SlideShare utilise les cookies pour améliorer les fonctionnalités et les performances, et également pour vous montrer des publicités pertinentes. Si vous continuez à naviguer sur ce site, vous acceptez l’utilisation de cookies. Consultez nos Conditions d’utilisation et notre Politique de confidentialité.
SlideShare utilise les cookies pour améliorer les fonctionnalités et les performances, et également pour vous montrer des publicités pertinentes. Si vous continuez à naviguer sur ce site, vous acceptez l’utilisation de cookies. Consultez notre Politique de confidentialité et nos Conditions d’utilisation pour en savoir plus.
Publié le
http://pipeline.io
Title
PipelineAI Distributed Spark ML + Tensorflow AI + GPU Workshop
*A GPU-based cloud instance will be provided to each attendee as part of this event
Highlights
We will each build an end-to-end, continuous Tensorflow AI model training and deployment pipeline on our own GPU-based cloud instance.
At the end, we will combine our cloud instances to create the LARGEST Distributed Tensorflow AI Training and Serving Cluster in the WORLD!
Pre-requisites
Just a modern browser, internet connection, and a good night's sleep! We'll provide the rest.
Agenda
Spark ML
TensorFlow AI
Storing and Serving Models with HDFS
Trade-offs of CPU vs. *GPU, Scale Up vs. Scale Out
CUDA + cuDNN GPU Development Overview
TensorFlow Model Checkpointing, Saving, Exporting, and Importing
Distributed TensorFlow AI Model Training (Distributed Tensorflow)
TensorFlow's Accelerated Linear Algebra Framework (XLA)
TensorFlow's Just-in-Time (JIT) Compiler, Ahead of Time (AOT) Compiler
Centralized Logging and Visualizing of Distributed TensorFlow Training (Tensorboard)
Distributed Tensorflow AI Model Serving/Predicting (TensorFlow Serving)
Centralized Logging and Metrics Collection (Prometheus, Grafana)
Continuous TensorFlow AI Model Deployment (TensorFlow, Airflow)
Hybrid Cross-Cloud and On-Premise Deployments (Kubernetes)
High-Performance and Fault-Tolerant Micro-services (NetflixOSS)
Bio
Chris Fregly is Founder and Research Engineer at PipelineIO, a Streaming Machine Learning and Artificial Intelligence Startup based in San Francisco. He is also an Apache Spark Contributor, a Netflix Open Source Committer, founder of the Global Advanced Spark and TensorFlow Meetup, author of the O’Reilly Training and Video Series titled, "High Performance TensorFlow in Production."
Previously, Chris was a Distributed Systems Engineer at Netflix, a Data Solutions Engineer at Databricks, and a Founding Member and Principal Engineer at the IBM Spark Technology Center in San Francisco.
Github Repo
https://github.com/fluxcapacitor/pipeline
Video
https://youtu.be/oNf3I1fVmg8
Il semblerait que vous ayez déjà ajouté cette diapositive à .
Identifiez-vous pour voir les commentaires