
Fibronectina.
 Las glucoproteínas están formadas por proteoglucanos,Las glucoproteínas están formadas por proteoglucanos,
moléculas que presentan una proteína filamentosa centralmoléculas que presentan una proteína filamentosa central
a la que se unen numerosos filamentos dea la que se unen numerosos filamentos de
glucosaminglucanos (GAG), originando estructurasglucosaminglucanos (GAG), originando estructuras
plumosas que a su vez se fijan en una larga molécula deplumosas que a su vez se fijan en una larga molécula de
ácido hialurónico.ácido hialurónico.
 Son muy hidrófilas y retienen mucha agua, lo queSon muy hidrófilas y retienen mucha agua, lo que
proporciona a la matriz una gran resistencia frente a laproporciona a la matriz una gran resistencia frente a la
compresión, permiten la migración celular a través suyo,compresión, permiten la migración celular a través suyo,
la difusión de moléculas hidrosolubles e incluso, dado quela difusión de moléculas hidrosolubles e incluso, dado que
forman geles con un determinado tamaño de malla, laforman geles con un determinado tamaño de malla, la
filtración selectiva de estas moléculas.filtración selectiva de estas moléculas.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
8 – Matriz extracelular.
Polisacáridos.
Proteoglucanos.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
8 – Matriz extracelular.
 Mantiene unidas a las células formando tejidos, y aMantiene unidas a las células formando tejidos, y a
los tejidos formando órganos.los tejidos formando órganos.
 Permite la difusión de sustancias, la migración dePermite la difusión de sustancias, la migración de
células e influye en la disposición en el espacio de lascélulas e influye en la disposición en el espacio de las
células.células.
 Interviene en la formación tridimensional de losInterviene en la formación tridimensional de los
órganos.órganos.
 Da consistencia, elasticidad y resistencia a laDa consistencia, elasticidad y resistencia a la
compresión y a la tracción a dichos tejidos.compresión y a la tracción a dichos tejidos.
T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula.
8 – Matriz extracelular.
Funciones.

Contenu connexe

Tendances

Clase 11 mayo 2015 citoesq rib med
Clase 11 mayo 2015 citoesq rib medClase 11 mayo 2015 citoesq rib med
Clase 11 mayo 2015 citoesq rib medperaless
 
La célula introducción
La célula introducciónLa célula introducción
La célula introducciónN Flores
 
Unidad 1 la célula unidad de vida
Unidad 1 la célula unidad de vidaUnidad 1 la célula unidad de vida
Unidad 1 la célula unidad de vidatrinidadsotonavarro
 
Cuestionario de la celula
Cuestionario de la  celulaCuestionario de la  celula
Cuestionario de la celulaOwen Salas J
 
Tema 4 2ªevaluación
Tema 4 2ªevaluaciónTema 4 2ªevaluación
Tema 4 2ªevaluaciónJulio Sanchez
 
Cuestionario de nivel célular. 6to "B" Enfermería.
Cuestionario de nivel célular. 6to "B" Enfermería.Cuestionario de nivel célular. 6to "B" Enfermería.
Cuestionario de nivel célular. 6to "B" Enfermería.Lupita Álvarez
 
Biologia celular
Biologia celularBiologia celular
Biologia celularishitamil
 
Ud.12. reproducción celular
Ud.12. reproducción celularUd.12. reproducción celular
Ud.12. reproducción celularbiologiahipatia
 
Orgánulos energéticos: mitocondrias y cloroplastos
Orgánulos energéticos: mitocondrias y cloroplastosOrgánulos energéticos: mitocondrias y cloroplastos
Orgánulos energéticos: mitocondrias y cloroplastosIES Suel - Ciencias Naturales
 
T7 - El núcleo
T7 - El núcleoT7 - El núcleo
T7 - El núcleoJavier
 
UTPL-BASES BIOLÓGICAS-I-BIMESTRE-(OCTUBRE 2011-FEBRERO 2012)
UTPL-BASES BIOLÓGICAS-I-BIMESTRE-(OCTUBRE 2011-FEBRERO 2012)UTPL-BASES BIOLÓGICAS-I-BIMESTRE-(OCTUBRE 2011-FEBRERO 2012)
UTPL-BASES BIOLÓGICAS-I-BIMESTRE-(OCTUBRE 2011-FEBRERO 2012)Videoconferencias UTPL
 
U5 Organización celular de los seres vivos. La célula procariota
U5 Organización celular de los seres vivos. La célula procariotaU5 Organización celular de los seres vivos. La célula procariota
U5 Organización celular de los seres vivos. La célula procariotaSaro Hidalgo
 
La céLula como unidad de vida
La céLula como unidad de vidaLa céLula como unidad de vida
La céLula como unidad de vidageopaloma
 

Tendances (20)

Clase 11 mayo 2015 citoesq rib med
Clase 11 mayo 2015 citoesq rib medClase 11 mayo 2015 citoesq rib med
Clase 11 mayo 2015 citoesq rib med
 
La célula introducción
La célula introducciónLa célula introducción
La célula introducción
 
Tema 6
Tema 6Tema 6
Tema 6
 
La célula cooper
La célula   cooperLa célula   cooper
La célula cooper
 
Unidad 1 la célula unidad de vida
Unidad 1 la célula unidad de vidaUnidad 1 la célula unidad de vida
Unidad 1 la célula unidad de vida
 
Cuestionario de la celula
Cuestionario de la  celulaCuestionario de la  celula
Cuestionario de la celula
 
Tema 4 2ªevaluación
Tema 4 2ªevaluaciónTema 4 2ªevaluación
Tema 4 2ªevaluación
 
Cuestionario de nivel célular. 6to "B" Enfermería.
Cuestionario de nivel célular. 6to "B" Enfermería.Cuestionario de nivel célular. 6to "B" Enfermería.
Cuestionario de nivel célular. 6to "B" Enfermería.
 
Biologia celular
Biologia celularBiologia celular
Biologia celular
 
BIOLOGÍA CELULAR
BIOLOGÍA CELULARBIOLOGÍA CELULAR
BIOLOGÍA CELULAR
 
Ud.12. reproducción celular
Ud.12. reproducción celularUd.12. reproducción celular
Ud.12. reproducción celular
 
Orgánulos energéticos: mitocondrias y cloroplastos
Orgánulos energéticos: mitocondrias y cloroplastosOrgánulos energéticos: mitocondrias y cloroplastos
Orgánulos energéticos: mitocondrias y cloroplastos
 
T7 - El núcleo
T7 - El núcleoT7 - El núcleo
T7 - El núcleo
 
Módulo La Célula
Módulo La CélulaMódulo La Célula
Módulo La Célula
 
Los Organelos
Los OrganelosLos Organelos
Los Organelos
 
UTPL-BASES BIOLÓGICAS-I-BIMESTRE-(OCTUBRE 2011-FEBRERO 2012)
UTPL-BASES BIOLÓGICAS-I-BIMESTRE-(OCTUBRE 2011-FEBRERO 2012)UTPL-BASES BIOLÓGICAS-I-BIMESTRE-(OCTUBRE 2011-FEBRERO 2012)
UTPL-BASES BIOLÓGICAS-I-BIMESTRE-(OCTUBRE 2011-FEBRERO 2012)
 
U5 Organización celular de los seres vivos. La célula procariota
U5 Organización celular de los seres vivos. La célula procariotaU5 Organización celular de los seres vivos. La célula procariota
U5 Organización celular de los seres vivos. La célula procariota
 
La céLula como unidad de vida
La céLula como unidad de vidaLa céLula como unidad de vida
La céLula como unidad de vida
 
La célula y el núcleo.
La célula y el núcleo. La célula y el núcleo.
La célula y el núcleo.
 
Tema 7. la célula I
Tema 7. la célula ITema 7. la célula I
Tema 7. la célula I
 

En vedette

T1 - Química de la materia viva y su estudio.
T1 - Química de la materia viva y su estudio.T1 - Química de la materia viva y su estudio.
T1 - Química de la materia viva y su estudio.Ángel González Olinero
 
T15 - Del adn a las proteínas (expresión génica).
T15 - Del adn a las proteínas (expresión génica).T15 - Del adn a las proteínas (expresión génica).
T15 - Del adn a las proteínas (expresión génica).Ángel González Olinero
 
T20 - Defensa del organismo frente a la infección.
T20 - Defensa del organismo frente a la infección.T20 - Defensa del organismo frente a la infección.
T20 - Defensa del organismo frente a la infección.Ángel González Olinero
 
T18 - La diversidad de los microorganismos
T18 - La diversidad de los microorganismosT18 - La diversidad de los microorganismos
T18 - La diversidad de los microorganismosÁngel González Olinero
 
Espermatogénesis Alr
Espermatogénesis AlrEspermatogénesis Alr
Espermatogénesis AlrAlicia
 
3288429 diferencia-entre-celula-eucariota-y-procariota
3288429 diferencia-entre-celula-eucariota-y-procariota3288429 diferencia-entre-celula-eucariota-y-procariota
3288429 diferencia-entre-celula-eucariota-y-procariotaSantos MENDOZA LAURA
 

En vedette (20)

T3 - Glúcidos.
T3 - Glúcidos.T3 - Glúcidos.
T3 - Glúcidos.
 
T17 - Genética y evolución.
T17 - Genética y evolución.T17 - Genética y evolución.
T17 - Genética y evolución.
 
T2 - El agua y las sales minerales.
T2 - El agua y las sales minerales.T2 - El agua y las sales minerales.
T2 - El agua y las sales minerales.
 
T7 - La célula. El núcleo.
T7 - La célula. El núcleo.T7 - La célula. El núcleo.
T7 - La célula. El núcleo.
 
T1 - Química de la materia viva y su estudio.
T1 - Química de la materia viva y su estudio.T1 - Química de la materia viva y su estudio.
T1 - Química de la materia viva y su estudio.
 
T16 - El adn y la ingeniería genética.
T16 - El adn y la ingeniería genética.T16 - El adn y la ingeniería genética.
T16 - El adn y la ingeniería genética.
 
T15 - Del adn a las proteínas (expresión génica).
T15 - Del adn a las proteínas (expresión génica).T15 - Del adn a las proteínas (expresión génica).
T15 - Del adn a las proteínas (expresión génica).
 
T11 - Metabolismo celular y del ser vivo.
T11 - Metabolismo celular y del ser vivo.T11 - Metabolismo celular y del ser vivo.
T11 - Metabolismo celular y del ser vivo.
 
T14 - Las leyes de la herencia.
T14 - Las leyes de la herencia.T14 - Las leyes de la herencia.
T14 - Las leyes de la herencia.
 
T12 - Catabolismo aerobio y anaerobio.
T12 - Catabolismo aerobio y anaerobio.T12 - Catabolismo aerobio y anaerobio.
T12 - Catabolismo aerobio y anaerobio.
 
T19 - Los microorganismos en la biosfera.
T19 - Los microorganismos en la biosfera.T19 - Los microorganismos en la biosfera.
T19 - Los microorganismos en la biosfera.
 
T20 - Defensa del organismo frente a la infección.
T20 - Defensa del organismo frente a la infección.T20 - Defensa del organismo frente a la infección.
T20 - Defensa del organismo frente a la infección.
 
T18 - La diversidad de los microorganismos
T18 - La diversidad de los microorganismosT18 - La diversidad de los microorganismos
T18 - La diversidad de los microorganismos
 
T5 - Aminoácidos y proteínas.
T5 - Aminoácidos y proteínas.T5 - Aminoácidos y proteínas.
T5 - Aminoácidos y proteínas.
 
T13 - Anabolismo.
T13 - Anabolismo.T13 - Anabolismo.
T13 - Anabolismo.
 
T6 - Nucleótidos y ácidos nucleicos.
T6 - Nucleótidos y ácidos nucleicos.T6 - Nucleótidos y ácidos nucleicos.
T6 - Nucleótidos y ácidos nucleicos.
 
T21 - Inmunología y enfermedad.
T21 - Inmunología y enfermedad.T21 - Inmunología y enfermedad.
T21 - Inmunología y enfermedad.
 
T4 - Lípidos.
T4 - Lípidos.T4 - Lípidos.
T4 - Lípidos.
 
Espermatogénesis Alr
Espermatogénesis AlrEspermatogénesis Alr
Espermatogénesis Alr
 
3288429 diferencia-entre-celula-eucariota-y-procariota
3288429 diferencia-entre-celula-eucariota-y-procariota3288429 diferencia-entre-celula-eucariota-y-procariota
3288429 diferencia-entre-celula-eucariota-y-procariota
 

Similaire à T10 - Hialoplasma, citoesqueleto y estructuras no membranosas de la célula.

Estructuras nomembranosas
Estructuras nomembranosasEstructuras nomembranosas
Estructuras nomembranosasMiriam Valle
 
Estructuras no membranosas de la célula
Estructuras no membranosas de la célulaEstructuras no membranosas de la célula
Estructuras no membranosas de la célulaEduardo Gómez
 
El citosol y las estructuras no membranosas de la célula 2013
El citosol y las estructuras no membranosas de la célula  2013El citosol y las estructuras no membranosas de la célula  2013
El citosol y las estructuras no membranosas de la célula 2013Alberto Hernandez
 
Tema 8 la celula estructura interna
Tema 8 la celula estructura internaTema 8 la celula estructura interna
Tema 8 la celula estructura internabertachico
 
Temas selectos de biología clase i nivel celular envío
Temas selectos de biología clase i nivel celular envíoTemas selectos de biología clase i nivel celular envío
Temas selectos de biología clase i nivel celular envíoclauciencias
 
Citoesqueleto y-alzheimer
Citoesqueleto y-alzheimerCitoesqueleto y-alzheimer
Citoesqueleto y-alzheimerDanesyMarrufo
 
Pres 17-citoesqueleto
Pres 17-citoesqueletoPres 17-citoesqueleto
Pres 17-citoesqueletoroberto142
 
El citoesqueleto y la movilidad celular.
El citoesqueleto y la movilidad celular. El citoesqueleto y la movilidad celular.
El citoesqueleto y la movilidad celular. Emily Lira López
 
Tema 8 la organización celular eat(2016)
Tema 8 la organización celular eat(2016)Tema 8 la organización celular eat(2016)
Tema 8 la organización celular eat(2016)Encarna Alcacer Tomas
 
Tema 8 Estructuras y orgánulos no membranosos.pptx
Tema 8 Estructuras y orgánulos no membranosos.pptxTema 8 Estructuras y orgánulos no membranosos.pptx
Tema 8 Estructuras y orgánulos no membranosos.pptxRaulRico10
 
Clase 10 Citoesqueleto
Clase 10 CitoesqueletoClase 10 Citoesqueleto
Clase 10 Citoesqueletoguest2235e4
 
Clase 10 Citoesqueleto
Clase 10 CitoesqueletoClase 10 Citoesqueleto
Clase 10 Citoesqueletoguest2235e4
 
El citosol y las estructuras no membranosas de la célula 2013
El citosol y las estructuras no membranosas de la célula  2013El citosol y las estructuras no membranosas de la célula  2013
El citosol y las estructuras no membranosas de la célula 2013Alberto Hernandez
 
La célula iii
La célula iiiLa célula iii
La célula iiijujosansan
 

Similaire à T10 - Hialoplasma, citoesqueleto y estructuras no membranosas de la célula. (20)

Célula2
Célula2Célula2
Célula2
 
Estructuras nomembranosas
Estructuras nomembranosasEstructuras nomembranosas
Estructuras nomembranosas
 
La celula
La celulaLa celula
La celula
 
Estructuras no membranosas de la célula
Estructuras no membranosas de la célulaEstructuras no membranosas de la célula
Estructuras no membranosas de la célula
 
Citoesqueleto
CitoesqueletoCitoesqueleto
Citoesqueleto
 
El citosol y las estructuras no membranosas de la célula 2013
El citosol y las estructuras no membranosas de la célula  2013El citosol y las estructuras no membranosas de la célula  2013
El citosol y las estructuras no membranosas de la célula 2013
 
Tema 8 la celula estructura interna
Tema 8 la celula estructura internaTema 8 la celula estructura interna
Tema 8 la celula estructura interna
 
Temas selectos de biología clase i nivel celular envío
Temas selectos de biología clase i nivel celular envíoTemas selectos de biología clase i nivel celular envío
Temas selectos de biología clase i nivel celular envío
 
Citoesqueleto y-alzheimer
Citoesqueleto y-alzheimerCitoesqueleto y-alzheimer
Citoesqueleto y-alzheimer
 
Pres 17-citoesqueleto
Pres 17-citoesqueletoPres 17-citoesqueleto
Pres 17-citoesqueleto
 
El citoesqueleto y la movilidad celular.
El citoesqueleto y la movilidad celular. El citoesqueleto y la movilidad celular.
El citoesqueleto y la movilidad celular.
 
Tema 8 la organización celular eat(2016)
Tema 8 la organización celular eat(2016)Tema 8 la organización celular eat(2016)
Tema 8 la organización celular eat(2016)
 
Tema 8 Estructuras y orgánulos no membranosos.pptx
Tema 8 Estructuras y orgánulos no membranosos.pptxTema 8 Estructuras y orgánulos no membranosos.pptx
Tema 8 Estructuras y orgánulos no membranosos.pptx
 
Clase 10 Citoesqueleto
Clase 10 CitoesqueletoClase 10 Citoesqueleto
Clase 10 Citoesqueleto
 
Clase 10 Citoesqueleto
Clase 10 CitoesqueletoClase 10 Citoesqueleto
Clase 10 Citoesqueleto
 
El citosol y las estructuras no membranosas de la célula 2013
El citosol y las estructuras no membranosas de la célula  2013El citosol y las estructuras no membranosas de la célula  2013
El citosol y las estructuras no membranosas de la célula 2013
 
Celula 1
Celula 1Celula 1
Celula 1
 
Guia de laboratorio BIOLOGIA_bcm4a
Guia de laboratorio BIOLOGIA_bcm4aGuia de laboratorio BIOLOGIA_bcm4a
Guia de laboratorio BIOLOGIA_bcm4a
 
Unidad 6
Unidad 6Unidad 6
Unidad 6
 
La célula iii
La célula iiiLa célula iii
La célula iii
 

Plus de Ángel González Olinero

Instrucción directa vs aprendizaje basado en proyectos
Instrucción directa vs aprendizaje basado en proyectosInstrucción directa vs aprendizaje basado en proyectos
Instrucción directa vs aprendizaje basado en proyectosÁngel González Olinero
 
T7 - Nuevas necesidades, nuevos materiales
T7 - Nuevas necesidades, nuevos materialesT7 - Nuevas necesidades, nuevos materiales
T7 - Nuevas necesidades, nuevos materialesÁngel González Olinero
 
T6 - ¿Hacia una gestión sostenible del planeta
T6 - ¿Hacia una gestión sostenible del planetaT6 - ¿Hacia una gestión sostenible del planeta
T6 - ¿Hacia una gestión sostenible del planetaÁngel González Olinero
 

Plus de Ángel González Olinero (20)

Instrucción directa vs aprendizaje basado en proyectos
Instrucción directa vs aprendizaje basado en proyectosInstrucción directa vs aprendizaje basado en proyectos
Instrucción directa vs aprendizaje basado en proyectos
 
Valoración del proyecto
Valoración del proyectoValoración del proyecto
Valoración del proyecto
 
La reproducción humana
La reproducción humanaLa reproducción humana
La reproducción humana
 
Aparato digestivo
Aparato digestivoAparato digestivo
Aparato digestivo
 
La organización del cuerpo humano
La organización del cuerpo humanoLa organización del cuerpo humano
La organización del cuerpo humano
 
La salud humana
La salud humanaLa salud humana
La salud humana
 
T11 - El calor y la temperatura
T11 - El calor y la temperaturaT11 - El calor y la temperatura
T11 - El calor y la temperatura
 
T10 - La energía
T10 - La energíaT10 - La energía
T10 - La energía
 
T9 - La dinámica interna del planeta.
T9 - La dinámica interna del planeta.T9 - La dinámica interna del planeta.
T9 - La dinámica interna del planeta.
 
T8 la dinámica externa del planeta
T8   la dinámica externa del planetaT8   la dinámica externa del planeta
T8 la dinámica externa del planeta
 
T7 - La energía que nos llega del Sol
T7 - La energía que nos llega del SolT7 - La energía que nos llega del Sol
T7 - La energía que nos llega del Sol
 
T6 - Los ecosistemas de la tierra.
T6 - Los ecosistemas de la tierra.T6 - Los ecosistemas de la tierra.
T6 - Los ecosistemas de la tierra.
 
T5 - La estructura de los ecosistemas.
T5 - La estructura de los ecosistemas.T5 - La estructura de los ecosistemas.
T5 - La estructura de los ecosistemas.
 
T4 - La reproducción
T4 - La reproducciónT4 - La reproducción
T4 - La reproducción
 
T3 - La relación y la coordinación
T3 -  La relación y la coordinaciónT3 -  La relación y la coordinación
T3 - La relación y la coordinación
 
T2 - La nutrición.
T2 - La nutrición.T2 - La nutrición.
T2 - La nutrición.
 
T1 - El mantenimiento de la vida.
T1 - El mantenimiento de la vida.T1 - El mantenimiento de la vida.
T1 - El mantenimiento de la vida.
 
T8- Un mundo digital.
T8- Un mundo digital.T8- Un mundo digital.
T8- Un mundo digital.
 
T7 - Nuevas necesidades, nuevos materiales
T7 - Nuevas necesidades, nuevos materialesT7 - Nuevas necesidades, nuevos materiales
T7 - Nuevas necesidades, nuevos materiales
 
T6 - ¿Hacia una gestión sostenible del planeta
T6 - ¿Hacia una gestión sostenible del planetaT6 - ¿Hacia una gestión sostenible del planeta
T6 - ¿Hacia una gestión sostenible del planeta
 

Dernier

Infografía EE con pie del 2023 (3)-1.pdf
Infografía EE con pie del 2023 (3)-1.pdfInfografía EE con pie del 2023 (3)-1.pdf
Infografía EE con pie del 2023 (3)-1.pdfAlfaresbilingual
 
Dinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dDinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dstEphaniiie
 
PIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonablesPIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonablesYanirisBarcelDelaHoz
 
6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf
6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf
6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdfMiNeyi1
 
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...JAVIER SOLIS NOYOLA
 
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdfNUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdfUPTAIDELTACHIRA
 
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdf
Programacion Anual Matemática5    MPG 2024  Ccesa007.pdfProgramacion Anual Matemática5    MPG 2024  Ccesa007.pdf
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdfDemetrio Ccesa Rayme
 
Estrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónEstrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónLourdes Feria
 
2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx
2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx
2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptxRigoTito
 
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdfCurso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdfFrancisco158360
 
Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024Juan Martín Martín
 
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICABIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICAÁngel Encinas
 
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxTIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxlclcarmen
 
PLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxPLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxlupitavic
 
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VSOCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VSYadi Campos
 
Qué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativaQué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativaDecaunlz
 
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).pptPINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).pptAlberto Rubio
 
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfSELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfAngélica Soledad Vega Ramírez
 

Dernier (20)

Infografía EE con pie del 2023 (3)-1.pdf
Infografía EE con pie del 2023 (3)-1.pdfInfografía EE con pie del 2023 (3)-1.pdf
Infografía EE con pie del 2023 (3)-1.pdf
 
Dinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dDinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes d
 
PIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonablesPIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonables
 
6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf
6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf
6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf
 
Medición del Movimiento Online 2024.pptx
Medición del Movimiento Online 2024.pptxMedición del Movimiento Online 2024.pptx
Medición del Movimiento Online 2024.pptx
 
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
 
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdfNUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
 
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdf
Programacion Anual Matemática5    MPG 2024  Ccesa007.pdfProgramacion Anual Matemática5    MPG 2024  Ccesa007.pdf
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdf
 
Estrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónEstrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcción
 
2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx
2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx
2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx
 
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdfCurso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
 
Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024
 
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICABIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
 
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxTIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
 
PLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxPLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docx
 
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VSOCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
 
Qué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativaQué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativa
 
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).pptPINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
 
Presentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza MultigradoPresentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza Multigrado
 
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfSELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
 

T10 - Hialoplasma, citoesqueleto y estructuras no membranosas de la célula.

  • 1. T10 – HIALOPLASMA,T10 – HIALOPLASMA, CITOESQUELETO Y ESTRUCTURASCITOESQUELETO Y ESTRUCTURAS NO MEMBRANOSAS DE LA CÉLULA.NO MEMBRANOSAS DE LA CÉLULA.1.1. Hialoplasma o citosol.Hialoplasma o citosol. 2.2. Citoesqueleto.Citoesqueleto. 3.3. Centrosoma.Centrosoma. 4.4. Cilios y flagelos.Cilios y flagelos. 5.5. Ribosomas.Ribosomas. 6.6. Inclusiones citoplasmáticas.Inclusiones citoplasmáticas. 7.7. La pared celular.La pared celular. 8.8. Matriz extracelular.Matriz extracelular.
  • 2. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. ANTECEDENTES PAU:ANTECEDENTES PAU: 2005 – Septiembre: cilios, zonas estructurales y esquema rotulado de un corte2005 – Septiembre: cilios, zonas estructurales y esquema rotulado de un corte transversal de su tallo;transversal de su tallo; 2010 – Junio:2010 – Junio: centriolos y centrosomas; cilios y flagelos, funciones ycentriolos y centrosomas; cilios y flagelos, funciones y diferencias;diferencias;
  • 3.  Es el medio celular donde se encuentran inmersos losEs el medio celular donde se encuentran inmersos los orgánulos citoplasmáticos.orgánulos citoplasmáticos.  Se trata de un sistema coloidal muy heterogéneo.Se trata de un sistema coloidal muy heterogéneo.  Alta diversidad de sus componentes.Alta diversidad de sus componentes.  Sufre variaciones según el momento de la fisiología celularSufre variaciones según el momento de la fisiología celular que se considere.que se considere.  Al microscopio óptico no se aprecia estructura alguna, pero seAl microscopio óptico no se aprecia estructura alguna, pero se puede estudiar por otras técnicas como la centrifugaciónpuede estudiar por otras técnicas como la centrifugación diferencial.diferencial.  Los análisis químicos revelan una proporción de agua en tornoLos análisis químicos revelan una proporción de agua en torno a 85%, pero puede variar, pasando de sol a gel.a 85%, pero puede variar, pasando de sol a gel.  En disolución o suspensión coloidal hay toda clase deEn disolución o suspensión coloidal hay toda clase de biomoléculas e intermediarios metabólicos (iones,biomoléculas e intermediarios metabólicos (iones, aminoácidos, proteínas, glúcidos y ATP).aminoácidos, proteínas, glúcidos y ATP). T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 1 – Hialoplasma o citosol.
  • 4.  Los métodos citoquímicos y la microscopía electrónica revelanLos métodos citoquímicos y la microscopía electrónica revelan la existencia de dos tipos de estructuras:la existencia de dos tipos de estructuras: T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 1 – Hialoplasma o citosol.
  • 5.  Funciones:Funciones:  Regulador del pH intracelularRegulador del pH intracelular  Compartimento donde se realizan gran numero deCompartimento donde se realizan gran numero de reacciones metabólicas:reacciones metabólicas:  GlucogenogénesisGlucogenogénesis  GlucogenolisisGlucogenolisis  Biosíntesis de aminoácidosBiosíntesis de aminoácidos  Modificaciones de proteínasModificaciones de proteínas  Biosíntesis de ácidos grasosBiosíntesis de ácidos grasos  Reacciones con participación de ATP y ARNtReacciones con participación de ATP y ARNt T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 1 – Hialoplasma o citosol.
  • 6.  Es una red compleja de fibras proteicas que seEs una red compleja de fibras proteicas que se extienden por todo el citoplasma.extienden por todo el citoplasma.  Es una estructura muy dinámicaEs una estructura muy dinámica  Está implicada en el mantenimiento o los cambios deEstá implicada en el mantenimiento o los cambios de forma de la célula y de su estructura interna, en losforma de la célula y de su estructura interna, en los movimientos celulares y endocelulares de orgánulos ymovimientos celulares y endocelulares de orgánulos y estableciendo vías de comunicación entre distintasestableciendo vías de comunicación entre distintas áreas celulares.áreas celulares.  Hay tres tipos de componentes fibrosos:Hay tres tipos de componentes fibrosos:  Microfilamentos,Microfilamentos,  MicrotúbulosMicrotúbulos  Filamentos intermedios.Filamentos intermedios. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 2 – Citoesqueleto.
  • 7. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 2 – Citoesqueleto.
  • 8. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 2 – Citoesqueleto. Tipos de filamentos. Microfilamentos de actina. Formados por monómeros.
  • 9.  Se encuentran en células eucariotas.Se encuentran en células eucariotas.  Son necesarios para el movimiento celular.Son necesarios para el movimiento celular.  Son las estructuras filamentosas más finasSon las estructuras filamentosas más finas  Son fibras sólidas compuestas por actina, una proteína globular compuestaSon fibras sólidas compuestas por actina, una proteína globular compuesta por 375 aminoácidos.por 375 aminoácidos.  Los filamentos de actina se encuentran justoLos filamentos de actina se encuentran justo debajo de la membrana plasmática y estándebajo de la membrana plasmática y están entrecruzados por varias proteínas específicasentrecruzados por varias proteínas específicas formando el córtex celular, o corteza celular.formando el córtex celular, o corteza celular.  La actina es la proteína celular más abundante.La actina es la proteína celular más abundante. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 2 – Citoesqueleto.
  • 10.  La actina se puede encontrar de dos formas:La actina se puede encontrar de dos formas:  Actina G (actina no polimerizada). Es una proteína globular asociada aActina G (actina no polimerizada). Es una proteína globular asociada a otra proteína, la profilina que evita la polimerización.otra proteína, la profilina que evita la polimerización.  Actina F (actina polimerizada). Formada por dos hebras de actina GActina F (actina polimerizada). Formada por dos hebras de actina G enrolladas en sentido dextrógiro.enrolladas en sentido dextrógiro. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 2 – Citoesqueleto.
  • 11. La polimerización está polarizada, es decir, existe un extremo en el que laLa polimerización está polarizada, es decir, existe un extremo en el que la hebra se alarga por adición de unidades y otro en el que se acorta porhebra se alarga por adición de unidades y otro en el que se acorta por pérdida de las mismas, lo que puede suceder a distintas velocidades.pérdida de las mismas, lo que puede suceder a distintas velocidades. Los microfilamentos de actina están ampliamente distribuidos en las células yLos microfilamentos de actina están ampliamente distribuidos en las células y se encuentran asociados a otros tipos de proteínas. Según sean estos otrosse encuentran asociados a otros tipos de proteínas. Según sean estos otros tipos de proteínas, las funciones pueden cambiar.tipos de proteínas, las funciones pueden cambiar. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 2 – Citoesqueleto.
  • 12. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 2 – Citoesqueleto.
  • 13.  Llamados así por su tamaño (unos 10 nm deLlamados así por su tamaño (unos 10 nm de diámetro) intermedio entre microtúbulos ydiámetro) intermedio entre microtúbulos y microfilamentos.microfilamentos.  Son proteínas fibrosas, resistentes y estables.Son proteínas fibrosas, resistentes y estables.  Hay tres tipos de filamentos intermediosHay tres tipos de filamentos intermedios citoplasmáticoscitoplasmáticos 1.1. Queratinas.Queratinas. 2.2. Vimentinas.Vimentinas. 3.3. Neurofilamentos.Neurofilamentos.  Otro tipo de filamentos intermedios están en elOtro tipo de filamentos intermedios están en el núcleo, formando la lámina nuclear interna.núcleo, formando la lámina nuclear interna. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 2 – Citoesqueleto. Filamentos intermedios.
  • 14.  Las queratinas constituyen una gran familia: Hay alrededor de veinteLas queratinas constituyen una gran familia: Hay alrededor de veinte tipos en células epiteliales y 8 más en pelos y uñas (se les llamatipos en células epiteliales y 8 más en pelos y uñas (se les llama αα-- queratinas para diferenciarlas de lasqueratinas para diferenciarlas de las ββ-queratinas de las alas de los-queratinas de las alas de los pájaros, que tienen una estructura diferente).pájaros, que tienen una estructura diferente).  A su vez existen dos tipos deA su vez existen dos tipos de αα-queratinas:-queratinas: 1.1. tipo I (ácidas).tipo I (ácidas). 2.2. tipo II (neutras y básicas).tipo II (neutras y básicas).  Los filamentos se forman con ambos tipos (son heterodímeros). Dan unaLos filamentos se forman con ambos tipos (son heterodímeros). Dan una elevada resistencia mecánica a las células.elevada resistencia mecánica a las células. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 2 – Citoesqueleto.
  • 15.  Los filamentos de proteínas del tipo vimentina se forman con polímeros deLos filamentos de proteínas del tipo vimentina se forman con polímeros de un solo tipo de proteína (fibroblastos, células endoteliales y glóbulosun solo tipo de proteína (fibroblastos, células endoteliales y glóbulos blancos, de vimentina y filamentos de desmina en las células musculares).blancos, de vimentina y filamentos de desmina en las células musculares).  Los neurofilamentos, forman el citoesqueleto primario de los axones y lasLos neurofilamentos, forman el citoesqueleto primario de los axones y las dendritas de las neuronas.dendritas de las neuronas.  En el núcleo, los filamentos intermedios forman la lámina nuclear asociadaEn el núcleo, los filamentos intermedios forman la lámina nuclear asociada a la membrana nuclear interna.a la membrana nuclear interna. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 2 – Citoesqueleto. Esquema de la Vimentina, subunidades que la componen (arriba) y forma extendia (debajo).
  • 16.  Funciones:Funciones:  Su principal función esSu principal función es otorgar resistencia a laotorgar resistencia a la célula al estrés mecánico,célula al estrés mecánico, gracias a la formación degracias a la formación de largos polímeros.largos polímeros.  También contribuyen alTambién contribuyen al mantenimiento de la formamantenimiento de la forma celular junto con el restocelular junto con el resto de los componentes delde los componentes del citoesqueleto.citoesqueleto.  Ayudan a la distribución yAyudan a la distribución y posicionamiento de losposicionamiento de los orgánulos celulares.orgánulos celulares. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 2 – Citoesqueleto.
  • 17.  Es el componente mas abundante delEs el componente mas abundante del citoesqueleto.citoesqueleto.  Están constituidos por moléculas deEstán constituidos por moléculas de tubulina, formando dímerostubulina, formando dímeros  αα-tubulina-tubulina  ββ-tubulina-tubulina  Un microtúbulo es una estructuraUn microtúbulo es una estructura cilíndrica y hueca de unos 250 nm decilíndrica y hueca de unos 250 nm de diámetro y varias micras de longituddiámetro y varias micras de longitud en la que los dímeros de tubulinaen la que los dímeros de tubulina están asociados en 13están asociados en 13 protofilamentos lineares queprotofilamentos lineares que constituyen las paredes delconstituyen las paredes del microtúbulo.microtúbulo. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 2 – Citoesqueleto. Microtúbulos.
  • 18. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 2 – Citoesqueleto. Los microtúbulos se forman por la polimerización de tubulina.
  • 19. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 2 – Citoesqueleto. Los microtúbulos se despolimerizan y repolimerizan contínuamente.
  • 20.  Al igual que los filamentos de actina,Al igual que los filamentos de actina, cada microtúbulo posee un extremo (-)cada microtúbulo posee un extremo (-) que crece lentamente y un extremo (+)que crece lentamente y un extremo (+) que crece con mayor velocidad.que crece con mayor velocidad. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 2 – Citoesqueleto.
  • 21.  Los microtúbulos seLos microtúbulos se originan a partir deloriginan a partir del centrosoma en las célulascentrosoma en las células animales, y de un centroanimales, y de un centro organizador deorganizador de microtúbulos, en lasmicrotúbulos, en las células vegetales.células vegetales.  A partir de losA partir de los microtúbulos se originan:microtúbulos se originan: 1.1. El citoesqueleto.El citoesqueleto. 2.2. El huso acromático.El huso acromático. 3.3. Los centríolos.Los centríolos. 4.4. Los cilios y los flagelos.Los cilios y los flagelos. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 2 – Citoesqueleto.
  • 22. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 2 – Citoesqueleto.
  • 23.  Funciones:Funciones: 1.1. Movimiento de la célula:Movimiento de la célula:  Junto a los microfilamentos de actina, participan en la emisión deJunto a los microfilamentos de actina, participan en la emisión de prolongaciones citoplasmáticas o pseudópodos,prolongaciones citoplasmáticas o pseudópodos,  Asimismo, son los principales elementos estructurales de losAsimismo, son los principales elementos estructurales de los cilios y los flagelos.cilios y los flagelos. 2.2. La forma celular.La forma celular. 3.3. Organización y distribución de orgánulos y transporteOrganización y distribución de orgánulos y transporte intracelular.intracelular. 4.4. Separación de cromosomas (huso mitótico o acromático).Separación de cromosomas (huso mitótico o acromático). 5.5. Forman estructuras muy estables como: centríolos, ciliosForman estructuras muy estables como: centríolos, cilios y flagelos.y flagelos. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 2 – Citoesqueleto.
  • 24. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 2 – Citoesqueleto.
  • 25.  Está sólo en células animales, próximo alEstá sólo en células animales, próximo al núcleo y sin membrana.núcleo y sin membrana.  En las plantas no hay centríolos, pero si laEn las plantas no hay centríolos, pero si la presencia de proteínas específicas delpresencia de proteínas específicas del centrosoma.centrosoma.  El centrosoma está formado por dosEl centrosoma está formado por dos centríolos centrales, dispuestoscentríolos centrales, dispuestos perpendicularmente entre sí, que recibenperpendicularmente entre sí, que reciben juntos el nombre de diplosoma.juntos el nombre de diplosoma.  Rodeando a éstos hay un material deRodeando a éstos hay un material de aspecto amorfo y denso, llamado materialaspecto amorfo y denso, llamado material pericentriolar.pericentriolar.  Todo el conjunto recibe el nombre deTodo el conjunto recibe el nombre de Centro Organizador de MicrotúbulosCentro Organizador de Microtúbulos (COMT).(COMT).  De la centrosfera parten unas fibras,De la centrosfera parten unas fibras, denominadas áster (microtúbulosdenominadas áster (microtúbulos dispuestos de forma radial).dispuestos de forma radial). T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 3 – Centrosoma.
  • 26.  Estructura:Estructura:  Cada centríolo del centrosomaCada centríolo del centrosoma consta de nueve grupos de tresconsta de nueve grupos de tres microtúbulos o tripletes que semicrotúbulos o tripletes que se disponen formando un cilindro.disponen formando un cilindro.  La estructura se mantiene gracias aLa estructura se mantiene gracias a proteínas que unen a los tripletesproteínas que unen a los tripletes entre si formando los llamadosentre si formando los llamados puentes de nexina.puentes de nexina.  En cada triplete de microtúbulos,En cada triplete de microtúbulos, sólo uno es completo (13sólo uno es completo (13 protofilamentos), en tanto que losprotofilamentos), en tanto que los otros dos poseen sólo 10 yotros dos poseen sólo 10 y comparten tres protofilamentos concomparten tres protofilamentos con el anterior.el anterior. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 3 – Centrosoma.
  • 27.  Duplicación del centrosoma.Duplicación del centrosoma. 1.1. A partir de cada centríoloA partir de cada centríolo (madre e hijo(madre e hijo respectivamente) serespectivamente) se comienzan a formar otros doscomienzan a formar otros dos centríolos perpendicularescentríolos perpendiculares (procentriolos).(procentriolos). 2.2. En el procentriolo se formaEn el procentriolo se forma primero el cilindro con losprimero el cilindro con los microtubulos A, y mas tardemicrotubulos A, y mas tarde los B y C.los B y C. 3.3. Este nuevo centriolo creceEste nuevo centriolo crece longitudinalmente, hasta sulongitudinalmente, hasta su completa diferenciación, yacompleta diferenciación, ya en la fase G2.en la fase G2. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 3 – Centrosoma.
  • 28.  Funciones:Funciones: 1.1. El centrosoma participa en laEl centrosoma participa en la división celular, ya que cuando sedivisión celular, ya que cuando se separan los dos diplosomashijos,separan los dos diplosomashijos, entre ellos, se extienden losentre ellos, se extienden los microtúbulos que forman el husomicrotúbulos que forman el huso acromático.acromático. 2.2. En los vegetales, el huso mitóticoEn los vegetales, el huso mitótico se forma en torno a una zona difusase forma en torno a una zona difusa que hace las veces de COMT.que hace las veces de COMT. 3.3. El corpúsculo basal que se halla enEl corpúsculo basal que se halla en la base de cada cilio y flagelo es unla base de cada cilio y flagelo es un centríolo típico, que sirve decentríolo típico, que sirve de anclaje y organización de losanclaje y organización de los microtúbulos que forman lamicrotúbulos que forman la estructura interna del cilio o delestructura interna del cilio o del flagelo.flagelo. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 3 – Centrosoma.
  • 29.  Son prolongaciones de la membrana plasmática dotadas de movimiento queSon prolongaciones de la membrana plasmática dotadas de movimiento que aparecen en muchos tipos de células animales.aparecen en muchos tipos de células animales.  En células libres tienen una función locomotriz, ya que proporcionanEn células libres tienen una función locomotriz, ya que proporcionan movimiento a la célula.movimiento a la célula.  Cuando aparecen en células fijas provocan el movimiento del fluidoCuando aparecen en células fijas provocan el movimiento del fluido extracelular formando pequeños remolinos que atrapan partículas.extracelular formando pequeños remolinos que atrapan partículas.  La diferencia entre unos y otros estriba en el tamaño y el número.La diferencia entre unos y otros estriba en el tamaño y el número.  CILIOS: Pequeños(2 a 10µm) y muy numerosos.CILIOS: Pequeños(2 a 10µm) y muy numerosos.  FLAGELOS: Largos (hasta 200 µm) y escasos.FLAGELOS: Largos (hasta 200 µm) y escasos.  En ambos casos el diámetro (unas 2 µm) y la estructura interna es la misma.En ambos casos el diámetro (unas 2 µm) y la estructura interna es la misma. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 4 – Cilios y flagelos.
  • 30.  Estructura de cilios y flagelos.Estructura de cilios y flagelos.  En ambos se distinguen cuatro zonas:En ambos se distinguen cuatro zonas:  Tallo o axonema.Tallo o axonema.  Zona de transición.Zona de transición.  Corpúsculo basal.Corpúsculo basal.  Raíces ciliares.Raíces ciliares. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 4 – Cilios y flagelos.
  • 31. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 4 – Cilios y flagelos.
  • 32.  Hay una membrana plasmática y una matriz oHay una membrana plasmática y una matriz o medio interno.medio interno.  Axonema formado por un sistema de nueveAxonema formado por un sistema de nueve pares de microtúbulos periféricos y un par depares de microtúbulos periféricos y un par de microtúbulos centrales, paralelos al eje delmicrotúbulos centrales, paralelos al eje del cilio o flagelo (9+2).cilio o flagelo (9+2).  Los dos microtúbulos centrales sonLos dos microtúbulos centrales son completos (13 protofilamentos).completos (13 protofilamentos).  En los perifericos, el A es completo, y el BEn los perifericos, el A es completo, y el B sólo tiene 10 protofilamentos. Estos dossólo tiene 10 protofilamentos. Estos dos microtúbulos se unen por la proteína tektina.microtúbulos se unen por la proteína tektina.  Los dobletes vecinos se unen por puentes deLos dobletes vecinos se unen por puentes de nexina.nexina.  El microtúbulo A emite dos prolongacionesEl microtúbulo A emite dos prolongaciones de otra proteína llamada dineína (responsablede otra proteína llamada dineína (responsable del movimiento).del movimiento). T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 4 – Cilios y flagelos. Axonema.
  • 33.  La zona de transición no se halla rodeada de membrana, ya que se sitúa enLa zona de transición no se halla rodeada de membrana, ya que se sitúa en el citoplasma.el citoplasma.  Carece del doblete central.Carece del doblete central.  Es la base del cilio o flagelo y aparece la placa basal, que conecta la baseEs la base del cilio o flagelo y aparece la placa basal, que conecta la base del cilio o flagelo con la membrana plasmática.del cilio o flagelo con la membrana plasmática. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 4 – Cilios y flagelos. Zona de transición.
  • 34.  Estructura identica al centríolo (9+0)Estructura identica al centríolo (9+0)  Lugar donde se organizan los microtúbulos que constituyen el axonema.Lugar donde se organizan los microtúbulos que constituyen el axonema.  Presenta tripletes y en él se aprecian dos zonas: una distal que es similar aPresenta tripletes y en él se aprecian dos zonas: una distal que es similar a un centríolo, y una proximal en la que aparece un eje central proteico delun centríolo, y una proximal en la que aparece un eje central proteico del que parten radialmente proteínas hacia los tripletes de la periferia; estaque parten radialmente proteínas hacia los tripletes de la periferia; esta estructura se denomina «rueda de carro».estructura se denomina «rueda de carro». T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 4 – Cilios y flagelos. Corpúsculo basal.
  • 35. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 4 – Cilios y flagelos.
  • 36.  La raíz es un conjunto de microfilamentos de función contráctil.La raíz es un conjunto de microfilamentos de función contráctil.  La función de estos, parece estar relacionada con la coordinación delLa función de estos, parece estar relacionada con la coordinación del movimiento especialmente en los cilios.movimiento especialmente en los cilios. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 4 – Cilios y flagelos. Corpúsculo basal.
  • 37. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 4 – Cilios y flagelos.
  • 38.  Los cilios y flagelos que tendrá una célula se produceLos cilios y flagelos que tendrá una célula se produce durante la diferenciación celular y por tanto se tienendurante la diferenciación celular y por tanto se tienen que formar de nuevo.que formar de nuevo.  Los microtúbulos se forman a partir de losLos microtúbulos se forman a partir de los microtúbulos que forman el cuerpo basal.microtúbulos que forman el cuerpo basal.  Y estos cuerpos basales se forman a partir de uno delY estos cuerpos basales se forman a partir de uno del os centriolos del centrosoma que migra hacia laos centriolos del centrosoma que migra hacia la membrana plasmática, contacta con ella y se inicia lamembrana plasmática, contacta con ella y se inicia la polimerización de los túbulos A y B del axonema.polimerización de los túbulos A y B del axonema.  Al final del proceso el centriolo se transforma enAl final del proceso el centriolo se transforma en cuerpo basal.cuerpo basal. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 4 – Cilios y flagelos. Formación de cilios y flagelos.
  • 39.  Descubiertos por Palade en 1953.Descubiertos por Palade en 1953.  Sólo pueden observarse alSólo pueden observarse al microscopio electrónico (250Åmicroscopio electrónico (250Å de diámetro).de diámetro).  Son orgánulos carentes deSon orgánulos carentes de membrana.membrana.  Aparecen dispersos por elAparecen dispersos por el hialoplasma o adheridos a lashialoplasma o adheridos a las membranas del retículomembranas del retículo endoplasmático y núcleo celular.endoplasmático y núcleo celular.  Pueden estar libres oPueden estar libres o encadenadas (polisomas oencadenadas (polisomas o polirribosomas).polirribosomas). T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 5 – Ribosomas.
  • 40. 1.1. Hay dos subunidades de forma aproximadamente globular,Hay dos subunidades de forma aproximadamente globular, una mayor y otra menor, que presentan distintos sitios deuna mayor y otra menor, que presentan distintos sitios de unión del ARNunión del ARNmm, del ARN, del ARNtt y a las endomembranas.y a las endomembranas. 2.2. Ambas pueden aparecer separadas o permanecer unidas.Ambas pueden aparecer separadas o permanecer unidas. 3.3. Las dos subunidades se forman en el nucléolo, donde seLas dos subunidades se forman en el nucléolo, donde se unen el ARNunen el ARNrr y las proteínas ribosomales.y las proteínas ribosomales. 4.4. Estas últimas, se han formado en el citoplasma y tienen queEstas últimas, se han formado en el citoplasma y tienen que emigrar hasta el nucléolo. Las subunidades salen separadasemigrar hasta el nucléolo. Las subunidades salen separadas del núcleo y se juntan en el citoplasma.del núcleo y se juntan en el citoplasma. 5.5. El análisis químico revela que tienen una composición deEl análisis químico revela que tienen una composición de casi un 50% de agua y que el resto son diversas proteínascasi un 50% de agua y que el resto son diversas proteínas unidas a ARNunidas a ARNrr. Además, hay iones Mg. Además, hay iones Mg2+2+ responsables deresponsables de mantener unidas proteínas y ARNmantener unidas proteínas y ARNrr, y también a las, y también a las subunidades.subunidades. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 5 – Ribosomas. Estructura de los ribosomas.
  • 41. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 5 – Ribosomas. Comparación de ribosomas procariotas y eucariotas.
  • 42. 1.1. Síntesis de las proteínas, es decir, la traducción del mensaje genético enSíntesis de las proteínas, es decir, la traducción del mensaje genético en forma de cadena polipeptídica.forma de cadena polipeptídica. 2.2. Para ello, la hebra de ARNPara ello, la hebra de ARNmm portadora del mensaje mantiene el polisomaportadora del mensaje mantiene el polisoma como el hilo de un collar.como el hilo de un collar. 3.3. Los ARNt cargados con los aminoácidos llegan y los aminoácidos vanLos ARNt cargados con los aminoácidos llegan y los aminoácidos van uniéndose entre sí por enlaces peptídicos.uniéndose entre sí por enlaces peptídicos. 4.4. En general, la subunidad pequeña está implicada en la tarea genéticaEn general, la subunidad pequeña está implicada en la tarea genética (unión con el ARN(unión con el ARNmm y los ARNy los ARNtt a los sitios A y P), mientras la subunidada los sitios A y P), mientras la subunidad grande realiza la tarea bioquímica (transferencia y unión de cadagrande realiza la tarea bioquímica (transferencia y unión de cada aminoácido con el siguiente).aminoácido con el siguiente). T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 5 – Ribosomas. Funciones.
  • 43.  Son depósitos de diversas sustancias que seSon depósitos de diversas sustancias que se encuentran en el citosol de células animales yencuentran en el citosol de células animales y vegetales.vegetales.  En las células animales podemos encontrar:En las células animales podemos encontrar:  Inclusiones de glucógeno.Inclusiones de glucógeno. Aparecen fundamentalmente en células muscularesAparecen fundamentalmente en células musculares y hepáticas en forma de gránulos.y hepáticas en forma de gránulos.  Inclusiones de lípidos.Inclusiones de lípidos. Se observan como gotas de diferentes diámetros, muySe observan como gotas de diferentes diámetros, muy grandes en las células adiposas.grandes en las células adiposas.  Inclusiones de pigmentos.Inclusiones de pigmentos. Pueden ser de diferente naturaleza. La melanina esPueden ser de diferente naturaleza. La melanina es de color oscuro y tiene función protectora, la lipofucsina es de color amarillode color oscuro y tiene función protectora, la lipofucsina es de color amarillo parduzco y está presente en células nerviosas y cardiacas envejecidas, laparduzco y está presente en células nerviosas y cardiacas envejecidas, la hemosiderina procede de la degradación de la hemoglobina y se localiza enhemosiderina procede de la degradación de la hemoglobina y se localiza en hígado, bazo y médula ósea.hígado, bazo y médula ósea.  Inclusiones cristalinas.Inclusiones cristalinas. Son depósitos en forma de cristal. Aparecen enSon depósitos en forma de cristal. Aparecen en distintos tipos celulares como las células de Sertoli y de Leydig (testículos).distintos tipos celulares como las células de Sertoli y de Leydig (testículos). T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 6 – Inclusiones citoplasmáticas.
  • 44.  En las células vegetales se pueden encontrar:En las células vegetales se pueden encontrar:  Aceites esenciales.Aceites esenciales. Forman gotitas que se unen y puedenForman gotitas que se unen y pueden llegar a formar grandes lagunas que quedan en elllegar a formar grandes lagunas que quedan en el citoplasma de la célula o salir al exterior. Su oxidación ycitoplasma de la célula o salir al exterior. Su oxidación y polimerización forma las resinas.polimerización forma las resinas.  Inclusiones lipídicas.Inclusiones lipídicas. Aparecen como corpúsculosAparecen como corpúsculos refringentes.refringentes.  Latex.Latex. Es una sustancia elaborada por el citoplasma celularEs una sustancia elaborada por el citoplasma celular y de la que deriva el caucho natural.y de la que deriva el caucho natural. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 6 – Inclusiones citoplasmáticas.
  • 45.  La pared celular es una matriz extracelular compleja que rodeaLa pared celular es una matriz extracelular compleja que rodea a las células vegetales (también tienen pared celular bacterias,a las células vegetales (también tienen pared celular bacterias, algas y hongos).algas y hongos).  Actúa como exoesqueleto de estas células.Actúa como exoesqueleto de estas células. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 7 – La pared celular. Composición.
  • 46. 1.1. Lámina media de pectinas.Lámina media de pectinas. Es laEs la primera en formarse entre dos células queprimera en formarse entre dos células que acaban de dividirse y permanecen unidas.acaban de dividirse y permanecen unidas. En algunas zonas de comunicación entreEn algunas zonas de comunicación entre células vecinas no aparece esta láminacélulas vecinas no aparece esta lámina (plasmodesmos)(plasmodesmos) 2.2. Pared primariaPared primaria de celulosa y matriz dede celulosa y matriz de hemicelulosay pectinas. que la célula vahemicelulosay pectinas. que la célula va depositando durante el crecimiento entredepositando durante el crecimiento entre la membrana plasmática y la láminala membrana plasmática y la lámina media. Permite el crecimiento.media. Permite el crecimiento. 3.3. Pared secundariaPared secundaria con abundantes fibrascon abundantes fibras de celulosa y una matriz más escasa dede celulosa y una matriz más escasa de hemicelulosa, que forma hasta tres capashemicelulosa, que forma hasta tres capas diferentes. Es muy rígida (contienediferentes. Es muy rígida (contiene lignina) y difícilmente deformable, por lolignina) y difícilmente deformable, por lo que sólo aparece en células especializadasque sólo aparece en células especializadas de los tejidos esqueléticos y conductores.de los tejidos esqueléticos y conductores. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 7 – La pared celular. Estructura.
  • 47.  La pared celular da forma y rigidez a la célula e impide suLa pared celular da forma y rigidez a la célula e impide su ruptura.ruptura.  La célula vegetal contiene en su citoplasma una elevadaLa célula vegetal contiene en su citoplasma una elevada concentración de moléculas que, debido a la presión osmótica,concentración de moléculas que, debido a la presión osmótica, origina una corriente de agua hacia el interior celular queorigina una corriente de agua hacia el interior celular que acabaría por hincharla y romperla si no fuera por la pared.acabaría por hincharla y romperla si no fuera por la pared.  Es responsable de que la planta se mantenga erguida.Es responsable de que la planta se mantenga erguida. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 7 – La pared celular. Funciones.
  • 48.  Red de macromoléculas en el espacio intercelular.Red de macromoléculas en el espacio intercelular.  Está compuesta de muchas proteínas versátiles y polisacáridosEstá compuesta de muchas proteínas versátiles y polisacáridos secretados localmente y ensamblados en estrecha asociaciónsecretados localmente y ensamblados en estrecha asociación con la superficie de la célula que la ha producido.con la superficie de la célula que la ha producido.  Aparece entre las células de los tejidos animales y actúa comoAparece entre las células de los tejidos animales y actúa como nexo de unión, rellena espacios intercelulares, da consistencianexo de unión, rellena espacios intercelulares, da consistencia a tejidos y órganos y, además, condiciona la forma, ela tejidos y órganos y, además, condiciona la forma, el desarrollo y la proliferación de las células englobadas por ladesarrollo y la proliferación de las células englobadas por la matriz.matriz.  Hasta hace poco tiempo se pensaba en la matriz como unaHasta hace poco tiempo se pensaba en la matriz como una especie de andamiaje inerte que estabilizaba la estructuraespecie de andamiaje inerte que estabilizaba la estructura física de los tejidos. Ahora es claro que la matriz juega un rolfísica de los tejidos. Ahora es claro que la matriz juega un rol mucho más activo y complejo en la regulación delmucho más activo y complejo en la regulación del comportamiento de las células que interactúan con ella,comportamiento de las células que interactúan con ella, influenciando su desarrollo, migración, proliferación, forma yinfluenciando su desarrollo, migración, proliferación, forma y función.función. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 8 – Matriz extracelular.
  • 49. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 8 – Matriz extracelular.
  • 50. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 8 – Matriz extracelular.
  • 51. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 8 – Matriz extracelular. Estructura.
  • 52.  El colágeno es una proteína fibrosa formada porEl colágeno es una proteína fibrosa formada por tres cadenas (cadenas α) espiralizadas sobre sitres cadenas (cadenas α) espiralizadas sobre si mismas.mismas.  Proporciona estructura, resistencia a la rotura yProporciona estructura, resistencia a la rotura y consistencia a la matriz.consistencia a la matriz.  El colágeno es la principal proteína de la matrizEl colágeno es la principal proteína de la matriz extracelular (25% de las proteínas). Estáextracelular (25% de las proteínas). Está constituido por una triple hélice ordenada hacia laconstituido por una triple hélice ordenada hacia la izquierda, con tres residuos aminoacídicos porizquierda, con tres residuos aminoacídicos por vuelta. Uno de ellos siempre es glicina y de losvuelta. Uno de ellos siempre es glicina y de los otros dos es bastante frecuente que uno sea prolinaotros dos es bastante frecuente que uno sea prolina y otro hidroxiprolina.y otro hidroxiprolina. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 8 – Matriz extracelular. Proteínas. Colágeno.
  • 53.  Las moléculas de colágeno se asocian en fibrillas de colágenoLas moléculas de colágeno se asocian en fibrillas de colágeno (10 a 300 nm de diámetro, visibles con el microscopio(10 a 300 nm de diámetro, visibles con el microscopio electrónico) y luego en estructuras más complejas, las fibraselectrónico) y luego en estructuras más complejas, las fibras de colágeno, que son visibles al microscopio óptico. Luego dede colágeno, que son visibles al microscopio óptico. Luego de su formación las fibrillas de colágeno se entrecruzan con otrassu formación las fibrillas de colágeno se entrecruzan con otras a través de enlaces entre residuos de lisina. El grado dea través de enlaces entre residuos de lisina. El grado de entrecruzamiento es variable: en el tendón de Aquiles es muyentrecruzamiento es variable: en el tendón de Aquiles es muy significativo.significativo.  Forma fibras muy resistentes a la tracción.Forma fibras muy resistentes a la tracción. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 8 – Matriz extracelular.
  • 54.  La elastina es una proteína fibrosaLa elastina es una proteína fibrosa que se comporta como una gomaque se comporta como una goma frente a la tracción.frente a la tracción.  Proporciona elasticidad a laProporciona elasticidad a la matriz.matriz.  Tejidos de los vertebrados, comoTejidos de los vertebrados, como la piel, vasos sanguíneos o losla piel, vasos sanguíneos o los pulmones, necesitan al mismopulmones, necesitan al mismo tiempo ser fuertes pero elásticostiempo ser fuertes pero elásticos para poder cumplir con supara poder cumplir con su función. En estos tejidos existefunción. En estos tejidos existe una red de fibras elásticas en launa red de fibras elásticas en la matriz extracelular de sus célulasmatriz extracelular de sus células que les permite expandirse yque les permite expandirse y volver a su posición inicial.volver a su posición inicial. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 8 – Matriz extracelular. Elastina.
  • 55.  El principal componente de las fibras es la elastina,El principal componente de las fibras es la elastina, una proteína hidrofóbica rica en glicina y prolina. Aluna proteína hidrofóbica rica en glicina y prolina. Al igual que en el colágeno, las moléculas de elastinaigual que en el colágeno, las moléculas de elastina están entrecruzadas por uniones covalentes entreestán entrecruzadas por uniones covalentes entre residuos de lisina. Esto le permite pasar de unaresiduos de lisina. Esto le permite pasar de una conformación donde las moléculas están enrolladas alconformación donde las moléculas están enrolladas al azar a una en la que adoptan una totalmente estirada.azar a una en la que adoptan una totalmente estirada.  Si bien la elastina es el principal componente de lasSi bien la elastina es el principal componente de las fibras elásticas, éstas están recubiertas porfibras elásticas, éstas están recubiertas por glicoproteínas diversas, de la cual la más común es laglicoproteínas diversas, de la cual la más común es la fibrilina, que recubren la red de elastina.fibrilina, que recubren la red de elastina. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 8 – Matriz extracelular.
  • 56.  Es una de las primeras proteínas deEs una de las primeras proteínas de la matriz extracelular sintetizadala matriz extracelular sintetizada por un embrión en desarrollo. Tienepor un embrión en desarrollo. Tiene tres cadenas polipeptídicastres cadenas polipeptídicas ordenadas en forma de cruz, conordenadas en forma de cruz, con distintos dominios destinados adistintos dominios destinados a unirse a los otros componentes de launirse a los otros componentes de la lámina basal.lámina basal. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 8 – Matriz extracelular. Glucoproteínas. Laminina.
  • 57.  La fibronectina es una glucoproteína queLa fibronectina es una glucoproteína que forma una trama fibrosa larga e insoluble, conforma una trama fibrosa larga e insoluble, con función adherente. Proporciona adhesión entrefunción adherente. Proporciona adhesión entre células, y entre células y fibras de colágeno.células, y entre células y fibras de colágeno. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 8 – Matriz extracelular. Fibronectina.
  • 58.  Las glucoproteínas están formadas por proteoglucanos,Las glucoproteínas están formadas por proteoglucanos, moléculas que presentan una proteína filamentosa centralmoléculas que presentan una proteína filamentosa central a la que se unen numerosos filamentos dea la que se unen numerosos filamentos de glucosaminglucanos (GAG), originando estructurasglucosaminglucanos (GAG), originando estructuras plumosas que a su vez se fijan en una larga molécula deplumosas que a su vez se fijan en una larga molécula de ácido hialurónico.ácido hialurónico.  Son muy hidrófilas y retienen mucha agua, lo queSon muy hidrófilas y retienen mucha agua, lo que proporciona a la matriz una gran resistencia frente a laproporciona a la matriz una gran resistencia frente a la compresión, permiten la migración celular a través suyo,compresión, permiten la migración celular a través suyo, la difusión de moléculas hidrosolubles e incluso, dado quela difusión de moléculas hidrosolubles e incluso, dado que forman geles con un determinado tamaño de malla, laforman geles con un determinado tamaño de malla, la filtración selectiva de estas moléculas.filtración selectiva de estas moléculas. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 8 – Matriz extracelular. Polisacáridos. Proteoglucanos.
  • 59. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 8 – Matriz extracelular.
  • 60.  Mantiene unidas a las células formando tejidos, y aMantiene unidas a las células formando tejidos, y a los tejidos formando órganos.los tejidos formando órganos.  Permite la difusión de sustancias, la migración dePermite la difusión de sustancias, la migración de células e influye en la disposición en el espacio de lascélulas e influye en la disposición en el espacio de las células.células.  Interviene en la formación tridimensional de losInterviene en la formación tridimensional de los órganos.órganos.  Da consistencia, elasticidad y resistencia a laDa consistencia, elasticidad y resistencia a la compresión y a la tracción a dichos tejidos.compresión y a la tracción a dichos tejidos. T10. Hialoplasma, citesqueleto y estructuras no membranosas de la célula. 8 – Matriz extracelular. Funciones.