SlideShare une entreprise Scribd logo
1  sur  60
Machine Learning : Foundations Course Number 0368403401 Prof. Nathan Intrator Teaching Assistants:  Daniel Gill, Guy Amit
Course structure ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Class Notes ,[object Object],[object Object],[object Object],[object Object],[object Object]
Class Notes (cont’d) ,[object Object],[object Object],[object Object],[object Object]
Basic Machine Learning idea ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Learning Approaches ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Storage & Retrieval  ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Learning Set of Rules ,[object Object],[object Object],[object Object],[object Object]
Estimation of a flexible model ,[object Object],[object Object],[object Object]
Applications ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Related Disciplines Machine Learning AI probability & statistics computational complexity theory control theory information theory philosophy psychology neurophysiology Data Mining decision theory game theory optimization biological evolution statistical mechanics
Example 1: Credit Risk Analysis ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Example 1: Credit Risk Analysis ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Example 2: Clustering news ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Example 3: Robot control ,[object Object],[object Object],[object Object],[object Object],[object Object]
Example 4: Medical Application ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
 
History of Machine Learning ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
History of Machine Learning (cont’d) ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
History of Machine Learning (cont’d) ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Bottom line from History ,[object Object],[object Object],[object Object],[object Object],[object Object]
A Glimpse in to the future ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Type of models ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],Learning: Complete Information (x,y)
Task:  generate  class label to a point at location (x,y) ,[object Object],[object Object],
Predictions and Loss Model ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Bayes Estimator ,[object Object]
Other Loss Models ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
The basic PAC Model ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
The basic PAC Model ,[object Object],[object Object],[object Object],[object Object]
Bayesian Theory Prior distribution over  H Given a sample  S  compute a posterior distribution: Maximum Likelihood (ML)  Pr[S|h] Maximum A Posteriori (MAP)  Pr[h|S] Bayesian Predictor   h(x) Pr[h|S].
Some Issues in Machine Learning ,[object Object],[object Object],[object Object],[object Object]
More Issues in Machine Learning ,[object Object],[object Object],[object Object],[object Object],[object Object]
Complexity vs. Generalization ,[object Object],[object Object],[object Object],[object Object]
Criteria for Model Selection ,[object Object],[object Object],[object Object],Minimum Description Length (MDL)  ’ (h)  + |code length of h| Structural Risk Minimization:  ’ (h)  +  { log |H|  /  m } ½  m # of training samples
Weak Learning Small class of predicates  H Weak Learning: Assume that for  any  distribution  D , there is some  predicate  heH  that predicts better than  1/2+e. Multiple Weak Learning Strong Learning
Boosting Algorithms Functions: Weighted majority of the predicates. Methodology: Change the distribution to target “hard” examples. Weight of an example is exponential in the number of  incorrect classifications. Good experimental results and efficient algorithms.
Computational Methods ,[object Object],[object Object],[object Object],[object Object],[object Object]
 
Nearest Neighbor Methods Classify using near examples. Assume a “structured space” and a “metric” + + + + - - - - ?
Separating Hyperplane Perceptron:   sign(    x i w i  ) Find  w 1  .... w n Limited representation x 1 x n w 1 w n  sign
Neural Networks Sigmoidal gates : a=    x i w i   and  output = 1/(1+ e -a ) Learning by “Back Propagation” of errors x 1 x n
Decision Trees x 1  > 5 x 6  > 2 +1 +1 -1
Decision Trees Top Down construction: Construct the tree greedy,  using a local index function. Ginni Index : G(x) = x(1-x), Entropy H(x) ... Bottom up model selection: Prune the decision Tree  while maintaining low observed error.
Decision Trees ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Support Vector Machine n  dimensions m  dimensions
Support Vector Machine Use a hyperplane in the LARGE space. Choose a hyperplane with a large MARGIN. + + + + - - - Project data to a high dimensional space.
Reinforcement Learning ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Genetic Programming A search Method. Local mutation operations  Cross-over operations Keeps the “best” candidates Change a node in a tree Replace a subtree by another tree Keep trees with low observed error Example: decision trees
Unsupervised learning: Clustering
Unsupervised learning: Clustering
Basic Concepts in Probability ,[object Object],[object Object],[object Object],[object Object]
Basic Concepts in Probability ,[object Object]
Basic Concepts in Probability ,[object Object],i.i.d,  Convergence rate of empirical mean to the true mean
 
Basic Concepts in Probability ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Course structure ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Fourier Transform f(x) =   z  z (x)   z (x) =  (-1) <x,z> Many Simple classes are well approximated using large coefficients.  Efficient algorithms for finding large coefficients.
General PAC Methodology Minimize the observed error. Search for a small size classifier Hand-tailored search method for specific classes.
Other Models Membership Queries x f(x)

Contenu connexe

Tendances

Incorporating Prior Domain Knowledge Into Inductive Machine ...
Incorporating Prior Domain Knowledge Into Inductive Machine ...Incorporating Prior Domain Knowledge Into Inductive Machine ...
Incorporating Prior Domain Knowledge Into Inductive Machine ...butest
 
Download presentation source
Download presentation sourceDownload presentation source
Download presentation sourcebutest
 
Classification Techniques
Classification TechniquesClassification Techniques
Classification TechniquesKiran Bhowmick
 
SVM Tutorial
SVM TutorialSVM Tutorial
SVM Tutorialbutest
 
3_learning.ppt
3_learning.ppt3_learning.ppt
3_learning.pptbutest
 
Intro to Model Selection
Intro to Model SelectionIntro to Model Selection
Intro to Model Selectionchenhm
 
MACHINE LEARNING TOOLBOX
MACHINE LEARNING TOOLBOXMACHINE LEARNING TOOLBOX
MACHINE LEARNING TOOLBOXmlaij
 
Nbe rtopicsandrecomvlecture1
Nbe rtopicsandrecomvlecture1Nbe rtopicsandrecomvlecture1
Nbe rtopicsandrecomvlecture1NBER
 
Presentation on Machine Learning and Data Mining
Presentation on Machine Learning and Data MiningPresentation on Machine Learning and Data Mining
Presentation on Machine Learning and Data Miningbutest
 
Presentation on supervised learning
Presentation on supervised learningPresentation on supervised learning
Presentation on supervised learningTonmoy Bhagawati
 
Applications in Machine Learning
Applications in Machine LearningApplications in Machine Learning
Applications in Machine LearningJoel Graff
 
slides
slidesslides
slidesbutest
 
Lecture 09(introduction to machine learning)
Lecture 09(introduction to machine learning)Lecture 09(introduction to machine learning)
Lecture 09(introduction to machine learning)Jeet Das
 

Tendances (19)

ML Basics
ML BasicsML Basics
ML Basics
 
Incorporating Prior Domain Knowledge Into Inductive Machine ...
Incorporating Prior Domain Knowledge Into Inductive Machine ...Incorporating Prior Domain Knowledge Into Inductive Machine ...
Incorporating Prior Domain Knowledge Into Inductive Machine ...
 
Download presentation source
Download presentation sourceDownload presentation source
Download presentation source
 
Machine Learning - Deep Learning
Machine Learning - Deep LearningMachine Learning - Deep Learning
Machine Learning - Deep Learning
 
Classification Techniques
Classification TechniquesClassification Techniques
Classification Techniques
 
SVM Tutorial
SVM TutorialSVM Tutorial
SVM Tutorial
 
3_learning.ppt
3_learning.ppt3_learning.ppt
3_learning.ppt
 
Intro to Model Selection
Intro to Model SelectionIntro to Model Selection
Intro to Model Selection
 
MACHINE LEARNING TOOLBOX
MACHINE LEARNING TOOLBOXMACHINE LEARNING TOOLBOX
MACHINE LEARNING TOOLBOX
 
Nbe rtopicsandrecomvlecture1
Nbe rtopicsandrecomvlecture1Nbe rtopicsandrecomvlecture1
Nbe rtopicsandrecomvlecture1
 
Introduction to machine learning
Introduction to machine learningIntroduction to machine learning
Introduction to machine learning
 
Basen Network
Basen NetworkBasen Network
Basen Network
 
Presentation on Machine Learning and Data Mining
Presentation on Machine Learning and Data MiningPresentation on Machine Learning and Data Mining
Presentation on Machine Learning and Data Mining
 
Presentation on supervised learning
Presentation on supervised learningPresentation on supervised learning
Presentation on supervised learning
 
Applications in Machine Learning
Applications in Machine LearningApplications in Machine Learning
Applications in Machine Learning
 
slides
slidesslides
slides
 
Lecture 09(introduction to machine learning)
Lecture 09(introduction to machine learning)Lecture 09(introduction to machine learning)
Lecture 09(introduction to machine learning)
 
Multiple Classifier Systems
Multiple Classifier SystemsMultiple Classifier Systems
Multiple Classifier Systems
 
AI: Belief Networks
AI: Belief NetworksAI: Belief Networks
AI: Belief Networks
 

En vedette

Writing a phone gap or cordova plugin to install it by command line
Writing a phone gap or cordova plugin to install it by command lineWriting a phone gap or cordova plugin to install it by command line
Writing a phone gap or cordova plugin to install it by command lineOodles Technologies Pvt. Ltd.
 
Artificial Intelligence
Artificial Intelligence Artificial Intelligence
Artificial Intelligence butest
 
SP.Matveev.IComp.Cover.AUG2016
SP.Matveev.IComp.Cover.AUG2016SP.Matveev.IComp.Cover.AUG2016
SP.Matveev.IComp.Cover.AUG2016Alex Matveev
 
Machine Learning Fall, 2007 Course Information
Machine Learning Fall, 2007 Course InformationMachine Learning Fall, 2007 Course Information
Machine Learning Fall, 2007 Course Informationbutest
 
University of Texas at Austin
University of Texas at AustinUniversity of Texas at Austin
University of Texas at Austinbutest
 
High-level
High-levelHigh-level
High-levelbutest
 

En vedette (8)

CEO Certificate_Q3_2016
CEO Certificate_Q3_2016CEO Certificate_Q3_2016
CEO Certificate_Q3_2016
 
Writing a phone gap or cordova plugin to install it by command line
Writing a phone gap or cordova plugin to install it by command lineWriting a phone gap or cordova plugin to install it by command line
Writing a phone gap or cordova plugin to install it by command line
 
Artificial Intelligence
Artificial Intelligence Artificial Intelligence
Artificial Intelligence
 
SP.Matveev.IComp.Cover.AUG2016
SP.Matveev.IComp.Cover.AUG2016SP.Matveev.IComp.Cover.AUG2016
SP.Matveev.IComp.Cover.AUG2016
 
20161010090514287
2016101009051428720161010090514287
20161010090514287
 
Machine Learning Fall, 2007 Course Information
Machine Learning Fall, 2007 Course InformationMachine Learning Fall, 2007 Course Information
Machine Learning Fall, 2007 Course Information
 
University of Texas at Austin
University of Texas at AustinUniversity of Texas at Austin
University of Texas at Austin
 
High-level
High-levelHigh-level
High-level
 

Similaire à Machine Learning: Foundations Course Number 0368403401

Machine learning ppt unit one syllabuspptx
Machine learning ppt unit one syllabuspptxMachine learning ppt unit one syllabuspptx
Machine learning ppt unit one syllabuspptxVenkateswaraBabuRavi
 
Brief Tour of Machine Learning
Brief Tour of Machine LearningBrief Tour of Machine Learning
Brief Tour of Machine Learningbutest
 
Introduction to Machine Learning.
Introduction to Machine Learning.Introduction to Machine Learning.
Introduction to Machine Learning.butest
 
This is a heavily data-oriented
This is a heavily data-orientedThis is a heavily data-oriented
This is a heavily data-orientedbutest
 
This is a heavily data-oriented
This is a heavily data-orientedThis is a heavily data-oriented
This is a heavily data-orientedbutest
 
UNIT1-2.pptx
UNIT1-2.pptxUNIT1-2.pptx
UNIT1-2.pptxcsecem
 
slides
slidesslides
slidesbutest
 
Introduction to machine learning-2023-IT-AI and DS.pdf
Introduction to machine learning-2023-IT-AI and DS.pdfIntroduction to machine learning-2023-IT-AI and DS.pdf
Introduction to machine learning-2023-IT-AI and DS.pdfSisayNegash4
 
Machine Learning presentation.
Machine Learning presentation.Machine Learning presentation.
Machine Learning presentation.butest
 
Introduction to Machine Learning Aristotelis Tsirigos
Introduction to Machine Learning Aristotelis Tsirigos Introduction to Machine Learning Aristotelis Tsirigos
Introduction to Machine Learning Aristotelis Tsirigos butest
 
Introduction
IntroductionIntroduction
Introductionbutest
 
Introduction
IntroductionIntroduction
Introductionbutest
 
Introduction
IntroductionIntroduction
Introductionbutest
 
Topic_6
Topic_6Topic_6
Topic_6butest
 
Lecture 2 Basic Concepts in Machine Learning for Language Technology
Lecture 2 Basic Concepts in Machine Learning for Language TechnologyLecture 2 Basic Concepts in Machine Learning for Language Technology
Lecture 2 Basic Concepts in Machine Learning for Language TechnologyMarina Santini
 
notes as .ppt
notes as .pptnotes as .ppt
notes as .pptbutest
 
Lec1-Into
Lec1-IntoLec1-Into
Lec1-Intobutest
 

Similaire à Machine Learning: Foundations Course Number 0368403401 (20)

Machine learning ppt unit one syllabuspptx
Machine learning ppt unit one syllabuspptxMachine learning ppt unit one syllabuspptx
Machine learning ppt unit one syllabuspptx
 
PREDICT 422 - Module 1.pptx
PREDICT 422 - Module 1.pptxPREDICT 422 - Module 1.pptx
PREDICT 422 - Module 1.pptx
 
Brief Tour of Machine Learning
Brief Tour of Machine LearningBrief Tour of Machine Learning
Brief Tour of Machine Learning
 
Introduction to Machine Learning.
Introduction to Machine Learning.Introduction to Machine Learning.
Introduction to Machine Learning.
 
This is a heavily data-oriented
This is a heavily data-orientedThis is a heavily data-oriented
This is a heavily data-oriented
 
This is a heavily data-oriented
This is a heavily data-orientedThis is a heavily data-oriented
This is a heavily data-oriented
 
UNIT1-2.pptx
UNIT1-2.pptxUNIT1-2.pptx
UNIT1-2.pptx
 
slides
slidesslides
slides
 
Machine_Learning.pptx
Machine_Learning.pptxMachine_Learning.pptx
Machine_Learning.pptx
 
Introduction to machine learning-2023-IT-AI and DS.pdf
Introduction to machine learning-2023-IT-AI and DS.pdfIntroduction to machine learning-2023-IT-AI and DS.pdf
Introduction to machine learning-2023-IT-AI and DS.pdf
 
Eric Smidth
Eric SmidthEric Smidth
Eric Smidth
 
Machine Learning presentation.
Machine Learning presentation.Machine Learning presentation.
Machine Learning presentation.
 
Introduction to Machine Learning Aristotelis Tsirigos
Introduction to Machine Learning Aristotelis Tsirigos Introduction to Machine Learning Aristotelis Tsirigos
Introduction to Machine Learning Aristotelis Tsirigos
 
Introduction
IntroductionIntroduction
Introduction
 
Introduction
IntroductionIntroduction
Introduction
 
Introduction
IntroductionIntroduction
Introduction
 
Topic_6
Topic_6Topic_6
Topic_6
 
Lecture 2 Basic Concepts in Machine Learning for Language Technology
Lecture 2 Basic Concepts in Machine Learning for Language TechnologyLecture 2 Basic Concepts in Machine Learning for Language Technology
Lecture 2 Basic Concepts in Machine Learning for Language Technology
 
notes as .ppt
notes as .pptnotes as .ppt
notes as .ppt
 
Lec1-Into
Lec1-IntoLec1-Into
Lec1-Into
 

Plus de butest

EL MODELO DE NEGOCIO DE YOUTUBE
EL MODELO DE NEGOCIO DE YOUTUBEEL MODELO DE NEGOCIO DE YOUTUBE
EL MODELO DE NEGOCIO DE YOUTUBEbutest
 
1. MPEG I.B.P frame之不同
1. MPEG I.B.P frame之不同1. MPEG I.B.P frame之不同
1. MPEG I.B.P frame之不同butest
 
LESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIALLESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIALbutest
 
Timeline: The Life of Michael Jackson
Timeline: The Life of Michael JacksonTimeline: The Life of Michael Jackson
Timeline: The Life of Michael Jacksonbutest
 
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...butest
 
LESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIALLESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIALbutest
 
Com 380, Summer II
Com 380, Summer IICom 380, Summer II
Com 380, Summer IIbutest
 
The MYnstrel Free Press Volume 2: Economic Struggles, Meet Jazz
The MYnstrel Free Press Volume 2: Economic Struggles, Meet JazzThe MYnstrel Free Press Volume 2: Economic Struggles, Meet Jazz
The MYnstrel Free Press Volume 2: Economic Struggles, Meet Jazzbutest
 
MICHAEL JACKSON.doc
MICHAEL JACKSON.docMICHAEL JACKSON.doc
MICHAEL JACKSON.docbutest
 
Social Networks: Twitter Facebook SL - Slide 1
Social Networks: Twitter Facebook SL - Slide 1Social Networks: Twitter Facebook SL - Slide 1
Social Networks: Twitter Facebook SL - Slide 1butest
 
Facebook
Facebook Facebook
Facebook butest
 
Executive Summary Hare Chevrolet is a General Motors dealership ...
Executive Summary Hare Chevrolet is a General Motors dealership ...Executive Summary Hare Chevrolet is a General Motors dealership ...
Executive Summary Hare Chevrolet is a General Motors dealership ...butest
 
Welcome to the Dougherty County Public Library's Facebook and ...
Welcome to the Dougherty County Public Library's Facebook and ...Welcome to the Dougherty County Public Library's Facebook and ...
Welcome to the Dougherty County Public Library's Facebook and ...butest
 
NEWS ANNOUNCEMENT
NEWS ANNOUNCEMENTNEWS ANNOUNCEMENT
NEWS ANNOUNCEMENTbutest
 
C-2100 Ultra Zoom.doc
C-2100 Ultra Zoom.docC-2100 Ultra Zoom.doc
C-2100 Ultra Zoom.docbutest
 
MAC Printing on ITS Printers.doc.doc
MAC Printing on ITS Printers.doc.docMAC Printing on ITS Printers.doc.doc
MAC Printing on ITS Printers.doc.docbutest
 
Mac OS X Guide.doc
Mac OS X Guide.docMac OS X Guide.doc
Mac OS X Guide.docbutest
 
WEB DESIGN!
WEB DESIGN!WEB DESIGN!
WEB DESIGN!butest
 

Plus de butest (20)

EL MODELO DE NEGOCIO DE YOUTUBE
EL MODELO DE NEGOCIO DE YOUTUBEEL MODELO DE NEGOCIO DE YOUTUBE
EL MODELO DE NEGOCIO DE YOUTUBE
 
1. MPEG I.B.P frame之不同
1. MPEG I.B.P frame之不同1. MPEG I.B.P frame之不同
1. MPEG I.B.P frame之不同
 
LESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIALLESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIAL
 
Timeline: The Life of Michael Jackson
Timeline: The Life of Michael JacksonTimeline: The Life of Michael Jackson
Timeline: The Life of Michael Jackson
 
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...
 
LESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIALLESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIAL
 
Com 380, Summer II
Com 380, Summer IICom 380, Summer II
Com 380, Summer II
 
PPT
PPTPPT
PPT
 
The MYnstrel Free Press Volume 2: Economic Struggles, Meet Jazz
The MYnstrel Free Press Volume 2: Economic Struggles, Meet JazzThe MYnstrel Free Press Volume 2: Economic Struggles, Meet Jazz
The MYnstrel Free Press Volume 2: Economic Struggles, Meet Jazz
 
MICHAEL JACKSON.doc
MICHAEL JACKSON.docMICHAEL JACKSON.doc
MICHAEL JACKSON.doc
 
Social Networks: Twitter Facebook SL - Slide 1
Social Networks: Twitter Facebook SL - Slide 1Social Networks: Twitter Facebook SL - Slide 1
Social Networks: Twitter Facebook SL - Slide 1
 
Facebook
Facebook Facebook
Facebook
 
Executive Summary Hare Chevrolet is a General Motors dealership ...
Executive Summary Hare Chevrolet is a General Motors dealership ...Executive Summary Hare Chevrolet is a General Motors dealership ...
Executive Summary Hare Chevrolet is a General Motors dealership ...
 
Welcome to the Dougherty County Public Library's Facebook and ...
Welcome to the Dougherty County Public Library's Facebook and ...Welcome to the Dougherty County Public Library's Facebook and ...
Welcome to the Dougherty County Public Library's Facebook and ...
 
NEWS ANNOUNCEMENT
NEWS ANNOUNCEMENTNEWS ANNOUNCEMENT
NEWS ANNOUNCEMENT
 
C-2100 Ultra Zoom.doc
C-2100 Ultra Zoom.docC-2100 Ultra Zoom.doc
C-2100 Ultra Zoom.doc
 
MAC Printing on ITS Printers.doc.doc
MAC Printing on ITS Printers.doc.docMAC Printing on ITS Printers.doc.doc
MAC Printing on ITS Printers.doc.doc
 
Mac OS X Guide.doc
Mac OS X Guide.docMac OS X Guide.doc
Mac OS X Guide.doc
 
hier
hierhier
hier
 
WEB DESIGN!
WEB DESIGN!WEB DESIGN!
WEB DESIGN!
 

Machine Learning: Foundations Course Number 0368403401

  • 1. Machine Learning : Foundations Course Number 0368403401 Prof. Nathan Intrator Teaching Assistants: Daniel Gill, Guy Amit
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11. Related Disciplines Machine Learning AI probability & statistics computational complexity theory control theory information theory philosophy psychology neurophysiology Data Mining decision theory game theory optimization biological evolution statistical mechanics
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.  
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31. Bayesian Theory Prior distribution over H Given a sample S compute a posterior distribution: Maximum Likelihood (ML) Pr[S|h] Maximum A Posteriori (MAP) Pr[h|S] Bayesian Predictor  h(x) Pr[h|S].
  • 32.
  • 33.
  • 34.
  • 35.
  • 36. Weak Learning Small class of predicates H Weak Learning: Assume that for any distribution D , there is some predicate heH that predicts better than 1/2+e. Multiple Weak Learning Strong Learning
  • 37. Boosting Algorithms Functions: Weighted majority of the predicates. Methodology: Change the distribution to target “hard” examples. Weight of an example is exponential in the number of incorrect classifications. Good experimental results and efficient algorithms.
  • 38.
  • 39.  
  • 40. Nearest Neighbor Methods Classify using near examples. Assume a “structured space” and a “metric” + + + + - - - - ?
  • 41. Separating Hyperplane Perceptron: sign(  x i w i ) Find w 1 .... w n Limited representation x 1 x n w 1 w n  sign
  • 42. Neural Networks Sigmoidal gates : a=  x i w i and output = 1/(1+ e -a ) Learning by “Back Propagation” of errors x 1 x n
  • 43. Decision Trees x 1 > 5 x 6 > 2 +1 +1 -1
  • 44. Decision Trees Top Down construction: Construct the tree greedy, using a local index function. Ginni Index : G(x) = x(1-x), Entropy H(x) ... Bottom up model selection: Prune the decision Tree while maintaining low observed error.
  • 45.
  • 46. Support Vector Machine n dimensions m dimensions
  • 47. Support Vector Machine Use a hyperplane in the LARGE space. Choose a hyperplane with a large MARGIN. + + + + - - - Project data to a high dimensional space.
  • 48.
  • 49. Genetic Programming A search Method. Local mutation operations Cross-over operations Keeps the “best” candidates Change a node in a tree Replace a subtree by another tree Keep trees with low observed error Example: decision trees
  • 52.
  • 53.
  • 54.
  • 55.  
  • 56.
  • 57.
  • 58. Fourier Transform f(x) =  z  z (x)  z (x) = (-1) <x,z> Many Simple classes are well approximated using large coefficients. Efficient algorithms for finding large coefficients.
  • 59. General PAC Methodology Minimize the observed error. Search for a small size classifier Hand-tailored search method for specific classes.
  • 60. Other Models Membership Queries x f(x)

Notes de l'éditeur

  1. How retrieval can be done
  2. How retrieval can be done
  3. How retrieval can be done
  4. How retrieval can be done